A study of millimeter-wave communication in remote biomechanical monitoring

  • Junjun Hu College of Communication and Information Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
  • Jialu Huo College of Communication and Information Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
  • Baozhu Wang College of Communication and Information Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
Keywords: millimeter wave communication; biomechanical monitoring; multiparameter fusion
Article ID: 1747

Abstract

Millimeter-wave communication technology offers high precision, low latency, and non-contact measurement advantages in remote biomechanical monitoring. This study develops a millimeter-wave radar-based monitoring system for precise detection of movement trajectory, heart rate, respiration, and muscle activity. By integrating Short-Time Fourier Transform (STFT), Doppler analysis, and deep learning, the system enhances signal processing and enables multi-parameter fusion analysis. The results support applications in smart medicine, remote rehabilitation, and sports science, advancing millimeter-wave communication in biomechanical monitoring.

References

1. Das P, Kundu S. A wideband high gain conformal self-decoupled multiport antenna for 5G millimeter wave communications. Physica Scripta. 2025; 100(3): 035533. doi: 10.1088/1402-4896/adb348

2. Raji AA, Orimolade JF, Adejumobi IA, et al. Channel estimation via compressed sampling matching pursuit for hybrid MIMO architectures in millimeter wave communication. International Journal of Electronics Letters. 2024; 13(1): 56-70. doi: 10.1080/21681724.2024.2410061

3. Md Bilal N, Velmurugan T. Resource Allocation of Device‐To‐Device–Enabled Millimeter‐Wave Communication: A Deep Reinforcement Learning Approach. International Journal of Communication Systems. 2024; 38(2). doi: 10.1002/dac.6060

4. Li Y, Xiao Y, Wang Z, et al. Integrated deceptive sensing and secure communication scheme based on RSC-OFDM in a photonics-assisted 100 GHz millimeter-wave system. Optics Letters. 2024; 49(24): 7258. doi: 10.1364/ol.545917

5. K SA, Philip SP, T P. Gaussian Mixture—Expectation Maximization–Based Learned AMP Network with CNN Deep Residual Network for Millimeter Wave Communication. International Journal of Communication Systems. 2024; 38(4). doi: 10.1002/dac.6007

6. C SP, Stanislaus RJ. Wide band high gain modified-folded-wave-guide slow wave structure for millimeter-wave traveling wave tube amplifier in 6G and beyond back-haul communications. Physica Scripta. 2024; 99(12): 125303. doi: 10.1088/1402-4896/ad88b9

7. Yuasa K, Ide M, Kato S, et al. Millimeter-Wave Transceiver Utilizing On-Chip Butler Matrix for Simultaneous 5G Relay Communication and Wireless Power Transfer. IEICE Transactions on Electronics. 2024; E107.C(10): 408-415. doi: 10.1587/transele.2023ctp0003

8. Suzuki Y, Hisaki I. Structural details of carboxylic acid-based Hydrogen-bonded Organic Frameworks (HOFs). Polymer Journal. 2023; 56(1): 1-16. doi: 10.1038/s41428-023-00840-2

9. Shahjehan W, Rathore RS, Shah SW, et al. A Review on Millimeter-Wave Hybrid Beamforming for Wireless Intelligent Transport Systems. Future Internet. 2024; 16(9): 337. doi: 10.3390/fi16090337

10. Bhat ZA, Sheikh JA, Parah SA, et al. A single layer wideband filtenna with E-shaped slots for 5G and B5G millimeter-wave communications. Frequenz. 2024; 78(9-10): 559-567. doi: 10.1515/freq-2023-0426

11. Chen L, Liu K, Gao Q, et al. Enhancing Integrated Sensing and Communication (ISAC) Performance for a Searching–Deciding Alternation Radar-Comm System with Multi-Dimension Point Cloud Data. Remote Sensing. 2024; 16(17): 3242. doi: 10.3390/rs16173242

12. Koh J, Park H, Kim W, et al. Antenna Integration for Millimeter-Wave RF Sensing and Millimeter-Wave Communication Mountable on a Platform. Sensors. 2024; 24(15): 4838. doi: 10.3390/s24154838

13. Al‐Jzari A, Salous S. Multi‐band millimetre wave indoor directional channel measurements and analysis for future wireless communication systems. IET Microwaves, Antennas & Propagation. 2024; 18(9): 667-680. doi: 10.1049/mia2.12494

14. Kim JH, Koo BK, Ku KH, et al. No difference in biomechanical properties of simple, horizontal mattress, and double row repair in Bankart repair: a systematic review and meta-analysis of biomechanical studies. BMC Musculoskeletal Disorders. 2023; 24(1). doi: 10.1186/s12891-023-06864-2

15. Mathieu E, Crémoux S, Duvivier D, et al. Biomechanical modeling for the estimation of muscle forces: toward a common language in biomechanics, medical engineering, and neurosciences. Journal of Neuro Engineering and Rehabilitation. 2023; 20(1). doi: 10.1186/s12984-023-01253-1

16. Ma Y, Huang T, Liu W, et al. Biomechanical effects of S1 sacroiliac screws versus S2 sacroiliac screws on sacroiliac screws combined with a lumbar iliac fixation in the treatment of vertical sacral fractures: a biomechanical finite element analysis. BMC Musculoskeletal Disorders. 2023; 24(1). doi: 10.1186/s12891-023-06884-y

Published
2025-05-28
How to Cite
Hu, J., Huo, J., & Wang, B. (2025). A study of millimeter-wave communication in remote biomechanical monitoring. Molecular & Cellular Biomechanics, 22(5), 1747. https://doi.org/10.62617/mcb1747
Section
Article