Regulatory mechanism of the mechanical sensitivity of alveolar epithelial cells by health Qigong respiratory exercise
Abstract
This study investigates the molecular mechanisms underlying alveolar epithelial cell responses to Qigong breathing patterns, focusing on mechanotransduction pathways and cellular adaptation. Using a combination of live-cell imaging, molecular biology techniques, and mechanical testing, we characterized the temporal dynamics of cellular responses across multiple scales. Our results demonstrate that specific breathing patterns trigger distinct mechanosensitive pathways, with Pattern 2 inducing the most robust cellular adaptation. Key findings include rapid PIEZO1 channel activation (τ < 18.5 ± 2.3 ms), sustained YAP/TAZ nuclear localization (3.8-fold increase), and significant epigenetic modifications (285% increase in H3K27ac marks). We identified 284 differentially expressed genes and characterized the temporal evolution of cellular mechanical properties, including a 23.5% increase in cell area and 2.8-fold enhancement in Young’s modulus. The study reveals three distinct phases of cellular adaptation: early response (0–6 h), intermediate adaptation (6–24 h), and long-term remodeling (24–72 h). These findings provide new insights into the cellular mechanisms of breathing-induced adaptation and suggest potential therapeutic applications through targeted mechanical stimulation.
References
1. Ahmad, U.S., Uttagomol, J., & Wan, H. (2022). The regulation of the hippo pathway by intercellular junction proteins. Life (Basel), 12(1), 1792.
2. Albuisson, J., Murthy, S.E., Bandell, M., Coste, B., Louis-Dit-Picard, H., Mathur, J., ... & Patapoutian, A. (2013). Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nature Communications, 4, 1884.
3. Alfieri, R., Vassalli, M., & Viti, F. (2019). Flow-induced mechanotransduction in skeletal cells. Biophysical Reviews, 11, 729-743.
4. Andolfo, I., Alper, S.L., De Franceschi, L., Auriemma, C., Russo, R., De Falco, L., ... & Iolascon, A. (2013). Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood, 121, 3925-3935.
5. Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F., & Gottlieb, P.A. (2013). Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proceedings of the National Academy of Sciences, 110, E1162-1168.
6. Belibi, F., Zafar, I., Ravichandran, K., Segvic, A.B., Jani, A., Ljubanovic, D.G., & Edelstein, C.L. (2011). Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). American Journal of Physiology. Renal Physiology, 300, F1235-1243.
7. Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., ... & Yancopoulos, G.D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3, 1014-1019.
8. Boehlke, C., Kotsis, F., Patel, V., Braeg, S., Voelker, H., Bredt, S., ... & Kuehn, E.W. (2010). Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature Cell Biology, 12, 1115-1122.
9. Bortner, C.D., & Cidlowski, J.A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Archives of Biochemistry and Biophysics, 462, 176-188.
10. Boukhalfa, A., Nascimbeni, A.C., Ramel, D., Dupont, N., Hirsch, E., Gayral, S., ... & Morel, E. (2020). PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nature Communications, 11, 294.
11. Bush, P.G., & Hall, A.C. (2003). The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis and Cartilage, 11, 242-251.
12. Bush, P.G., & Hall, A.C. (2005). Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. Journal of Cellular Physiology, 204, 309-319.
13. Bush, P.G., Hodkinson, P.D., Hamilton, G.L., & Hall, A.C. (2005). Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity. Osteoarthritis and Cartilage, 13, 54-65.
14. Cadart, C., Zlotek-Zlotkiewicz, E., Venkova, L., Thouvenin, O., Racine, V., Le Berre, M., ... & Piel, M. (2017). Fluorescence eXclusion Measurement of volume in live cells. Methods in Cell Biology, 139, 103-120.
15. Cahalan, S.M., Lukacs, V., Ranade, S.S., Chien, S., Bandell, M., & Patapoutian, A. (2015). Piezo1 links mechanical forces to red blood cell volume. eLife, 4, e07370.
16. Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., ... & Lippincott-Schwartz, J. (2019). Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nature Cell Biology, 21, 1578-1589.
17. Chapin, H.C., & Caplan, M.J. (2010). The cell biology of polycystic kidney disease. Journal of Cell Biology, 191, 701-710.
18. Chen, T., Saw, T.B., Mege, R.M., & Ladoux, B. (2018). Mechanical forces in cell monolayers. Journal of Cell Science, 131(24), jcs218156.
19. Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1209-1224.
20. Citi, S. (2019). The mechanobiology of tight junctions. Biophysical Reviews, 11, 783-793.
21. Claude-Taupin, A., Codogno, P., & Dupont, N. (2021). Links between autophagy and tissue mechanics. Journal of Cell Science, 134, jcs258589.
22. Claude-Taupin, A., Pierre Isnard, P., Bagattin, A., Kuperwasser, N., Roccio, F., Ruscica, B., ... & Dupont, N. (2023). The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells. Nature Communications, 14, 8056.
23. Collins, M.J., Napoli, I., Ribeiro, S., Roberts, S., & Lloyd, A.C. (2012). Loss of Rb cooperates with Ras to drive oncogenic growth in mammalian cells. Current Biology, 22, 1765-1773.
24. Conrad, C., Conway, J., Polacheck, W.J., Rizvi, I., & Scarcelli, G. (2022). Water transport regulates nucleus volume, cell density, Young’s modulus, and E-cadherin expression in tumor spheroids. European Journal of Cell Biology, 101, 151278.
25. Curtis, K.J., Oberman, A.G., & Niebur, G.L. (2020). Effects of mechanobiological signaling in bone marrow on skeletal health. Annals of the New York Academy of Sciences, 1460, 11-24.
26. Dalghi, M.G., Montalbetti, N., Carattino, M.D., & Apodaca, G. (2020). The Urothelium: life in a liquid environment. Physiological Reviews, 100, 1621-1705.
27. Dasgupta, A., Merkel, M., Clark, M.J., Jacob, A.E., Dawson, J.E., Manning, M.L., & Amack, J.D. (2018). Cell volume changes contribute to epithelial morphogenesis in zebrafish Kupffer’s vesicle. eLife, 7, e30963.
28. Dazert, E., & Hall, M.N. (2011). mTOR signaling in disease. Current Opinion in Cell Biology, 23, 744-755.
29. Delarue, M., Montel, F., Vignjevic, D., Prost, J., Joanny, J.F., & Cappello, G. (2014). Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophysical Journal, 107, 1821-1828.
30. Delaunay, J. (2004). The hereditary stomatocytoses: genetic disorders of the red cell membrane permeability to monovalent cations. Seminars in Hematology, 41, 165-172.
31. Dominguez-Calderon, A., Avila-Flores, A., Ponce, A., Lopez-Bayghen, E., Calderon-Salinas, J.V., Reyes, J.L., ... & Gonzalez-Mariscal, L. (2016). ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Molecular Biology of the Cell, 27, 1581-1595.
32. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., ... & Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130, 1120-1133.
33. Duncan, R.L., & Turner, C.H. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International, 57, 344-358.
34. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., ... & Piccolo, S. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179-183.
35. Fernandez-Sanchez, M.E., Barbier, S., Whitehead, J., Bealle, G., Michel, A., Latorre-Ossa, H., ... & Farge, E. (2015). Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature, 523, 92-95.
36. Ferreira, R.R., Fukui, H., Chow, R., Vilfan, A., & Vermot, J. (2019). The cilium as a force sensor-myth versus reality. Journal of Cell Science, 132(14), jcs213496.
37. Foerster, P., Daclin, M., Asm, S., Faucourt, M., Boletta, A., Genovesio, A., & Spassky, N. (2017). mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development, 144, 201-210.
38. Fogg, V.C., Liu, C.J., & Margolis, B. (2005). Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. Journal of Cell Science, 118, 2859-2869.
39. Fotiou, E., Martin-Almedina, S., Simpson, M.A., Lin, S., Gordon, K., Brice, G., ... & Ostergaard, P. (2015). Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nature Communications, 6, 8085.
40. Furukawa, K.T., Yamashita, K., Sakurai, N., & Ohno, S. (2017). The epithelial circumferential actin belt regulates YAP/TAZ through nucleocytoplasmic shuttling of merlin. Cell Reports, 20, 1435-1447.
41. Garoffolo, G., & Pesce, M. (2019). Mechanotransduction in the cardiovascular system: from developmental origins to homeostasis and pathology. Cells, 8, 1607.
42. Ginzberg, M.B., Kafri, R., & Kirschner, M. (2015). Cell biology. On being the right (cell) size. Science, 348, 1245075.
43. Goetz, S.C., & Anderson, K.V. (2010). The primary cilium: a signalling centre during vertebrate development. Nature Reviews Genetics, 11, 331-344.
44. Grantham, J.J., Geiser, J.L., & Evan, A.P. (1987). Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney International, 31, 1145-1152.
45. Greenough, R.B. (1925). Varying degrees of malignancy in cancer of the breast. The Journal of Cancer Research, 9, 453-463.
46. Guilak, F. (1995). Compression-induced changes in the shape and volume of the chondrocyte nucleus. Journal of Biomechanics, 28, 1529-1541.
47. Guo, M., Pegoraro, A.F., Mao, A., Zhou, E.H., Arany, P.R., Han, Y., ... & Weitz, D.A. (2017). Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences, 114, E8618-E8627.
48. Harris, T.J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 11, 502-514.
49. Hau, A.M., Gupta, S., Leivo, M.Z., Nakashima, K., Macias, J., Zhou, W., ... & Hansel, D.E. (2019). Dynamic regulation of caveolin-1 phosphorylation and caveolae formation by mammalian target of rapamycin complex 2 in bladder cancer cells. American Journal of Pathology, 189, 1846-1862.
50. Heisenberg, C.P., & Bellaiche, Y. (2013). Forces in tissue morphogenesis and patterning. Cell, 153, 948-962.
51. Heo, J., Sachs, F., Wang, J., & Hua, S.Z. (2012). Shear-induced volume decrease in MDCK cells. Cellular Physiology and Biochemistry, 30, 395-406.
52. Hoffmann, E.K., Lambert, I.H., & Pedersen, S.F. (2009). Physiology of cell volume regulation in vertebrates. Physiological Reviews, 89, 193-277.
53. Holtzclaw, J.D., Liu, L., Grimm, P.R., & Sansom, S.C. (2010). Shear stress-induced volume decrease in C11-MDCK cells by BK-alpha/beta4. American Journal of Physiology. Renal Physiology, 299, F507-516.
54. Hoyle, D.J., Dranow, D.B., & Schilling, T.F. (2022). Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development, 149, dev199826.
55. Kahle, K.T., Khanna, A.R., Alper, S.L., Adragna, N.C., Lauf, P.K., Sun, D., & Delpire, E. (2015). K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends in Molecular Medicine, 21, 513-523.
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.