The stem cells applications in sport injuries
Abstract
A variety of injuries may occur in the human body during exercise or sport, including skin scratches, soft tissue sprains, dislocations, and fractures. These injuries, which are commonly referred to as “sport-induced,” have the potential to result in further deterioration, including meniscal (cartilage) injury, ligament strain, muscle and tendon strain, or osteoarthritis. Such injuries can have significant implications for the health of athletes, with the potential to result in the economic or mental burdens for the athletes and their families. Stem cells exhibit a number of advantageous characteristics, including pluripotency, superior tissue regeneration capacity, and an excellent immunomodulatory effect. They are capable of repairing cell or tissue damage at the lesion site and exhibit excellent antioxidant and anti-inflammatory effects, which makes them a promising area of application in sport medicine. This review article presents a summary of the recent progress made in the application of stem cells in the treatment of sport injuries, along with an analysis of the underlying mechanisms involved; additionally, it addresses the current limitations of stem cell applications in the context of sport injuries, with the aim of providing insights that can inform future research and clinical practice in this field.
References
1. Eather N, Wade L, Pankowiak A, et al. The impact of sports participation on mental health and social outcomes in adults: a systematic review and the ‘Mental Health through Sport’ conceptual model. Systematic Reviews. 2023; 12(1). doi: 10.1186/s13643-023-02264-8
2. Romano S, Minardi S, Patrizi G, et al. Sport in ischemic heart disease: Focus on primary and secondary prevention. Clinical Cardiology. 2023; 46(9): 1021–1027. doi: 10.1002/clc.24052
3. Hunzinger KJ, Caccese JB, Mannix R, et al. Effects of contact/collision sport history on gait in early—to mid-adulthood. Journal of Sport and Health Science. 2023; 12(3): 398–405. doi: 10.1016/j.jshs.2022.12.004
4. Cools AM, Maenhout AG, Vanderstukken F, et al. The challenge of the sporting shoulder: From injury prevention through sport-specific rehabilitation toward return to play. Annals of Physical and Rehabilitation Medicine. 2021; 64(4): 101384. doi: 10.1016/j.rehab.2020.03.009
5. Smith MD, Vicenzino B, Bahr R, et al. Return to sport decisions after an acute lateral ankle sprain injury: introducing the PAASS framework—an international multidisciplinary consensus. British Journal of Sports Medicine. 2021; 55(22): 1270–1276. doi: 10.1136/bjsports-2021-104087
6. Truong LK, Mosewich AD, Holt CJ, et al. Psychological, social and contextual factors across recovery stages following a sport-related knee injury: a scoping review. British Journal of Sports Medicine. 2020; 54(19): 1149–1156. doi: 10.1136/bjsports-2019-101206
7. Lambert C, Ritzmann R, Akoto R, et al. Epidemiology of Injuries in Olympic Sports. International Journal of Sports Medicine. 2021; 43(05): 473–481. doi: 10.1055/a-1641-0068
8. Chandran A, Morris SN, Powell JR, et al. Epidemiology of Injuries in National Collegiate Athletic Association Men’s Football: 2014–2015 Through 2018–2019. Journal of Athletic Training. 2021; 56(7): 643–650. doi: 10.4085/1062-6050-447-20
9. Lambert C, Ritzmann R, Lambert S, et al. Prevalence of sport injuries in Olympic combat sports: a cross-sectional study examining one Olympic period. The Journal of Sports Medicine and Physical Fitness. 2022; 62(11). doi: 10.23736/s0022-4707.22.13334-7
10. Lambert C, Reinert N, Stahl L, et al. Epidemiology of injuries in track and field athletes: a cross-sectional study of specific injuries based on time loss and reduction in sporting level. The Physician and Sportsmedicine. 2020; 50(1): 20–29. doi: 10.1080/00913847.2020.1858701
11. Al-Ghadban S, Bunnell BA. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology. 2020; 35(2): 125–133. doi: 10.1152/physiol.00021.2019
12. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 2023; 30(5): 512–529. doi: 10.1016/j.stem.2023.03.017
13. Bakinowska E, Kiełbowski K, Boboryko D, et al. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. International Journal of Molecular Sciences. 2024; 25(7): 3901. doi: 10.3390/ijms25073901
14. Zhao Y, He J, Qiu T, et al. Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Research & Therapy. 2022; 13(1). doi: 10.1186/s13287-022-02852-w
15. Huang Y, Yang L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Research & Therapy. 2021; 12(1). doi: 10.1186/s13287-021-02289-7
16. Peruzzotti-Jametti L, Bernstock JD, Willis CM, et al. Neural stem cells traffic functional mitochondria via extracellular vesicles. Storey KG, ed. PLOS Biology. 2021; 19(4): e3001166. doi: 10.1371/journal.pbio.3001166
17. Li Y, Shi G, Liang W, et al. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells. 2023; 12(15): 1936. doi: 10.3390/cells12151936
18. Mamillapalli R, Cho S, Mutlu L, et al. Therapeutic role of uterine-derived stem cells in acute kidney injury. Stem Cell Research & Therapy. 2022; 13(1). doi: 10.1186/s13287-022-02789-0
19. Saeterbakken AH, Schöffl VR, Schweizer A, et al. Editorial: Injuries, injury prevention and training in climbing. Frontiers in Sports and Active Living. 2024; 6. doi: 10.3389/fspor.2024.1390338
20. Buckthorpe M, Wright S, Bruce-Low S, et al. Recommendations for hamstring injury prevention in elite football: translating research into practice. British Journal of Sports Medicine. 2018; 53(7): 449-456. doi: 10.1136/bjsports-2018-099616
21. Al Attar WSA, Husain MA. Effectiveness of Injury Prevention Programs With Core Muscle Strengthening Exercises to Reduce the Incidence of Hamstring Injury Among Soccer Players: A Systematic Review and Meta-Analysis. Sports Health: A Multidisciplinary Approach. 2023; 15(6): 805–813. doi: 10.1177/19417381231170815
22. Picot B, Lopes R, Rauline G, et al. Development and Validation of the Ankle-GO Score for Discriminating and Predicting Return-to-Sport Outcomes After Lateral Ankle Sprain. Sports Health: A Multidisciplinary Approach. 2023; 16(1): 47-57. doi: 10.1177/19417381231183647
23. Miranda FC, Filho ENK, Prado MP, et al. Acute ankle injuries: association between sprain severity and ancillary findings. Einstein (Sao Paulo). 2023; 21: eAO0162.
24. Melanson SW, Shuman VL. Acute Ankle Sprain. StatPearls Publishing; 2024.
25. Mugno AT, Constant D. Recurrent Ankle Sprain. Treasure Island (FL): StatPearls Publishing; 2024.
26. Sharif B, Welck M, Saifuddin A. MRI of the distal tibiofibular joint. Skeletal Radiology. 2019; 49(1): 1–17. doi: 10.1007/s00256-019-03260-7
27. Yang S, Cheng J, Shang J, et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nature Communications. 2023; 14(1). doi: 10.1038/s41467-023-42149-x
28. Khair RM, Stenroth L, Cronin NJ, et al. Muscle-tendon morphomechanical properties of non-surgically treated Achilles tendon 1-year post-rupture. Clinical Biomechanics. 2022; 92: 105568. doi: 10.1016/j.clinbiomech.2021.105568
29. Watanabe G, Yamamoto M, Taniguchi S, et al. Chronological Changes in the Expression and Localization of Sox9 between Achilles Tendon Injury and Functional Recovery in Mice. International Journal of Molecular Sciences. 2023; 24(14): 11305. doi: 10.3390/ijms241411305
30. Cruciani M, Franchini M, Mengoli C, et al. Platelet-rich plasma for sports-related muscle, tendon, and ligament injuries: an umbrella review. Blood Transfus. 2019; 17(6): 465–478.
31. Das AS, Vicenty-Padilla JC, Chua MMJ, et al. Cerebrovascular injuries in traumatic brain injury. Clinical Neurology and Neurosurgery. 2022; 223: 107479. doi: 10.1016/j.clineuro.2022.107479
32. Ritter M. Evidence-Based Pearls. Critical Care Nursing Clinics of North America. 2023; 35(2): 171–178. doi: 10.1016/j.cnc.2023.02.009
33. Tian Z, Yu T, Liu J, et al. Introduction to stem cells. Stem Cell in Medicine. 2023. doi: 10.1016/bs.pmbts.2023.02.012
34. Gopalarethinam J, Nair AP, Iyer M, et al. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochemica. 2023; 125(4): 152041. doi: 10.1016/j.acthis.2023.152041
35. Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Research & Therapy. 2022; 13(1). doi: 10.1186/s13287-022-02985-y
36. Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences. 2019; 76(17): 3323–3348. doi: 10.1007/s00018-019-03125-1
37. Liu H, Xu K, He Y, et al. Mitochondria in Multi-Directional Differentiation of Dental-Derived Mesenchymal Stem Cells. Biomolecules. 2023; 14(1): 12. doi: 10.3390/biom14010012
38. Andrzejewska A, Dabrowska S, Lukomska B, et al. Mesenchymal Stem Cells for Neurological Disorders. Advanced Science. 2021; 8(7). doi: 10.1002/advs.202002944
39. Namiot ED, Niemi JVL, Chubarev VN, et al. Stem Cells in Clinical Trials on Neurological Disorders: Trends in Stem Cells Origins, Indications, and Status of the Clinical Trials. Int J Mol Sci. 2022; 23(19): 11453. doi: 10.3390/ijms231911453
40. Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells. 2023; 12(5): 769. doi: 10.3390/cells12050769
41. Liu H, Wang J, Yue G, et al. Placenta-derived mesenchymal stem cells protect against diabetic kidney disease by upregulating autophagy-mediated SIRT1/FOXO1 pathway. Ren Fail. 2024; 46(1):2303396. doi: 10.1080/0886022X.2024.2303396.
42. An Y, Lin S, Tan X, et al. Exosomes from adipose—derived stem cells and application to skin wound healing. Cell Proliferation. 2021; 54(3). doi: 10.1111/cpr.12993
43. Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduction and Targeted Therapy. 2022; 7(1). doi: 10.1038/s41392-022-00932-0
44. Sikora B, Skubis-Sikora A, Prusek A, et al. Paracrine activity of adipose derived stem cells on limbal epithelial stem cells. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-99435-1
45. Zhu J, Yang S, Qi Y, et al. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Science Advances. 2022; 8(13). doi: 10.1126/sciadv.abk0011
46. Li Y, Xue M, Deng X, et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell. 2023; 30(8): 1072–1090.e10. doi: 10.1016/j.stem.2023.07.001
47. Li K, Liu F, He Y, et al. The homing of exogenous hair follicle mesenchymal stem cells into hair follicle niches. JCI Insight. 2023; 8(24). doi: 10.1172/jci.insight.173549
48. Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy. 2022; 7(1). doi: 10.1038/s41392-022-01134-4
49. Mazini L, Rochette L, Admou B, et al. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. International Journal of Molecular Sciences. 2020; 21(4): 1306. doi: 10.3390/ijms21041306
50. Zhang Q, Lei X, Wang F, et al. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders. iScience. 2023; 26(10): 107868. doi: 10.1016/j.isci.2023.107868
51. Palermi S, Gnasso R, Belviso I, et al. Stem cell therapy in sports medicine: current applications, challenges and future perspectives. Journal of Basic and Clinical Physiology and Pharmacology. 2023; 34(6): 699–706. doi: 10.1515/jbcpp-2023-0200
52. Chiu CH, Chang TH, Chang SS, et al. Application of Bone Marrow—Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice. The American Journal of Sports Medicine. 2020; 48(5): 1226–1235. doi: 10.1177/0363546520905853
53. Yu H, Cheng J, Shi W, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomaterialia. 2020; 106: 328–341. doi: 10.1016/j.actbio.2020.01.051
54. Iyer SR, Scheiber AL, Yarowsky P, et al. Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury. The American Journal of Sports Medicine. 2020; 48(9): 2277–2286. doi: 10.1177/0363546520926462
55. Liu H, Li P, Zhang S, et al. Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nature Genetics. 2022; 54(12): 1946-1958. doi: 10.1038/s41588-022-01227-4
56. Chen W, Sun Y, Gu X, et al. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials. 2021; 271: 120714. doi: 10.1016/j.biomaterials.2021.120714
57. Wei B, Ji M, Lin Y, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Research & Therapy. 2023; 14(1): 104. doi: 10.1186/s13287-023-03329-0
58. Shen H, Lane RA. Extracellular Vesicles From Primed Adipose-Derived Stem Cells Enhance Achilles Tendon Repair by Reducing Inflammation and Promoting Intrinsic Healing. Stem Cells. 2023; 41(6): 617–627. doi: 10.1093/stmcls/sxad032
59. Cai J, Xu J, Ye Z, et al. Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. The American Journal of Sports Medicine. 2023; 51(5): 1267–1276. doi: 10.1177/03635465231155927
60. Chen Y, Yan X, Yuan F, et al. Kartogenin-Conjugated Double-Network Hydrogel Combined with Stem Cell Transplantation and Tracing for Cartilage Repair. Advanced Science. 2022; 9(35). doi: 10.1002/advs.202105571
61. Chen Y, Xu Y, Li M, et al. Application of Autogenous Urine-Derived Stem Cell Sheet Enhances Rotator Cuff Healing in a Canine Model. The American Journal of Sports Medicine. 2020; 48(14): 3454–3466. doi: 10.1177/0363546520962774
62. Lu K, Tang H, Wang Y, et al. Micropattern Silk Fibroin Film Facilitates Tendon Repair In Vivo and Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells through the α2β1/FAK/PI3K/AKT Signaling Pathway. In: Mussano F (editor). Stem Cells International. Wiley; 2023.
63. Wen H, Fang Y. Acellular porcine Achilles tendon patch encapsulating tendon-derived stem cells for rotator cuff repair in a rabbit model. Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-57495-z
64. Zhang Y, Zhang E, Qin T, et al. Matrix stiffness-mediated tenogenesis of tendon stem/progenitor cells via integrin-αm for tendon regeneration. Biochemical and Biophysical Research Communications. 2023; 678: 90–96. doi: 10.1016/j.bbrc.2023.08.007
65. Sun W, Qu S, Ji M, et al. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages. Heliyon. 2023; 9(9): e19934. doi: 10.1016/j.heliyon.2023.e19934
66. Zhang J, Liu Z, Li Y, et al. FGF-2-Induced Human Amniotic Mesenchymal Stem Cells Seeded on a Human Acellular Amniotic Membrane Scaffold Accelerated Tendon-to-Bone Healing in a Rabbit Extra-Articular Model. Stem Cells International. 2020; 2020: 1–14. doi: 10.1155/2020/4701476
67. Zhang X, Chen J, Jiang Q, et al. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. Journal of Materials Chemistry B. 2020; 8(38): 8884-8893. doi: 10.1039/d0tb01686a
68. Song W, Ma Z, Wang X, et al. Macroporous Granular Hydrogels Functionalized with Aligned Architecture and Small Extracellular Vesicles Stimulate Osteoporotic Tendon-To-Bone Healing. Advanced Science. 2023; 10(34). doi: 10.1002/advs.202304090
69. Hu J, Zou WZ, Li L, et al. Overexpressing Runx2 of BMSCs Improves the Repairment of knee Cartilage Defects. Current Gene Therapy. 2020; 20(5): 395-404. doi: 10.2174/1566523220666201005110339
70. Lyu J, Chen L, Zhang J, et al. A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-to-bone interface healing. Biomaterials Science. 2020; 8(13): 3649–3663. doi: 10.1039/d0bm00229a
71. You Q, Liu Z, Zhang J, et al. Human Amniotic Mesenchymal Stem Cell Sheets Encapsulating Cartilage Particles Facilitate Repair of Rabbit Osteochondral Defects. The American Journal of Sports Medicine. 2020; 48(3): 599–611. doi: 10.1177/0363546519897912
72. Jenner F, Wagner A, Gerner I, et al. Evaluation of the Potential of Umbilical Cord Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles to Improve Rotator Cuff Healing: A Pilot Ovine Study. The American Journal of Sports Medicine. 2023; 51(2): 331–342. doi: 10.1177/03635465221145958
73. Mao B, Zhang Z, Lai S, et al. Demineralized Cortical Bone Matrix Augmented With Peripheral Blood-Derived Mesenchymal Stem Cells for Rabbit Medial Meniscal Reconstruction. Frontiers in Bioengineering and Biotechnology. 2022; 10. doi: 10.3389/fbioe.2022.855103
74. Wu B, Zhang T, Chen H, et al. Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration. J Orthop Translat. 2024; 48: 89–106. doi: 10.1016/j.jot.2024.07.009.
75. McClellan P, Ina JG, Knapik DM, et al. Mesenchymal Stem Cell Delivery via Topographically Tenoinductive Collagen Biotextile Enhances Regeneration of Segmental Tendon Defects. The American Journal of Sports Medicine. 2022; 50(8): 2281–2291. doi: 10.1177/03635465221097939
76. Song W, Zhang D, Wu D, et al. Cryopreserved Adipose-Derived Stem Cell Sheets: An Off-the-Shelf Scaffold for Augmenting Tendon-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear. The American Journal of Sports Medicine. 2023; 51(8): 2005–2017. doi: 10.1177/03635465231171682
77. Zhou Y, Xie S, Tang Y, et al. Effect of book-shaped acellular tendon scaffold with bone marrow mesenchymal stem cells sheets on bone–tendon interface healing. Journal of Orthopaedic Translation. 2020; 26: 162–170. doi: 10.1016/j.jot.2020.02.013
78. Li Y, Liu Z, Tang Y, et al. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis. Acta Biochimica et Biophysica Sinica. 2020; 52(6): 590–602. doi: 10.1093/abbs/gmaa042
79. Nakagawa S, Ando W, Shimomura K, et al. Repair of osteochondral defects: efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles. npj Regenerative Medicine. 2023; 8(1). doi: 10.1038/s41536-023-00335-x
80. Zhang C, Jin JL, Zhou CH, et al. Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair. The American Journal of Sports Medicine. 2024; 52(7): 1707–1718. doi: 10.1177/03635465241247288
81. Saw KY, Anz AW, Ng RCS, et al. Arthroscopic Subchondral Drilling Followed by Injection of Peripheral Blood Stem Cells and Hyaluronic Acid Showed Improved Outcome Compared to Hyaluronic Acid and Physiotherapy for Massive Knee Chondral Defects: A Randomized Controlled Trial. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2021; 37(8): 2502–2517. doi: 10.1016/j.arthro.2021.01.067
82. Bastos R, Mathias M, Andrade R, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy. 2020; 28(6): 1989–1999. doi: 10.1007/s00167-019-05732-8
83. Kim YS, Chung PK, Suh DS, et al. Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy. 2019; 28(2): 544–554. doi: 10.1007/s00167-019-05729-3
84. Alentorn-Geli E, Seijas R, Martínez-De la Torre A, et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. Journal of Orthopaedic Surgery. 2019; 27(3): 230949901986758. doi: 10.1177/2309499019867580
85. Pintore A, Notarfrancesco D, Zara A, et al. Intra-articular injection of bone marrow aspirate concentrate (BMAC) or adipose-derived stem cells (ADSCs) for knee osteoarthritis: a prospective comparative clinical trial. Journal of Orthopaedic Surgery and Research. 2023; 18(1). doi: 10.1186/s13018-023-03841-2
86. Rodas G, Soler-Rich R, Rius-Tarruella J, et al. Effect of Autologous Expanded Bone Marrow Mesenchymal Stem Cells or Leukocyte-Poor Platelet-Rich Plasma in Chronic Patellar Tendinopathy (With Gap >3 mm): Preliminary Outcomes After 6 Months of a Double-Blind, Randomized, Prospective Study. The American Journal of Sports Medicine. 2021; 49(6): 1492–1504. doi: 10.1177/0363546521998725
87. Hurd JL, Facile TR, Weiss J, et al. Safety and efficacy of treating symptomatic, partial-thickness rotator cuff tears with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated at the point of care: a prospective, randomized, controlled first-in-human pilot study. Journal of Orthopaedic Surgery and Research. 2020; 15(1). doi: 10.1186/s13018-020-01631-8
88. Fischer S, Colcuc C, Gramlich Y, et al. Prospective randomized clinical trial of open operative, minimally invasive and conservative treatments of acute Achilles tendon tear. Archives of Orthopaedic and Trauma Surgery. 2020; 141(5): 751–760. doi: 10.1007/s00402-020-03461-z
Copyright (c) 2024 Li Liu, Ziyang Lin, Junzheng Yang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.