Description

The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications. This journal will encourage the exchange of ideas that may be seminal, or hold promise to stimulate others to new findings.


In 2024, SIN-CHN SCIENTIFIC PRESS acquired Molecular & Cellular Biomechanics from Tech Science Press, and will publish this journal from Volume 21, 2024. As of 1 March 2024, new submissions should be made to our Open Journal Systems. To view your previous submissions, please access TSP system.

Announcements

Manuscript Quality Check Process

2024-11-14

To maintain the high standards of Molecular & Cellular Biomechanics, we have invited a team of academic editors who perform quality checks at every stage of the manuscript process. This ensures that every submission meets the journal's stringent requirements.


For manuscripts that do not meet these standards, the team will make constructive suggestions for revisions, and publication will not occur until they meet the journal's quality standards.

 

Thank you for your understanding and cooperation.

Read more about Manuscript Quality Check Process

Latest Articles

  • Open Access

    Article

    The application of the SPOC teaching model in college elective basketball courses: integrating biomechanical principles for enhanced performance

    Mingming Si

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 734 , 2025, DOI: 10.62617/mcb734


    Abstract:

    The SPOC (Small Private Online Course) model is a new teaching model derived from Massive Open Online Courses (MOOC) and is an important direction for the reform and innovation of future higher education. In the practical application of SPOC teaching, subjectivity issues may arise, namely the influence of individual opinions and judgment criteria. The evaluation may focus on certain aspects and neglect others, resulting in incomplete overall assessment results. This paper applies the SPOC teaching model in three time periods: before class, during class, and after class, with a focus on integrating biomechanical principles into the evaluation of student performance in basketball. The study employs various research methods such as literature review, Analytic Hierarchy Process (AHP) analysis, and fuzzy comprehensive evaluation to construct a comprehensive evaluation index system for student ability improvement in SPOC teaching in higher education. This system incorporates biomechanical factors such as movement efficiency, force production, and body mechanics, which are essential for enhancing basketball skills. Based on this, an evaluation method for student ability improvement in college SPOC elective basketball courses is proposed using the AHP-fuzzy evaluation model. This model not only assesses traditional skill metrics but also integrates biomechanical assessments, such as shooting mechanics, dribbling efficiency, and defensive posture. The application of the AHP-fuzzy evaluation model, enhanced with biomechanical insights, demonstrates that his method can effectively improve students basketball abilities. The incorporation of biomechanical principles allows for a more holistic evaluation of student performance, emphasizing the importance of physical mechanics in skill development. The integration of the SPOC teaching model with biomechanical principles in elective basketball courses provides a comprehensive framework for evaluating and improving student performance. By focusing on both skill acquisition and biomechanical efficiency, this approach not only enhances basketball abilities but also fosters a deeper understanding of the physical demands of the sport.

  • Open Access

    Article

    MiR-6747-5p suppresses angiogenesis in esophageal squamous cell carcinoma by targeting EGFL6

    Jiawen Huang, Yuxin Xiao, Cunjie Li, Shifeng Liu, Jieling Zhou, Qifang Song, Ting Wang, Ning Deng

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1047 , 2025, DOI: 10.62617/mcb1047


    Abstract:

    Epidermal growth factor-like domain 6 (EGFL6) plays a crucial role in angiogenesis in various malignant tumors. This study aimed to screen microRNAs (miRNAs) targeting EGFL6 and explore their mechanisms in regulating angiogenesis in esophageal squamous cell carcinoma (ESCC) cells. After analyzing the miRNA expression profiles of ESCC and using the target prediction algorithm, we screened three miRNAs that could potentially target EGFL6. By dual luciferase reporter gene assay and western blot, we found that miR-6747-5p could directly target EGFL6 and down-regulate EGFL6 expression in ESCC cells. The results of clone formation, CCK-8, Transwell, wound healing, and endothelial cell tube formation assay showed that miR-6747-5p exerted a significant inhibitory effect on the proliferation, migration, invasion, and angiogenesis of ESCC cells. At the same time, we observed that the phosphorylation levels of AKT and MAPK were decreased, the epithelial-mesenchymal transition (EMT) related E-cadherin expression was downregulated while N-cadherin was upregulated, and the protein expression of the pro-angiogenic factors, including platelet-derived growth factor subunit B (PDGFB), fibroblast growth factor 2 (FGF2), and angiogenin (ANG) were inhibited transfected with miR-6747-5p mimics. Further studies showed that the overexpression vectors of EGFL6 transfected into ESCC cells could reverse the inhibitory effects induced by miR-6747-5p. These findings reveal that miR-6747-5p could target EGFL6 and inhibit tumor angiogenesis and ESCC progression. miR-6747-5p may be a promising biomarker for the anti-angiogenic treatment of ESCC.

  • Open Access

    Article

    Research on the application of sports biomechanics in optimizing the effect of physical training

    Xiaofeng Gou, Wei Xiong

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1133 , 2025, DOI: 10.62617/mcb1133


    Abstract:

    This paper discusses the application of sports biomechanics in optimizing the effect of sports training, finds out the existing problems through quantitative evaluation of athletes’ technical movements, and puts forward improvement suggestions to maximize the training effect. In this study, 12 professional long jumpers were taken as the object, and advanced equipment such as high-speed photography, computer analysis and photoelectric timer were used to record the long jump movements of athletes in all directions, and the biomechanical parameters were analyzed. The results show that after four weeks of personalized training, the key performance indexes of athletes such as take-off speed, horizontal displacement, vertical jump height, landing technique and muscle strength have been significantly improved, and the average long jump performance has been significantly improved. Principal component analysis (PCA) reveals the key biomechanical factors that affect the performance of long jump, including take-off speed, horizontal displacement and vertical jump height. In addition, hierarchical cluster analysis helps to identify the technical characteristics and training needs of different athletes, which provides a basis for making personalized training plans. The results show that the application of sports biomechanics not only improves athletes’ performance, but also helps to reduce sports injuries and prolong sports life, and provides scientific training guidance for coaches. This study has important theoretical and practical value for promoting the development of sports science and improving the level of competitive sports.

  • Open Access

    Article

    Biomechanical and biodegradation performance of CSA-CSF reinforced cementitious composites: A bio-inspired approach

    Bo Peng, Haoyu Li , Yan Xu, Hanyu Li

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1317 , 2025, DOI: 10.62617/mcb1317


    Abstract:

    This study investigates the mechanical, biodegradation, and microstructural performance of cementitious composites reinforced with Corn Straw Ash (CSA) and Corn Straw Fiber (CSF) for applications in bio-inspired materials and sustainable engineering. CSA, a pozzolanic material, enhances matrix densification, while CSF provides crack-bridging and toughness improvement. Dynamic mechanical testing under cyclic loading demonstrated that CSA-CSF composites exhibit superior fatigue resistance, retaining 85% of their initial compressive strength after 1000 cycles. Biodegradation studies in simulated body fluid (SBF) and acidic environments revealed that the composites maintain 75% compressive strength in SBF over 28 days, highlighting their potential for bioactive scaffolds. Scanning electron microscopy (SEM) and quantitative porosity analysis showed that CSA-derived Calcium Silicate Hydrate (C-S-H) gel effectively filled voids, while CSF enhanced fiber-matrix bonding, mimicking the hierarchical structure of biological systems. The results emphasize the dual benefits of CSA-CSF composites in dynamic environments and their alignment with sustainable and bio-inspired design principles. This research provides insights into the development of materials for biomechanical applications, including tissue engineering scaffolds and earthquake-resistant structures.

  • Open Access

    Article

    The impact of fatigue on the jumping mechanics and injury risk of basketball players

    Tianci Zhao

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1026 , 2025, DOI: 10.62617/mcb1026


    Abstract:

    Fatigue can significantly alter an athlete’s biomechanics and performance, which can increase their risk of injury. Important basketball moves like jump shots (JS) and countermovement jumps (CMJ) primarily use the muscles in the lower back and lower limbs. Basketball players’ jumping mechanics, performance, and risk of injury during CMJ, JS, and ankle sprains were all examined. A total of 415 male collegiate basketball players participated in the league, this season representing varying levels of jumping mechanics. Surface electromyography, a force plate, and a 3D motion analysis system were used to gather data. Field-goal percentage, the center of mass’s (CM) lowest point, joint angles during takeoff and landing, and Electromyography data from the lower leg muscles, erector spinae limbal, and rectus femoris were among the parameters that were recorded. Lower back muscle tiredness was created, and performance was evaluated after the fatigue. Data was analyzed using SPSS, with paired-sample t -tests, logistic, and Multiple Regression tests employed to examine the impact of fatigue on performance and injury risk. These tests assessed how fatigue affects shooting accuracy and joint angles, and increases the chance of injuries in basketball players. Following a period of tiredness, athletes’ field-goal percentages significantly decreased, whereas their CM lowest point increased on jump shots. In both CMJ and JS, fatigue leads to reduced knee flexion angles and increased ankle plantar flexion during landing, changing the contribution ratio of both legs. Due to impaired mechanics, these biomechanical changes suggest an increased probability of ankle sprains and an elevated risk of damage, especially during landing. The risk of lower back, knee, and ankle injuries increased due to major athletic impairments and altered landing mechanics caused by lower back muscular fatigue. To reduce basketball players’ risk of injury, these data highlight how crucial it is to address fatigue in training and recovery plans.

  • Open Access

    Article

    Biometric recognition and analysis of sports teaching behavior based on wearable devices

    Hui Ma, Xuelian Ma

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1245 , 2025, DOI: 10.62617/mcb1245


    Abstract:

    This study introduces a lightweight, multi-node IMU-based motion capture system optimized for biomechanical analysis, addressing limitations of traditional optical systems and challenges in sensor drift and noise. Multi-node IMU systems offer distinct advantages in biomechanical analysis, such as portability, affordability, and the ability to capture motion data in real-world environments, making them particularly suited for applications in gait analysis, sports performance, and rehabilitation. Enhanced calibration techniques correct biases in accelerometers, gyroscopes, and magnetometers, while an optimized Madgwick algorithm ensures accurate, real-time motion tracking. The system’s scalable design, supported by high-throughput USB 3.0 communication, enables precise capture of human motion. Experimental validation confirms the system’s affordability, robustness, and suitability for biomechanics, offering a practical and effective tool for advancing human movement research.

  • Open Access

    Article

    Biosensing technology based on biomechanics in psycho analysis: Improving the efficiency of ideological and political education

    Donghong Lei, Yi Pi

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 601 , 2025, DOI: 10.62617/mcb601


    Abstract:

    In recent years, advancements in technology have significantly transformed educational paradigms, particularly through the integration of biomechanics in teaching methodologies. The incorporation of biomechanical analysis in educational settings provides valuable insights into students' physical engagement and motor skills development. This study aims to leverage biomechanical data to enhance the effectiveness of physical education and sports training. Biomechanical sensors, such as motion capture systems and wearable devices, collect critical data on parameters like gait, balance, and muscle activity. By analyzing this data, educators can gain a deeper understanding of students' physical performance and identify areas for improvement. We propose a novel biomechanical optimization framework utilizing a multi-kernel support vector machine (MK-SVM) to assess students' physical strain levels during activities. In the preprocessing stage, a median filter is employed to eliminate noise from the motion data. Features are extracted using power spectral density (PSD) analysis to evaluate students' physical responses during instructional activities. The proposed method utilizes algorithms to create personalized training environments, identifying physical responses and facilitating real-time feedback for enhanced engagement in sports and physical education. The MK-SVM algorithm is applied for feature selection, effectively categorizing student strain levels to refine personalized learning strategies. Results indicate that our approach outperforms traditional methods, achieving high accuracy (92%), Recall (98%), precision (80%), and F1-Score (88%) in assessing students' physical strain.   This study demonstrates how biomechanics and technology can revolutionize physical education, fostering more adaptive and responsive learning environments.

  • Open Access

    Article

    The biomechanical influence of Qianlong health maintenance movement on the mental health of the elderly people

    Li-Jun Wang, Jing-Gang Li

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 760 , 2025, DOI: 10.62617/mcb760


    Abstract:

    Purpose: As mental health issues among the aging population become increasingly prevalent, effective interventions that incorporate physical movement are essential. To explore the influence of Qianlong health exercise on the mental health of the elderly people, emphasizing the biomechanical aspects of physical activity. Methods: A general situation questionnaire and the SCL-90 were used to measure the psychological status of 627 elderly people. Results: There were significant differences in the dimensions of somatization, obsessive symptoms, interpersonal sensitivity, depression, anxiety, hostility, terror, paranoia, psychosis, sleep diet and total score, especially in the dimensions of interpersonal sensitivity, depression, anxiety, paranoia and psychosis. Furthermore, the study identified significant variations in the length, frequency, and forms of Qianlong health exercise practiced by participants, indicating that these factors may play a critical role in influencing mental health outcomes. The biomechanical properties of Qianlong health exercise, characterized by controlled movements that enhance balance, coordination, and flexibility, may contribute to improved psychological well-being by reducing stress and promoting relaxation. Conclusion: Qianlong health exercise represents an effective intervention for enhancing mental health among the elderly, integrating physical activity with psychological benefits. Future research should focus on the specific biomechanical mechanisms that mediate these effects and explore how such exercises can be incorporated into comprehensive health promotion strategies for the aging population. This approach not only addresses physical fitness but also fosters mental resilience, making it a valuable addition to geriatric health programs.

  • Open Access

    Article

    Kinetic elements and brushstroke dynamics in painting through the lens of biomechanics

    Zhenpeng Zhao

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 763 , 2025, DOI: 10.62617/mcb763


    Abstract:

    This study explores the biomechanics of brushstroke dynamics in painting, focusing on the physical demands of different brushstroke types and their underlying kinetic elements. Through an experimental method combining motion capture, force sensors, and electromyography, we analyzed the joint angles, Muscle Activation (MA) patterns, and force application across four brushstroke types: broad strokes, fine detail, stippling, and circular motions. Key findings revealed that broad strokes required the most extensive range of motion, with shoulder and elbow joint angles averaging 45°–60° and 30°–40°, respectively, reflecting the involvement of larger muscle groups in creating expansive movements. Fine detail strokes, in contrast, relied predominantly on wrist flexion and extension (15°–20°), necessitating greater precision and stability from distal muscles. Force analysis showed that stippling generated the highest mean force (10.2 N) due to repetitive dabbing motions, whereas fine detail strokes exhibited minimal force variability, indicating controlled, delicate muscle engagement. Electromyography data indicated peak MA in the extensor carpi radialis and flexor carpi radialis during fine and circular strokes, highlighting the unique demands of rotational and fine motor control in painting. These findings underscore the complex interplay of movement, force, and MA required for different painting techniques, contributing valuable insights for optimizing technique and preventing repetitive strain in artists. This research provides a foundational biomechanical understanding of brushstroke execution, with implications for art education, rehabilitation, and ergonomic interventions in the arts.

  • Open Access

    Article

    The diagnostic value of carotid ultrasound in stroke prevention: Cellular molecular biomechanics-anchored exploration of current applications and future trails

    Min Zhang, Rong Liu

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1013 , 2025, DOI: 10.62617/mcb1013


    Abstract:

    Stroke continues to be a major public health concern involving high morbidity and mortality in most parts of the world with far reaching economic impact. About two thirds of these cases are caused by ischemic strokes that are linked to carotid artery disease. Identifying high-risk stroke patients is crucial for initiating appropriate management. At the cellular molecular biomechanics level, the carotid artery’s endothelial cells experience shear stress. Changes in blood flow patterns can disrupt the mechanotransduction pathways within these cells. Ideally, high risk stroke patients should first be identified for proper management to be begins. Carotid artery disease or carotid stenosis and plaque formation is one of the major and modifiable risk factors for ischemic stroke, thereby the importance of accurate diagnostic assessment cannot be overstressed. The current uses, accuracy, and future developments of carotid ultrasound as a diagnostic tool for stroke prevention are discussed in this paper. Carotid ultrasound that is noninvasive and relatively inexpensive is a central tool in evaluating the degree of stenosis and plaque features that are vital in risk of stroke. It can detect alterations in the intima-media thickness, which reflects changes in the cellular and extracellular matrix composition of the artery wall. The biomechanical properties of plaques, such as their stiffness and vulnerability, can also be inferred. In the review, difficulties in stroke risk detection and features of carotid ultrasound that were outlined include its effectiveness in identifying stroke risk, in comparison with other imaging techniques, the incorporation of carotid ultrasound into clinical practice for early strokes detection. New developments such as carotid elastography and imaging with the help of artificial intelligence algorithms are also presented to exemplify the increasing possibilities of enhancing diagnostic accuracy. The primary value of carotid ultrasound is in stroke prevention because it offers a preliminary and precise means of diagnosing carotid artery disease. However, further studies are needed to explore additional applications, enhance diagnostic precision, and develop more effective preventive healthcare strategies, taking into account the cellular molecular biomechanics of the carotid artery and its associated pathologies.

  • Open Access

    Article

    Enhancing college students physical education using artificial intelligence-optimized teaching system based on biomechanics

    Zixuan Gao, Hongjing Guan, Zhi Tan

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 503 , 2025, DOI: 10.62617/mcb503


    Abstract:

    Physical Education Teaching concerns the process of leading students to perform different tasks, games, and workouts that improve physical fitness, body control, and health. In the realm of cell and molecular biomechanics, physical education teaching can be regarded as a means to induce specific physiological responses at the microscopic level. The various physical activities in which students partake, like diverse tasks and workouts, exert mechanical forces that permeate throughout the body and impinge upon cells and tissues. During physical exertion, cells within muscles, bones, and connective tissues are subject to biomechanical stress. This stress triggers a cascade of molecular events. Teachers focus on enhancing spatial and manual skills, promoting cooperation, and setting up priorities. In this research, it is proposed to learn about the teaching system of physical education in colleges and universities using artificial intelligence (AI) optimization algorithm. Thus, for predicting the achievements of college students in physical education, we propose the Blue Monkey optimization-driven Weight-Tuned AdaBoost (BM-WTAdaBoost) algorithm. The observations and variables were derived from typical physical education programs of college students during their training sessions. A data pre-processing technique known as min–max normalization is applied to the obtained raw data to enhance its quality. For nonlinear data, Kernel Principal Component Analysis (kernel-PCA) is employed as it helps in extracting the nonlinear information, which in turn helps in making accurate predictions. The following is our proposed model: BM opt with WTAdaBoost to improve selecting features and model accuracy in predicting college students’ physical education outcomes. Python program uses our suggested technique. The finding assessment phase assesses the suggested model’s prediction efficacy using several measures, including the accuracy ratio (99.8%), F1-score (95.56%), prediction ratio (98.24%), interaction ratio (97.2%), efficiency ratio (98.24%), performance ratio (97.2%), and error rate (5.62%). We also performed a comparative analysis with different traditional approaches to assess the efficacy of the suggested strategy. Comparative analysis with traditional methods shows the superiority of this approach in predicting physical education outcomes considering cell and molecular biomechanics, providing a novel perspective for understanding and optimizing physical education in relation to the microscopic biological world.

  • Open Access

    Article

    Research on biomechanics-informed rural planning strategies for enhancing biodiversity and health

    Xiuli Yang, Miaomiao Han

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 626 , 2025, DOI: 10.62617/mcb626


    Abstract:

    Rapid urbanization has resulted in decreased biodiversity, adversely impacting ecosystem functions and human health, especially in rural regions. Biomechanics-informed rural planning integrates principles of biological mechanics with biodiversity enhancement and public health objectives to establish sustainable communities. Purpose: This study aims to foster resilient ecosystems and healthier rural populations by introducing biomechanics-informed approaches to rural planning that synergize biodiversity enhancement with health promotion. Methods: This study bridges the knowledge gap by examining the relationship among biomechanically efficient behaviors, personal health, and ecosystem-based disaster risk reduction (EDRR) through the lens of the Health Belief Model (HBM). Structural equation modeling (SEM) was employed to investigate the correlations between the study's key variables. The research focused on a rural community impacted by disaster to test the hypotheses, exploring biomechanics-informed rural planning strategies that facilitate sustainable development and biodiversity enhancement. Results: The findings indicate that health perceptions and EDRR attributes indirectly influence biomechanically efficient behaviors. Specifically, participation in activities that support biodiversity is positively associated with perceptions of social integration benefits, EDRR awareness, and health promotion. Conclusion: This study underscores the potential to integrate biomechanics into Emergency Disaster Risk Reduction (EDRR) initiatives and community planning to encourage healthy lifestyles and enhance the environmental sustainability of resilient communities.

  • Open Access

    Article

    The integration of biomechanics and the application of green materials in the construction of sports facilities under environmental sustainability

    Xian Liu, Xiangping Mei, Jianqiang Guo

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2) , 2025, DOI: 10.62617/mcb696


    Abstract:

    With the in-depth implementation of the Scientific Outlook on Development, in order to implement the national basic energy-saving policies and various emission reduction mechanisms, as well as the demonstration and promotion role of universities in energy conservation and emission reduction, the state has put forward the idea of further supporting the construction of energy-saving campuses in higher education and universities. This paper delves into the application of green and environmentally friendly materials in the construction of sports facilities, not only from the perspective of ecological sustainable development but also in close connection with the field of biomechanics. Biomechanics plays a crucial role in the design and use of sports facilities. When applying green materials, it is essential to consider how these materials interact with the human body's mechanics during sports activities. For example, different sports demand specific mechanical properties from the facilities, such as the right amount of elasticity, friction, and shock absorption. Green materials, when selected and designed with biomechanics in mind, can enhance the performance and safety of athletes while maintaining environmental friendliness. To assess the feasibility of green materials in this context, this paper presents an evaluation method that integrates the Analytic Hierarchy Process (AHP) and information entropy. This approach incorporates biomechanical factors into the index system. By doing so, the combined weight value of each component in the system can more accurately reflect the real-world situation. Compared to traditional evaluation methods, this integrated approach effectively mitigates the subjectivity in determining weight coefficients. It also ensures that the significance of each evaluation index, especially those related to biomechanical performance, is fully considered. The experimental results in this paper show that the use of AHP to evaluate the advantages of green environmental protection materials, the average weight reaches 0.8275. This finding strongly suggests that the application of green materials in sports facilities construction is highly viable. These materials not only contribute to environmental protection but also offer biomechanical advantages, ensuring the long - term sustainability and functionality of the facilities for athletes.

  • Open Access

    Article

    Biomechanical research on the construction and optimization of youth basketball training system based on the integration of sports and education

    Zechun Hu, Zhengfeng Huang

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 797 , 2025, DOI: 10.62617/mcb797


    Abstract:

    The development and improvement of a youth basketball training program founded on the fusion of education and sports is investigated in this study. Athlete performance and academic advancement must be balanced in light of the growing need for comprehensive youth development. Biomechanical factors play a significant role in both sports performance and injury prevention, making it essential to integrate them into the training program design. To increase the effectiveness and design of training programs, the suggested model makes use of the Tabu Search Optimized Intelligent Random Forest (TSO-IRF) algorithm. The TSO-IRF identifies important physical, technical, and cognitive elements affecting basketball play by combining search-based optimization with machine learning (ML) approaches from a biomechanical perspective. It focuses on elements such as joint forces, muscle activation patterns, and movement kinematics, which are fundamental in determining an athlete's performance and injury risk. The research gathers information on youth basketball training programs, with a specific emphasis on biomechanical aspects. This includes information on players' body mechanics during different basketball movements, like jumps, shots, and passes. By integrating this data, the study ensures that the goals of educational development and sports training are aligned, while also considering the biomechanical requirements of the athletes. TSO-IRF is used to evaluate these multidimensional features and provides individualized training suggestions in line with the performance and educational objectives of both sports. Experimental results indicate that the TSO-ERF model can perform better than traditional methods, providing higher prediction recall (94.26%), accuracy (97.81%) and precision (97.21%) in development metrics for players. Additionally, the model shows improved adaptability across various skill levels as it can adjust training recommendations based on an athlete's unique biomechanical characteristics. The proposed youth basketball training system optimizes loads in training, reduces risks of injury, and develops young athletes over the long term. It facilitates athletic success but fosters cognitive and emotional development so that the fields of sport and education may converge. Future work involves the application of this model in other sports disciplines and algorithm refinement to take care of larger datasets that would help deliver real-time performance feedback.

  • Open Access

    Article

    Optimization of alpine skiing turning techniques based on biomechanics

    Changfeng Li, Jiandong Wang, Bing Zhou, Baoku Sui

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 999 , 2025, DOI: 10.62617/mcb999


    Abstract:

    Alpine skiing turning technique requires high coordination of movements, but the existing training methods lack in-depth analysis of biomechanical characteristics. Athletes are prone to injuries during training. Technical optimization mainly relies on summarizing experience and lacks a precise quantitative basis. This paper aims to systematically analyze and optimize alpine skiing turning techniques from a biomechanical perspective, build a scientific action model and data analysis system, realize quantitative evaluation of technical movements, improve training safety and technical level, and provide scientific guidance for athletes. The study uses motion capture equipment to record three-dimensional motion trajectories and pressure sensors to collect mechanical data. By building an analysis model based on biomechanics, key features such as joint angles and torque changes are extracted, and an optimization scheme is designed in combination with a nonlinear multi-objective optimization algorithm. Based on these models and algorithms, a real-time feedback system is developed to provide personalized training suggestions to support athletes in adjusting movements and improving their technical level. The experimental results show that compared with the traditional training method, the coordination and balance of the optimized training model are improved by about 23.6% and 13.6% respectively, the action efficiency is improved by about 26.9%, and the risk of injury is reduced by more than 20%. In addition, the results of the model generalization ability test also show that the optimized training method has the characteristics of adapting to different groups. This shows that the optimized training method can significantly improve movement coordination and efficiency while reducing the risk of sports injuries, providing a new path for the scientific training of alpine skiing.

  • Open Access

    Article

    Study on dexterous structure and control of bio-inspired musculoskeletal robots in artificial intelligence environment

    Qiyuan Wang

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 689 , 2025, DOI: 10.62617/mcb689


    Abstract:

    The design and development process of bio-inspired musculoskeletal robots in the artificial intelligence environment integrates mechanical design, control algorithms, real-time computing, variable sensing, and other fields of technology, which can provide effective mechanical support for the user’s actions in the process of use, and has a broader application prospect in a number of fields. In the process of exoskeleton robots moving from experimental research and development to practical applications, the comfort of the use process is an important evaluation criterion. Therefore, from the perspective of user comfort, this paper takes the waist exoskeleton robot as the research object, and conducts a design study on the structure and control of the exoskeleton robot.

  • Open Access

    Article

    Application of virtual reality in e-commerce: Taking the experience of trying on sports equipment as an example

    Lin Gan

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 997 , 2025, DOI: 10.62617/mcb997


    Abstract:

    Traditional e-commerce platforms have the problem that users cannot try on sports equipment in person, and it is difficult for consumers to perceive its size, comfort and dynamic performance before purchasing. This limitation leads to high return rates and difficult purchasing decisions. This paper introduces a virtual try-on solution with higher accuracy and more immersion. After using 3D scanning technology to obtain the user’s body data and combining it with SMPL (Skinned Multi-Person Linear Model) to generate the user’s body model, a posture optimization algorithm is used to adjust the dynamic posture of the user model and the PoseNet optimization model is used to adapt it to the user’s dynamic motion scenes. Next, Unity Physics is used to achieve the dynamic performance of sports equipment materials, high-definition texture mapping technology is used to reproduce the visual effects of equipment materials to ensure that the appearance is consistent with reality, and sports scenes are constructed to simulate the actual performance of equipment in different environments. Users can use motion capture devices to simulate running, jumping and other movements to feel the suitability of sports equipment. Then, based on the user’s body shape data and sports scene preferences, Deep Q-Learning is used to recommend sports equipment options suitable for the user. Finally, the system adjusts the virtual try-on experience in real time, showing a variety of combination effects, helping users quickly find their favorite products. Experiments show that the performance error between virtual equipment and real equipment is only 1.35%, the virtual try-on pass rate exceeds 90%, and the return rate is less than 10%, which verifies the feasibility of virtual reality technology in e-commerce and improves users’ online shopping experience.

  • Open Access

    Article

    New paths to promote athletic injury prevention by integrating statistics and sports biomechanics

    Yiming Zhao

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1000 , 2025, DOI: 10.62617/mcb1000


    Abstract:

    Athletic injuries are a common problem in sports. Due to the insufficient processing of multimodal biomechanical data by traditional prevention strategies, personalized risk prediction cannot be achieved. To this end, this paper adopts an athletic injury prevention method based on sparse principal component analysis (SPCA) and spatio-temporal graph convolutional network (ST-GCN). The Vicon Vantage V5 3D motion capture system and the Noraxon Ultium EMG electromyography acquisition device are used to obtain the athlete’s joint angle change rate, ground reaction force (GRF) and electromyographic activity data, and the SPCA method is used to extract key biomechanical features, thereby reducing data redundancy and improving the representativeness of features. Subsequently, ST-GCN is used to construct a dynamic risk prediction model to capture the temporal changes and spatial dependencies in the motion sequence to achieve precise and efficient risk assessment. In the experimental verification, the prediction accuracy of the model reaches 95.3% when the number of features was 20, and the ability to provide risk feedback in real-time is realized to generate personalized injury prevention strategies. Studies have shown that the integration of statistics and sports biomechanics has effectively improved the efficiency of athletic injury prevention and provided new ideas for scientific and precise sports management.

  • Open Access

    Article

    A study on the application of machine learning algorithms incorporating biomechanical principles in optimising the health status assessment of electric vehicle power batteries

    Jiyuan Zhang

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 722 , 2025, DOI: 10.62617/mcb722


    Abstract:

    This study addresses the problem of power battery health state assessment for electric vehicles, integrating biomechanical principles and machine learning algorithms to investigate the health state assessment accuracy of different types of power batteries under different working conditions. The study adopts a variety of data-driven methods to deeply analyse the performance degradation law of power batteries. The results show that the machine learning algorithm incorporating biomechanical principles can effectively improve the accuracy of power battery health state assessment, especially under complex working conditions, and exhibits better robustness. The current status of power battery health state assessment technology is reported, and it provides a useful reference for future power battery health management in electric vehicles.

  • Open Access

    Article

    Algorithms for digital cultural tourism ecological model with biomechanical considerations in VR scene interactions

    Jing Peng

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 745 , 2025, DOI: 10.62617/mcb745


    Abstract:

    Digital cultural tourism is an emerging form of tourism that presents cultural heritage and tourism resources digitally to users, providing immersive travel experiences. However, traditional methods of constructing virtual scenes often rely on manual modeling, leading to low efficiency and high costs. The existing digital cultural tourism platforms mostly provide static and pre-set content, lacking interaction with users, making it difficult to achieve personalized recommendations and interactive experiences. In response to these issues, this article is based on VR (Virtual Reality) scene intelligent generation and interactive algorithms, and aims to optimize the overall synergy between the presentation of cultural resources and user experience by constructing a digital cultural tourism ecological model. Drawing on biomechanical principles, the study emphasizes the importance of natural user interactions and physical engagement in enhancing the immersive experience. Firstly, the Lindenmayer system (L-system) and parameterized generation rules are used to generate complex natural landscapes and architectural structures. Natural and textured scene details are added using the Perlin noise algorithm. Using GANs (Generative Adversarial Networks) technology, generative and discriminative networks are trained to generate more realistic VR scenes, further enhancing the realism and detail representation of the scenes. At the same time, a gesture recognition technology combining CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory) models, along with a speech recognition algorithm based on DNN (Deep Neural Networks), is adopted to enhance the natural interaction between users and virtual scenes. By combining collaborative filtering algorithms with user behavior data, personalized content recommendations are realized, enhancing user engagement and satisfaction. The efficiency test of scene modeling, the total time required to generate scenes using the model in this article is only 84 hours, which is much lower than manual modeling. In the interactive test, the highest success rate of the model in this article in gesture recognition reaches 94%. The experimental results have verified the advantages of the model in this article in improving scene modeling efficiency and enhancing immersive experiences through biomechanically informed interactions.

  • Open Access

    Article

    Applications and challenges of artificial intelligence-driven 3D vision in biomedical engineering: A biomechanics perspective

    Lei Wang, Zunjie Zhu

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 1006 , 2025, DOI: 10.62617/mcb1006


    Abstract:

    This paper explores the applications and challenges of artificial intelligence (AI)-driven 3D vision technology in biomedical engineering, with a specific focus on its integration with biomechanics. 3D vision technology offers richer spatial information compared to traditional 2D imaging and is increasingly applied in fields like medical image analysis, surgical navigation, lesion detection, and biomechanics. In biomechanics, AI-driven 3D vision is used for analyzing human movement, modeling musculoskeletal systems, and assessing joint biomechanics. However, challenges persist, including image quality, computational resource demands, data privacy, and algorithmic bias. This paper reviews the development of 3D vision technology and AI, discusses its applications in biomedicine and biomechanics, and addresses the key technical obstacles, offering insights into the future development of these technologies in the context of biomedical and biomechanical research.

  • Open Access

    Review

    Integrating sports industry development with national health promotion: A biomechanics-informed study of the healthy China strategy

    Gaoyang Zhang, Shunyong Wang

    Molecular & Cellular Biomechanics, Vol.22, No.2, 22(2), 807 , 2025, DOI: 10.62617/mcb807


    Abstract:

    China’s strategic objective of promoting national health is in line with the integration of the sports business with sports promotion programs. Biomechanics, which delves into the mechanical aspects of human movement and its interaction with the surrounding environment, is a linchpin in this integration. When it comes to the construction of sports venues and sports equipment development, biomechanical principles are fundamental. For example, the selection of surface materials for tracks, courts, and fields must consider factors such as ground reaction forces, coefficient of friction, and energy dissipation. These biomechanical parameters not only influence an athlete’s performance but also play a crucial role in injury prevention. Policies promoting the development of sports venues, increasing public access to recreational facilities, and investing in community health programs remain essential for expanding sports participation and promoting fitness. Through an examination of policy frameworks, economic benefits, and social impacts, this study identifies key factors facilitating this integration. Technological advancements, such as the use of inertial measurement units (IMUs) and force-sensitive sensors in sports equipment and training facilities, enable real-time monitoring of biomechanical variables like joint angles, muscle activation, and movement velocities. Public-private collaborations can then leverage these technologies to develop innovative biomechanics-based sports products and services, making them more accessible to the general public. The findings of this study emphasize the necessity of a comprehensive strategy for sports promotion and sector expansion. This strategy should not only focus on economic gains but also aim to achieve superior health outcomes. Biomechanics-informed sports promotion allows for a more in-depth understanding of how different physical activities impact the human body’s biomechanics. This knowledge can be used to customize exercise programs according to an individual’s anthropometric and biomechanical characteristics, ensuring maximum effectiveness and safety. From a social perspective, a health-conscious society with widespread access to sports resources can significantly enhance the quality of life. By minimizing the risk of injuries through biomechanics-optimized sports facilities and equipment, individuals can engage in a more active lifestyle, leading to a reduction in healthcare costs. Moreover, as people participate in sports events, fitness challenges, and wellness campaigns, the shift in public attitudes towards fitness can strengthen social cohesion and community engagement. In conclusion, this study offers recommendations for future legislation and programs to enhance the integration of the sports sector with public health promotion. By fully integrating biomechanics into the development of the sports industry, we can ensure a substantial contribution to the “Healthy China” goals, fostering a more robust sports economy and a healthier society.

View All Issues