Biophysics of ACL injuries

  • Bartłomiej Kacprzak Orto Med Sport, 90-640 Łódź, Poland
  • Mikołaj Stańczak AECC University College, Bournemouth BH5 2DF, UK
  • Magdalena Hagner-Derengowska Sports Research Centre, Nicolaus Copernicus University, 87-100 Toruń, Poland
  • Jakub Surmacz Rehab Performance, 20-819 Lublin, Poland
  • Ali Arab Yarmohammadi LipusPlus AB, 111 31 Stockholm, Sweden
Keywords: knee joint; anterior cruciate ligament; biophysics; molecular biology
Ariticle ID: 392

Abstract

Anterior Cruciate Ligament (ACL) injuries rank among the most prevalent and severe types of injuries, significantly impacting both athletes and non-athletes alike. These injuries not only result in immediate physical impairment, such as intense pain, substantial swelling, and a marked loss of mobility, but also carry long-term health consequences that can alter a person’s quality of life. Chronic pain, persistent instability, and an increased risk of developing osteoarthritis are among the lasting effects that can follow an ACL injury. An in-depth understanding of the biophysics behind ACL injuries is paramount for devising effective prevention and treatment protocols. Biophysics, which combines principles from physics with biological systems, provides crucial insights into the mechanical and structural integrity of the ACL and its susceptibility to injury under various conditions. This systematic review aims to collate and synthesize the current knowledge surrounding the biophysical mechanisms that underlie ACL injuries. The review encompasses a range of factors, including the biomechanical forces that place stress on the ligament, anatomical structures that may predispose individuals to injury, and physiological conditions that affect ligament health and resilience. Each of these factors plays a crucial role in the incidence and severity of ACL injuries. Biomechanical forces, for example, can involve sudden changes in direction or impact during physical activity, leading to excessive stress on the ACL. Anatomical factors might include variations in bone structure or ligament alignment that inherently increase the risk of injury. Additionally, physiological conditions such as muscle strength, flexibility, and overall ligament health can influence the likelihood and extent of an ACL injury. The findings of this review underscore the necessity of adopting integrated approaches in both injury prevention and rehabilitation. Such approaches must consider the multifaceted nature of ACL injuries, involving not only mechanical and anatomical aspects but also physiological and possibly even genetic factors. By emphasizing a multi-faceted understanding, interventions can be more effectively tailored to address the complex interplay of elements that contribute to ACL injuries. This holistic approach can lead to better outcomes for those at risk of or recovering from ACL injuries, enhancing the efficacy of prevention strategies and rehabilitation protocols.

References

1. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. The Journal of Bone & Joint Surgery. 1980; 62(2): 259-270. doi: 10.2106/00004623-198062020-00013

2. Markolf K, Mensch J, Amstutz H. Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. The Journal of Bone & Joint Surgery. 1976; 58(5): 583-594. doi: 10.2106/00004623-197658050-00001

3. Lohmander LS, Englund PM, Dahl LL, et al. The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries. The American Journal of Sports Medicine. 2007; 35(10): 1756-1769. doi: 10.1177/0363546507307396

4. Spindler KP, Wright RW. Anterior Cruciate Ligament Tear. New England Journal of Medicine. 2008; 359(20): 2135-2142. doi: 10.1056/nejmcp0804745

5. Woo SLY, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The American Journal of Sports Medicine. 1991; 19(3): 217-225. doi: 10.1177/036354659101900303

6. Boden BP, Dean GS, Feagin JA, et al. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics. 2000; 23(6): 573-578. doi: 10.3928/0147-7447-20000601-15

7. Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries. The American Journal of Sports Medicine. 2006; 34(9): 1512-1532. doi: 10.1177/0363546506286866

8. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. The American Journal of Sports Medicine. 1993; 21(4): 535-539. doi: 10.1177/036354659302100410

9. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-Based Differences in the Anthropometric Characteristics of the Anterior Cruciate Ligament and Its Relation to Intercondylar Notch Geometry. The American Journal of Sports Medicine. 2005; 33(10): 1492-1498. doi: 10.1177/0363546504274149

10. LaPrade RF, Burnett QM. Femoral Intercondylar Notch Stenosis and Correlation to Anterior Cruciate Ligament Injuries. The American Journal of Sports Medicine. 1994; 22(2): 198-203. doi: 10.1177/036354659402200208

11. Hewett T, Myer G. Reducing Knee and Anterior Cruciate Ligament Injuries Among Female Athletes – A Systematic Review of Neuromuscular Training Interventions. The Journal of Knee Surgery. 2010; 18(01): 82-88. doi: 10.1055/s-0030-1248163

12. Myer GD, Ford KR, & Hewett TE. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. Journal of Athletic Training. 2004; 39(4): 352-364.

13. Chen Q, Shou P, Zhang L, et al. An overview of cartilage tissue engineering: recent advances and future perspectives. Rheumatology. 2016; 55(3): 411-424.

14. Chen D, Zhao M, Mundy GR. Bone Morphogenetic Proteins. Growth Factors. 2004; 22(4): 233-241. doi: 10.1080/08977190412331279890

15. Wozney JM. Overview of Bone Morphogenetic Proteins. Spine. 2002; 27(Supplement): S2-S8. doi: 10.1097/00007632-200208151-00002

16. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature Medicine. 2003; 9(6): 669-676. doi: 10.1038/nm0603-669

17. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005; 69(Suppl. 3): 4-10.

18. Massagué J. TGFβ signalling in context. Nature Reviews Molecular Cell Biology. 2012; 13(10): 616-630. doi: 10.1038/nrm3434

19. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999; 284(5411): 143-147. doi: 10.1126/science.284.5411.143

20. Caplan AI, Correa D. The MSC: An Injury Drugstore. Cell Stem Cell. 2011; 9(1): 11-15. doi: 10.1016/j.stem.2011.06.008

21. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proceedings of the National Academy of Sciences. 1994; 91(25): 12013-12017. doi: 10.1073/pnas.91.25.12013

22. Pickart L, & Thaler MM. Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nature. 1973; 243(5404): 85-87.

23. Snyder RA, & Rogero MM. Biophysical stimulation of bone and cartilage: state of the art and future trends. International Journal of Biomedical Engineering and Technology. 2010; 3(3-4): 253-284.

24. Sato Y, Yasuda T, Abe T, et al. Blood flow-restricted low-intensity resistance exercise stimulates muscle hypertrophy. European Journal of Applied Physiology. 2005; 97(2): 208-213.

25. Gao X, & Xu C. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Bioelectromagnetics. 2012; 33(2): 117-126.

26. Baker LL, Wederich CL, McNealn DR, et al. Neuromuscular electrical stimulation: A practical guide. Los Amigos Research and Education Institute. 2000.

27. Butterfield, R. J., Foley, J. F., & Amacher, S. L. (1997). Increased ion channel activity and intracellular calcium levels during muscle regeneration. American Journal of Physiology-Cell Physiology, 273(2), C579-C587.

28. St-Pierre J, Drori S, Uldry M, et al. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell. 2006; 127(2): 397-408. doi: 10.1016/j.cell.2006.09.024

29. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. Journal of Orthopaedic Surgery and Research. 2012; 7(1): 11. doi: 10.1186/1749-799x-7-11

30. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nature Reviews Molecular Cell Biology. 2009; 10(1): 63-73. doi: 10.1038/nrm2597

31. Johnson GL, Lapadat R. Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science. 2002; 298(5600): 1911-1912. doi: 10.1126/science.1072682

32. Boden BP, Dean GS, Feagin JA, et al. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics. 2000; 23(6): 573-578. doi: 10.3928/0147-7447-20000601-15

33. Markolf KL, O’Neill G, Jackson SR, et al. Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments. The American Journal of Sports Medicine. 2004; 32(5): 1144-1149. doi: 10.1177/0363546503262198

34. McLean SG, Walker K, & van den Bogert AJ. Effect of gender on lower extremity kinematics during rapid direction changes: an integrated analysis of three sports movements. Journal of Science and Medicine in Sport. 2005; 8(4): 411-422.

35. Butler RJ, Crowell HP, & Davis IM. Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics. 2003; 18(6): 511-517.

36. Olsen OE, Myklebust G, Engebretsen L, et al. Injury Mechanisms for Anterior Cruciate Ligament Injuries in Team Handball. The American Journal of Sports Medicine. 2004; 32(4): 1002-1012. doi: 10.1177/0363546503261724

37. Baratta R, Solomonow M, Zhou BH, et al. Muscular coactivation. The American Journal of Sports Medicine. 1988; 16(2): 113-122. doi: 10.1177/036354658801600205

38. Myer GD, Ford KR, Palumbo JP, et al. Neuromuscular Training Improves Performance and Lower-Extremity Biomechanics in Female Athletes. The Journal of Strength and Conditioning Research. 2005; 19(1): 51. doi: 10.1519/13643.1

39. Dragoo JL, Braun HJ, Harris AHS. The effect of playing surface on the incidence of ACL injuries in National Collegiate Athletic Association American Football. The Knee. 2013; 20(3): 191-195. doi: 10.1016/j.knee.2012.07.006

40. Lambson RB, Barnhill BS, Higgins RW. Football Cleat Design and Its Effect on Anterior Cruciate Ligament Injuries. The American Journal of Sports Medicine. 1996; 24(2): 155-159. doi: 10.1177/036354659602400206

41. Mandelbaum BR, Silvers HJ, Watanabe DS, et al. Effectiveness of a Neuromuscular and Proprioceptive Training Program in Preventing Anterior Cruciate Ligament Injuries in Female Athletes. The American Journal of Sports Medicine. 2005; 33(7): 1003-1010. doi: 10.1177/0363546504272261

42. Hewett TE, Lindenfeld TN, Riccobene JV, et al. The Effect of Neuromuscular Training on the Incidence of Knee Injury in Female Athletes. The American Journal of Sports Medicine. 1999; 27(6): 699-706. doi: 10.1177/03635465990270060301

43. Woo SLY, Abramowitch SD, Kilger R, et al. Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics. 2006; 39(1): 1-20. doi: 10.1016/j.jbiomech.2004.10.025

44. Frank CB. Ligament structure, physiology and function. Journal of Musculoskeletal & Neuronal Interactions. 2004; 4(2): 199-201.

45. Prockop DJ, Kivirikko KI. COLLAGENS: Molecular Biology, Diseases, and Potentials for Therapy. Annual Review of Biochemistry. 1995; 64(1): 403-434. doi: 10.1146/annurev.bi.64.070195.002155

46. Provenzano PP, Heisey D, Hayashi K, et al. Subfailure damage in ligament: a structural and cellular evaluation. Journal of Applied Physiology. 2002; 92(1): 362-371. doi: 10.1152/jappl.2002.92.1.362

47. Ilic MZ, & Handley CJ. Proteoglycans of human ligamentum patellae. Biochemical Journal. 1997; 322(Pt 2): 537-543.

48. Robinson PS, Huang TF, Kazam E, & Iozzo RV. Decorin and biglycan are necessary for normal embryonic tendon development. Journal of Orthopaedic Research. 2005; 23(4): 798-806.

49. Wang JHC. Mechanobiology of tendon. Journal of Biomechanics. 2006; 39(9): 1563-1582. doi: 10.1016/j.jbiomech.2005.05.011

50. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. The FASEB Journal. 2006; 20(7): 811-827. doi: 10.1096/fj.05-5424rev

51. Wang JHC, Thampatty BP, Lin JS, et al. Mechanoregulation of gene expression in fibroblasts. Gene. 2007; 391(1-2): 1-15. doi: 10.1016/j.gene.2007.01.014

52. Markolf KL, Burchfield DM, Shapiro MM, et al. Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research. 1995; 13(6): 930-935. doi: 10.1002/jor.1100130618

53. Griffin LY, Agel J, Albohm MJ, et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. Journal of the American Academy of Orthopaedic Surgeons. 2000; 8(3): 141-150. doi: 10.5435/00124635-200005000-00001

54. Besier TF, Lloyd DG, Cochrane JL, et al. External loading of the knee joint during running and cutting maneuvers. Medicine and Science in Sports and Exercise. Published online July 2001: 1168-1175. doi: 10.1097/00005768-200107000-00014

55. Boden BP, Dean GS, Feagin JA, et al. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics. 2000; 23(6): 573-578. doi: 10.3928/0147-7447-20000601-15

56. Hewett T, Myer G. Reducing Knee and Anterior Cruciate Ligament Injuries Among Female Athletes – A Systematic Review of Neuromuscular Training Interventions. The Journal of Knee Surgery. 2010; 18(01): 82-88. doi: 10.1055/s-0030-1248163

57. Krosshaug T, Bahr R. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. Journal of Biomechanics. 2005; 38(4): 919-929. doi: 10.1016/j.jbiomech.2004.04.033

58. Koga H, Nakamae A, Shima Y, et al. Mechanisms for Noncontact Anterior Cruciate Ligament Injuries. The American Journal of Sports Medicine. 2010; 38(11): 2218-2225. doi: 10.1177/0363546510373570

59. Woo SLY, Debski RE, Withrow JD, & Janaushek MA. Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics. 1999; 32(5): 419-429.

60. Fleming, B. C., Beynnon, B. D., Renström, P. A., Johnson, R. J., Nicolella, D. P., & Nichols, C. E. (2001). The effect of weightbearing and external loading on anterior cruciate ligament strain. Journal of Biomechanics, 34(2), 163-170.

61. Myer, G. D., Ford, K. R., Palumbo, J. P., & Hewett, T. E. (2005). Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. Journal of Strength and Conditioning Research, 19(1), 51-60.

62. Butler, D. L., Guan, Y., & Kay, M. D. (1992). Location-dependent variations in the material properties of the anterior cruciate ligament. Journal of Biomechanics, 25(5), 511-518.

63. Chung, C. B., Skaf, A., Roger, B., et al. (2001). MR imaging evaluation of the anterior cruciate ligament: value of thin slices in oblique coronal and sagittal planes. Radiographics, 21(5), 1023-1029.

64. Li, G., Suggs, J., & Gill, T. J. (2002). The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Annals of Biomedical Engineering, 30(5), 713-720.

65. Shimokochi, Y., & Shultz, S. J. (2008). Mechanisms of noncontact anterior cruciate ligament injury. Journal of Athletic Training, 43(4), 396-408.

66. Ford, K. R., Myer, G. D., & Hewett, T. E. (2003). Valgus knee motion during landing in high school female and male basketball players. Medicine & Science in Sports & Exercise, 35(10), 1745-1750.

67. Yu, B., Lin, C.-F., & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21(3), 297-305.

68. Papaioannou, G., Mitrogiannis, C., & Nianios, G. (2008). Finite element analysis of anterior cruciate ligament biomechanical behavior: fiber orientation and attachment sites location effects. Computer Methods in Biomechanics and Biomedical Engineering, 11(5), 463-473.

69. Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930-935.

70. Song, Y., Debski, R. E., Musahl, V., Thomas, M., & Woo, S. L.-Y. (2004). A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics, 37(3), 383-390.

71. Woo, S. L.-Y., Hollis, J. M., Adams, D. J., Lyon, R. M., & Takai, S. (1991). Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. The American Journal of Sports Medicine, 19(3), 217-225.

72. Woo, S. L.-Y., Johnson, G. A., & Smith, B. A. (1993). Mathematical modeling of ligaments and tendons. Journal of Biomechanical Engineering, 115(4B), 468-473.

73. Franchi, M., Trirè, A., Quaranta, M., Orsini, E., & Ottani, V. (2007). Collagen structure of tendon relates to function. The Scientific World Journal, 7, 404-420.

74. Chang, E. Y., Du, J., Bae, W. C., Statum, S., & Chung, C. B. (2014). Ultrasound elastography of the musculoskeletal system: research applications. Radiologic Clinics of North America, 52(6), 1271-1278.

75. Sharma, A. K., & Sahni, J. K. (2010). Computational fluid dynamics study of synovial fluid lubrication in human knee joint. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 7, 1-11.

76. Buehler, M. J. (2006). Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology, 17(4), 647-651.

77. Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115(14), 2817-2828.

78. Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265-275.

79. Jaalouk, D. E., & Lammerding, J. (2009). Mechanotransduction gone awry. Nature Reviews Molecular Cell Biology, 10(1), 63-73.

80. Baratta, R., Solomonow, M., Zhou, B. H., Letson, D., Chuinard, R., & D’Ambrosia, R. (1988). Muscular coactivation: The role of the antagonist musculature in maintaining knee stability. The American Journal of Sports Medicine, 16(2), 113-122.

81. Renström, P., Arms, S. W., Stanwyck, T. S., Johnson, R. J., & Pope, M. H. (1986). Strain within the anterior cruciate ligament during hamstring and quadriceps activity. The American Journal of Sports Medicine, 14(1), 83-87.

82. Zebis, M. K., Bencke, J., Andersen, L. L., et al. (2009). Acute neuromuscular and kinematic responses to rapid lateral movements and plant and cut maneuvers causing ACL injury. Journal of Electromyography and Kinesiology, 19(5), e543-e551.

83. Hewett, T. E., Paterno, M. V., & Myer, G. D. (2002). Strategies for enhancing proprioception and neuromuscular control of the knee. Clinical Orthopaedics and Related Research, 402, 76-94.

84. Simonsen, E. B., Magnusson, S. P., Bencke, J., et al. (2000). Can the hamstring muscles protect the anterior cruciate ligament during a side-cutting maneuver? Scandinavian Journal of Medicine & Science in Sports, 10(2), 78-84.

85. De Luca, C. J. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13(2), 135-163.

86. Fauth, M. L., Petushek, E. J., Feldshon, D. S., et al. (2010). Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. Journal of Strength and Conditioning Research, 24(4), 1131-1137.

87. Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology, 586(1), 11-23.

88. Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature, 173(4412), 971-973.

89. Ríos, E., & Brum, G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature, 325(6106), 717-720.

90. Baylor, S. M., & Hollingworth, S. (2003). Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. The Journal of Physiology, 551(1), 125-138.

91. Goldspink, G. (2003). Gene expression in muscle in response to exercise. Journal of Muscle Research and Cell Motility, 24(2-3), 121-126.

92. Gordon, S. E., Flück, M., Booth, F. W. (2001). Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. Journal of Applied Physiology, 90(3), 1174-1183.

93. Chargé, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209-238.

94. Adams, G. R. (2002). Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. Journal of Applied Physiology, 93(3), 1159-1167.

95. Griffin, L. Y., Agel, J., Albohm, M. J., et al. (2000). Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. Journal of the American Academy of Orthopaedic Surgeons, 8(3), 141-150.

96. Hashemi, J., Chandrashekar, N., Mansouri, H., et al. (2010). Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 54-62.

97. Shambaugh, J. P., Klein, A., & Herbert, J. H. (1991). Structural measures as predictors of injury in basketball players. Medicine & Science in Sports & Exercise, 23(5), 522-527.

98. Wojtys, E. M., Huston, L., Lindenfeld, T. N., Hewett, T. E., & Greenfield, M. L. (1998). Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. The American Journal of Sports Medicine, 26(5), 614-619.

99. Shelbourne, K. D., Davis, T. J., & Klootwyk, T. E. (1998). The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. The American Journal of Sports Medicine, 26(3), 402-408.

100. Anderson, A. F., Lipscomb, A. B., Liudahl, K. J., & Addlestone, R. B. (1987). Analysis of the intercondylar notch by computed tomography. The American Journal of Sports Medicine, 15(5), 547-552.

101. LaPrade, R. F., & Burnett, Q. M. (1994). Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries: a prospective study. The American Journal of Sports Medicine, 22(2), 198-202.

102. Uhorchak, J. M., Scoville, C. R., Williams, G. N., Arciero, R. A., Pierre, P. S., & Taylor, D. C. (2003). Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. The American Journal of Sports Medicine, 31(6), 831-842.

103. Anderson, A. F., Dome, D. C., Gautam, S., Awh, M. H., & Rennirt, G. W. (2001). Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. The American Journal of Sports Medicine, 29(1), 58-66.

104. Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V., & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. The American Journal of Sports Medicine, 27(6), 699-706.

105. Mandelbaum, B. R., Silvers, H. J., Watanabe, D. S., et al. (2005). Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. The American Journal of Sports Medicine, 33(7), 1003-1010.

106. Staeubli, H. U., & Rauschning, W. (1994). Anatomical considerations of femoral notchplasty in anterior cruciate ligament surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 2(3), 129-136.

107. Higuchi, H., Shirakura, K., Kimura, M., et al. (2006). Changes in biochemical parameters after anterior cruciate ligament injury. International Orthopaedics, 30(1), 43-47.

108. D’Lima, D. D., Hashimoto, S., Chen, P. C., Lotz, M. K., & Colwell, C. W. Jr. (2001). Cartilage injury induces chondrocyte apoptosis. Journal of Bone and Joint Surgery. American Volume, 83-A(Suppl 2 Pt 1), 19-21.

109. Giffin, J. R., Vogrin, T. M., Zantop, T., Woo, S. L.-Y., & Harner, C. D. (2004). Effects of increasing tibial slope on the biomechanics of the knee. The American Journal of Sports Medicine, 32(2), 376-382.

110. Brandon, M. L., Haynes, P. T., Bonamo, J. R., Flynn, M. I., Barrett, G. R., & Sherman, M. F. (2006). The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(8), 894-899.

111. Todd, M. S., Lalliss, S., Garcia, E., DeBerardino, T. M., & Cameron, K. L. (2010). The relationship between posterior tibial slope and anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 63-67.

112. Goettert, M., Lehmann, M., Neumann, J., Tischer, T., Miosge, N., & Kloss, F. (2008). MAPK activation is involved in mechanical stress-induced proliferation of human ligament fibroblasts. Journal of Biomechanics, 41(3), 579-585.

113. Zhang, H., Wang, L., Shen, G., & Liu, T. (2015). Upregulation of MMPs in an in vitro model of the anterior cruciate ligament injury. European Journal of Orthopaedic Surgery & Traumatology, 25(5), 905-910.

114. Jang, K. M., Park, H. S., Park, J. H., & Chung, S. Y. (2015). Reactive oxygen species and antioxidants in anterior cruciate ligament injury. The Journal of Knee Surgery, 28(6), 445-450.

115. Yang, G., Im, H.-J., & Wang, J. H.-C. (2005). Repetitive mechanical stretching modulates IL-1β induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene, 363, 166-172.

116. Mouton, C., Thelen, P., Fröber, R., & Wruck, C. J. (2012). Three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. The Knee, 19(5), 670-675.

117. Hashemi, J., Chandrashekar, N., Mansouri, H., Slauterbeck, J. R., Hashemi, S. S., & Beynnon, B. D. (2010). Shallow medial tibial plateau and steep medial and lateral tibial slopes: New risk factors for anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 54-62.

118. Vogel, V. (2006). Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annual Review of Biophysics and Biomolecular Structure, 35, 459-488.

119. Coste, B., Mathur, J., Schmidt, M., et al. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330(6000), 55-60.

120. Ranade, S. S., Syeda, R., & Patapoutian, A. (2015). Mechanically activated ion channels. Neuron, 87(6), 1162-1179.

121. Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII, and cytoskeletal dynamics. Journal of Cell Science, 122(4), 546-553.

122. Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062-1065.

123. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13.

124. Chandrashekar, N., Mansouri, H., Slauterbeck, J., & Hashemi, J. (2012). Sex-based differences in the tensile properties of the human anterior cruciate ligament. Journal of Biomechanics, 45(4), 1536-1542.

125. Tashman, S., & Anderst, W. (2003). In vivo measurement of dynamic joint motion using high-speed biplane radiography and CT: application to canine ACL deficiency. Journal of Biomechanical Engineering, 125(2), 238-245.

126. Chandrashekar, N., Mansouri, H., Slauterbeck, J., & Hashemi, J. (2006). Sex-based differences in the tensile properties of the human anterior cruciate ligament. Journal of Biomechanics, 39(16), 2943-2950.

127. Park, S. Y., Kim, J. H., Oh, H., et al. (2015). Morphological analysis of the anterior cruciate ligament and its insertion sites using 3D reconstruction. Journal of Orthopaedic Science, 20(4), 708-714.

128. Iwahashi, T., Shino, K., Nakata, K., et al. (2010). Direct anterior cruciate ligament insertion to the femur: an histological study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(6), 857-862.

129. Ilic, M. Z., & Handley, C. J. (1997). Proteoglycans of human ligament. Biochemical Journal, 322(2), 537-543.

130. Schlaepfer, D. D., Hauck, C. R., & Sieg, D. J. (1999). Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology, 71(3-4), 435-478.

131. Amiel, D., Billings, E., & Akeson, W. H. (1990). Ligament structure, chemistry, and physiology. In Daniel, D. M., Akeson, W. H., & O’Connor, J. J. (Eds.), Knee Ligaments: Structure, Function, Injury, and Repair (pp. 77-91). Raven Press.

132. Bosch, P., Musgrave, D. S., Lee, J. Y., Cummins, J., Shuler, T., & Ghivizzani, S. C. (2000). Osteoprogenitor cells within skeletal muscle. Journal of Orthopaedic Research, 18(6), 933-944.

133. Kato, Y., Ingham, S. J., Naudé, G., Saito, A., & Seil, R. (2010). Biomechanics of the anterior cruciate ligament and their implications for surgical technique. Strategies in Trauma and Limb Reconstruction, 5(2), 77-81.

134. Prockop, D. J., & Kivirikko, K. I. (1995). Collagens: molecular biology, diseases, and potentials for therapy. Annual Review of Biochemistry, 64, 403-434.

135. Birk, D. E., & Brückner, P. (2005). Collagen suprastructures. Topics in Current Chemistry, 247, 185-205.

136. Iozzo, R. V. (1999). The biology of the small leucine-rich proteoglycans: functional network of interactive proteins. Journal of Biological Chemistry, 274(27), 18843-18846.

137. Li, Y., Li, J., Zhu, J., & Sun, X. (2013). DNA methylation regulates chondrogenic differentiation of tendon stem cells by modulating wnt pathway. European Cells and Materials, 26, 81-94.

138. Rigozzi, S., Müller, R., & Snedeker, J. G. (2010). Local strain measurement reveals a varied regional dependence of tensile tendon mechanics on glycosaminoglycan content. Journal of Biomechanics, 43(9), 1884-1890.

139. Nau, T., Teuschl, A., & Schweizer, A. (2013). Tissue engineering of ligaments and tendons. Sports Medicine and Arthroscopy Review, 21(1), 45-53.

140. Woo, S. L.-Y., Hildebrand, K., Watanabe, N., Fenwick, J. A., Papageorgiou, C. D., & Wang, J. H. (1999). Tissue engineering of ligament and tendon healing. Clinical Orthopaedics and Related Research, 367, S312-S323.

141. Wojtys, E. M., Huston, L., Boynton, M. D., Spindler, K. P., & Lindenfeld, T. N. (2002). The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. The American Journal of Sports Medicine, 30(2), 182-188.

142. Nyland, J., Shapiro, R., Stine, R., Horn, T., & Ireland, M. L. (1994). Relationship of fatigue and leg dominance to knee joint laxity and neuromuscular characteristics. The American Journal of Sports Medicine, 22(4), 545-549.

143. Arnoczky, S. P., & Marshall, J. L. (1983). Microvasculature of the cruciate ligaments and its response to injury. The Journal of Bone and Joint Surgery. American Volume, 65(1), 68-82.

144. Dragoo, J. L., Lee, R. S., Benhaim, P., Finerman, G. A., & Hame, S. L. (2003). Relaxin receptors in the human female anterior cruciate ligament. The American Journal of Sports Medicine, 31(4), 577-584.

145. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929-958.

146. Bridgeman, J. T., Zhang, Y., Donahue, H. J., & Wade, A. M. (2010). Relaxin decreases collagen content and tensile strength of engineered ligament constructs. Journal of Orthopaedic Research, 28(7), 852-858.

147. Leblanc, D. R., Schneider, M., Angele, P., Vollner, F., & Docheva, D. (2017). The effect of estrogen on tendon health and injury. European Cells & Materials, 34, 312-333.

148. Lee, C. Y., Liu, X., Smith, C. L., et al. (2004). The effect of estrogen on the viscoelastic properties of the rat ACL. Clinical Orthopaedics and Related Research, (428), 39-45.

149. Nicolson, V. T., Wiles, A. M., Elliott, D. M., & Charlton, N. P. (2005). Atomic force microscopy of collagen fibers: a new technique to investigate the molecular basis of viscoelastic properties. Journal of Biomechanics, 38(3), 543-546.

150. Woo, S. L.-Y., Abramowitch, S. D., Kilger, R., & Liang, R. (2006). Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics, 39(1), 1-20.

151. Solomonow, M., Baratta, R., Zhou, B. H., Shoji, H., Bose, W., & D’Ambrosia, R. (1987). The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. The American Journal of Sports Medicine, 15(3), 207-213.

152. Hewett, T. E., Stroupe, A. L., Nance, T. A., & Noyes, F. R. (1996). Plyometric training in female athletes: decreased impact forces and increased hamstring torques. The American Journal of Sports Medicine, 24(6), 765-773.

153. Shellock, F. G., & Prentice, W. E. (1985). Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Medicine, 2(4), 267-278.

154. Gordon, A. M., Huxley, A. F., & Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170-192.

155. Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265-275.

156. Chiquet, M., Gelman, L., Lutz, R., & Maier, S. (2009). From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(5), 911-920.

157. Shin, D., & Athanasiou, K. A. (1999). Cytoindentation for obtaining cell biomechanical properties. Journal of Orthopaedic Research, 17(6), 880-890.

158. Khan, K. M., & Scott, A. (2009). Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. British Journal of Sports Medicine, 43(4), 247-252.

159. Liu, Y., Kim, H., Hebard, S., & Henry, J. (2008). Biomimetic collagen–apatite scaffold with phosphate group for bone regeneration. Journal of Materials Science: Materials in Medicine, 19(7), 2555-2563.

160. Hewett, T. E., Ford, K. R., & Myer, G. D. (2006). Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions. The American Journal of Sports Medicine, 34(3), 490-498.

161. Myer, G. D., Ford, K. R., & Hewett, T. E. (2008). Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. Journal of Strength and Conditioning Research, 22(3), 987-1014.

162. Lephart, S. M., Pincivero, D. M., Giraldo, J. L., & Fu, F. H. (1997). The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine, 25(1), 130-137.

163. Zech, A., Hübscher, M., Vogt, L., Banzer, W., Hänsel, F., & Pfeifer, K. (2010). Balance training for neuromuscular control and performance enhancement: a systematic review. Journal of Athletic Training, 45(4), 392-403.

164. Mandelbaum, B. R., Silvers, H. J., Watanabe, D. S., et al. (2005). Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. The American Journal of Sports Medicine, 33(7), 1003-1010.

165. Deschenes, M. R., & Kraemer, W. J. (2002). Performance and physiologic adaptations to resistance training. The American Journal of Physical Medicine & Rehabilitation, 81(11 Suppl), S3-S16.

166. Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique, 50(6), 500-509.

167. Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 2187-2195.

168. Ntanasis-Stathopoulos, I., Tzanninis, J. G., & Philippou, A. (2013). Epigenetic regulation on gene expression induced by physical exercise. Journal of Musculoskeletal & Neuronal Interactions, 13(2), 133-146.

169. Kiss, R., Czimmermann, E., Wesner, D., et al. (2013). AFM nanomechanical analysis of single collagen fibrils. Biophysical Journal, 105(2), 723-729.

170. Coste, B., Xiao, B., Santos, J. S., et al. (2012). Piezo proteins are pore-forming subunits of mechanically activated channels. Nature, 483(7388), 176-181.

171. McLean, S. G., Fellin, R. E., Suedekum, N., Calabrese, G., Passerallo, A., & Joy, S. (2007). Impact of fatigue on gender-based high-risk landing strategies. Medicine & Science in Sports & Exercise, 39(3), 502-514.

172. Griffin, L. Y., Albohm, M. J., Arendt, E. A., et al. (2006). Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. The American Journal of Sports Medicine, 34(9), 1512-1532.

173. Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews, 88(1), 287-332.

174. Booth, F. W., & Thomason, D. B. (1991). Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiological Reviews, 71(2), 541-585.

175. Fitts, R. H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of Applied Physiology, 104(2), 551-558.

176. Chin, E. R., & Allen, D. G. (1996). The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. The Journal of Physiology, 491(3), 813-824.

177. Gillies, A. R., & Lieber, R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle & Nerve, 44(3), 318-331.

178. Rassier, D. E., & Herzog, W. (2004). Cross-bridge-based models of muscle contraction. Physiological Reviews, 84(2), 569-591.

179. Reid, M. B. (2001). Invited Review: Redox modulation of skeletal muscle contraction: what we know and what we don’t. Journal of Applied Physiology, 90(2), 724-731.

180. Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes: does it help? Sports Medicine, 36(9), 781-796.

181. Faigenbaum, A. D., & McFarland, J. E. (2016). Resistance training for kids: right from the start. ACSM’s Health & Fitness Journal, 20(5), 16-22.

182. Maughan, R. J., & Shirreffs, S. M. (2010). Dehydration and rehydration in competitive sport. Scandinavian Journal of Medicine & Science in Sports, 20(Suppl 3), 40-47.

183. Bourdon, P. C., Cardinale, M., Murray, A., et al. (2017). Monitoring athlete training loads: consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161-S2170.

184. Liu, S. H., Al-Shaikh, R. A., Panossian, V., Yang, R. S., Nelson, S. D., Soleiman, N., & Finerman, G. A. (1997). Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. Journal of Orthopaedic Research, 15(5), 657-663.

185. Kimura, K., Ito, M., Amano, M., et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273(5272), 245-248.

186. Allen, D. G., & Westerblad, H. (2001). Role of phosphate and calcium stores in muscle fatigue. The Journal of Physiology, 536(3), 657-665.

187. Westerblad, H., Allen, D. G., & Lännergren, J. (2002). Muscle fatigue: lactic acid or inorganic phosphate the major cause? News in Physiological Sciences, 17, 17-21.

188. Kang, C., & Ji, L. L. (2012). Role of PGC-1α in muscle function and aging. Journal of Sport and Health Science, 1(1), 11-22.

189. Bodine, S. C., Stitt, T. N., Gonzalez, M., et al. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3(11), 1014-1019.

190. Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Medicine & Science in Sports & Exercise, 36(4), 674-688.

191. Ardern, C. L., Taylor, N. F., Feller, J. A., & Webster, K. E. (2012). Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. The American Journal of Sports Medicine, 40(1), 41-48.

192. MacArthur, D. G., & North, K. N. (2007). ACTN3: A genetic influence on muscle function and athletic performance. Exercise and Sport Sciences Reviews, 35(1), 30-34.

193. Vincent, B., De Bock, K., Ramaekers, M., et al. (2007). ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics, 32(1), 58-63.

194. McHughen, S. A., Rodriguez, P. F., Kleim, J. A., et al. (2010). BDNF Val66Met polymorphism influences motor system function in the human brain. Cerebral Cortex, 20(5), 1254-1262.

195. Fishman, D., Faulds, G., Jeffery, R., et al. (1998). The effect of novel polymorphisms in the interleukin-6 gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of Clinical Investigation, 102(7), 1369-1376.

196. Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2012). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nanotechnology, 23(50), 505702.

197. Leask, A., & Abraham, D. J. (2004). TGF-β signaling and the fibrotic response. FASEB Journal, 18(7), 816-827.

198. Prockop, D. J., Kivirikko, K. I., Tuderman, L., & Guzman, N. A. (1979). The biosynthesis of collagen and its disorders. The New England Journal of Medicine, 301(1), 13-23.

199. Liu, S. H., Yang, R. S., Al-Shaikh, R., & Lane, J. M. (1995). Collagen in tendon, ligament, and bone healing: A current review. Clinical Orthopaedics and Related Research, (318), 265–278.

200. Yu, W. D., Panossian, V., Hatch, J. D., Liu, S. H., & Finerman, G. A. (2001). Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clinical Orthopaedics and Related Research, (383), 268–281.

201. Myer, G. D., Ford, K. R., & Hewett, T. E. (2006). Methodological approaches and rationale for training to prevent anterior cruciate ligament injuries in female athletes. Scandinavian Journal of Medicine & Science in Sports, 14(5), 275–285.

202. Hewett, T. E., & Myer, G. D. (2011). The mechanistic connection between the menstrual cycle and anterior cruciate ligament injuries. Journal of Athletic Training, 46(2), 140–149.

203. Holcomb, W. R., Rubley, M. D., Lee, H. J., & Guadagnoli, M. A. (2007). Effect of hamstring-emphasized resistance training on hamstring

204. strength ratios. Journal of Strength and Conditioning Research, 21(1), 41–47.

205. Dvir, Z. (2004). Isokinetics: Muscle Testing, Interpretation, and Clinical Applications (2nd ed.). Churchill Livingstone.

206. Provenzano, P. P., Heisey, D., Hayashi, K., Lakes, R., & Vanderby, R. (2002). Subfailure damage in ligament: A structural and cellular evaluation. Journal of Applied Physiology, 92(1), 362–371.

207. Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 10(1), 21–33.

208. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827.

209. Molloy, T., Wang, Y., & Murrell, G. A. C. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33(5), 381–394.

210. Han, W. M., Heo, S. J., Driscoll, T. P., et al. (2016). Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nature Materials, 15(4), 477–484.

211. Collins, M., & Posthumus, M. (2011). Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exercise and Sport Sciences Reviews, 39(4), 191–198.

212. Nadler, D., & Pryor, J. (2019). Wearable technology and digital biomarker monitoring in ACL injury rehabilitation. Current Reviews in Musculoskeletal Medicine, 12(1), 41–47.

213. Tipton, K. D., & Wolfe, R. R. (2004). Protein and amino acids for athletes. Journal of Sports Sciences, 22(1), 65–79.

214. Bohl, C. H., & Volpe, S. L. (2002). Magnesium and exercise. Critical Reviews in Food Science and Nutrition, 42(6), 533–563.

215. Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.

216. Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276.

217. Hodges, R. E., Hood, J., Canham, J. E., Sauberlich, H. E., & Baker, E. M. (1971). Clinical manifestations of ascorbic acid deficiency in man. The American Journal of Clinical Nutrition, 24(4), 432–443.

218. Kagan, H. M., & Li, W. (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. Journal of Cellular Biochemistry, 88(4), 660–672.

219. Calder, P. C. (2010). Omega-3 fatty acids and inflammatory processes. Nutrients, 2(3), 355–374.

220. Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277(11), 8755–8758.

221. van der Horst, N., Backx, F. J. G., Esseveld, M., & Mosterd, W. L. (2015). Injuries in Dutch elite field hockey players: a prospective cohort study. Clinical Journal of Sport Medicine, 25(6), 493-500.

222. O’Connor, P. J., & Crowe, M. J. (2007). Effects of six weeks of β-hydroxy-β-methylbutyrate (HMB) and HMB/creatine supplementation on strength, body composition, and muscle damage in response to resistance training. Journal of Strength and Conditioning Research, 21(4), 1000-1009.

223. Souryal, T. O., & Freeman, T. R. (1993). Intercondylar notch size and anterior cruciate ligament injuries in athletes: A prospective study. The American Journal of Sports Medicine, 21(4), 535–539.

224. Wojtys, E. M., Huston, L. J., Boynton, M. D., Spindler, K. P., & Lindenfeld, T. N. (2002). The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. The American Journal of Sports Medicine, 30(2), 182–188.

225. Posthumus, M., September, A. V., O’Cuinneagain, D., van der Merwe, W., Schwellnus, M. P., & Collins, M. (2009). The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine, 37(11), 2234–2240.

226. Hewett, T. E., Myer, G. D., Ford, K. R., et al. (2005). Biomechanical measures of neuromuscular control and valgus loading predict ACL injury risk in female athletes. The American Journal of Sports Medicine, 33(4), 492–501.

227. Hashemi, J., Chandrashekar, N., Mansouri, H., et al. (2010). Shallow medial tibial plateau and steep medial and lateral tibial slopes: New risk factors for anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 54–62.

228. Wang, J. H.-C., & Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology, 5(1), 1–16.

229. Tipton, K. D. (2015). Nutritional support for exercise-induced injuries. Sports Medicine, 45(Suppl 1), S93–S104.

230. Murray, M. M., Spindler, K. P., Ballard, P., Welch, T. P., Zurakowski, D., & Nanney, L. B. (2007). Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. Journal of Orthopaedic Research, 25(8), 1007–1017.

231. LaBella, C. R., Hennrikus, W., Hewett, T. E., & Council on Sports Medicine and Fitness. (2014). Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention. Pediatrics, 133(5), e1437–e1450.

232. Schlaepfer, D. D., & Mitra, S. K. (2004). Integrin signalling and focal adhesion dynamics. Nature Reviews Molecular Cell Biology, 5(8), 700–711.

233. Provenzano, P. P., & Vanderby, R. Jr. (2006). Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biology, 25(2), 71–84.

234. Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry & Cell Biology, 37(10), 1974–1984.

235. Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiological Reviews, 84(2), 649–698.

236. Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776–1782.

237. Purves, D., Augustine, G. J., Fitzpatrick, D., et al. (2001). Neuroscience (2nd ed.). Sinauer Associates.

238. Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 106–124.

239. Calder, P. C. (2006). n–3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.

240. van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819.

241. Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563–1582.

242. Collins, M., September, A. V., & Posthumus, M. (2015). Biological variation and exercise-related injuries: Implications for personalized nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 515–520.

243. Padua, D. A., Marshall, S. W., Boling, M. C., Thigpen, C. A., Garrett, W. E., & Beutler, A. I. (2009). The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. The American Journal of Sports Medicine, 37(10), 1996–2002.

244. Cook, G., Burton, L., Hoogenboom, B. J., & Voight, M. (2014). Functional movement screening: The use of fundamental movements as an assessment of function—Part 1. International Journal of Sports Physical Therapy, 9(3), 396–409.

245. Collins, M., & Raleigh, S. M. (2009). Genetic risk factors for musculoskeletal soft tissue injuries. Medicine and Sport Science, 54, 136–149.

246. Khoschnau, S., Melhus, H., Jacobson, A., et al. (2008). Type I collagen α1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. The American Journal of Sports Medicine, 36(12), 2432–2436.

247. McLean, S. G., Huang, X., & Van Den Bogert, A. J. (2005). Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clinical Biomechanics, 20(8), 863–870.

248. Nagase, H., & Woessner, J. F. Jr. (1999). Matrix metalloproteinases. Journal of Biological Chemistry, 274(31), 21491–21494.

249. Fujii, T., Yamagishi, T., Nagafuchi, T., et al. (2013). Biomarkers in anterior cruciate ligament injury. Journal of Orthopaedic Science, 18(1), 110–118.

250. Madigan, M. L., & Pidcoe, P. E. (2003). Changes in landing biomechanics during a fatiguing landing activity. Journal of Electromyography and Kinesiology, 13(5), 491–498.

251. Borotikar, B. S., Newcomer, R., Koppes, R., & McLean, S. G. (2008). Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clinical Biomechanics, 23(1), 81–92.

252. Wojtys, E. M., Huston, L. J., Lindenfeld, T. N., Hewett, T. E., & Greenfield, M. L. V. H. (1998). Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. The American Journal of Sports Medicine, 26(5), 614–619.

253. Frank, C. B. (2004). Ligament structure, physiology and function. Journal of Musculoskeletal & Neuronal Interactions, 4(2), 199–201.

254. Kirk, T. A., Campbell, P. G., Rubash, H. E., & Wang, J. Y. (2000). TGF-beta superfamily members are expressed during ligament healing. Clinical Orthopaedics and Related Research, (370), 276–284.

255. Wang, H., Zhang, X., Li, Y., Liu, P., & Yuan, J. (2010). TGF-β1 promotes the chemotactic migration of mesenchymal stem cells through Akt and p38 signaling pathways. Molecular Medicine Reports, 2(6), 1095–1100.

256. Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19(4), 283–295.

257. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., & Dyhre-Poulsen, P. (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. Journal of Applied Physiology, 92(6), 2309–2318.

258. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., ... & Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3(11), 1014–1019.

259. Magnusson, S. P., Hansen, P., & Kjaer, M. (2003). Tendon properties in relation to muscular activity and physical training. Scandinavian Journal of Medicine & Science in Sports, 13(4), 211–223.

260. Charge, S. B. P., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238.

261. Besier, T. F., Lloyd, D. G., & Ackland, T. R. (2003). Muscle activation strategies at the knee during running and cutting maneuvers. Medicine & Science in Sports & Exercise, 35(1), 119–127.

262. Crema, M. D., Roemer, F. W., Marra, M. D., & Guermazi, A. (2011). Magnetic resonance imaging of knee ligaments and menisci: systematic approach with relevant anatomy and pitfalls. Radiologic Clinics of North America, 49(6), 1211–1231.

263. Murray, M. M., Martin, S. D., Martin, T. L., & Spector, M. (2000). Histological changes in the human anterior cruciate ligament after rupture. Journal of Bone and Joint Surgery. American Volume, 82(10), 1387–1397.

264. Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Tung GA, Oksendahl HL, Fleming BC. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med. 2015 Mar;43(3):693-9. doi: 10.1177/0363546514561435. Epub 2014 Dec 24. PMID: 25540298; PMCID: PMC4344859.

265. Helal A, El-Gebaly O, Hamed H, Omran AM, ELForse E. Periosteal wrapping of the hamstring tendon autograft improves graft healing and prevents tunnel widening after anterior cruciate ligament anatomic reconstruction. Arch Orthop Trauma Surg. 2024 Jun;144(6):2711-2722. doi: 10.1007/s00402-024-05356-9. Epub 2024 May 15. PMID: 38748257; PMCID: PMC11211196.

266. Anz AW, Jordan SE, Ostrander RV 3rd, Branch EA, Denney TS, Cohen A, Andrews JR. Augmentation of ACL Autograft Reconstruction With an Amnion Collagen Matrix Wrap and Bone Marrow Aspirate Concentrate: A Pilot Randomized Controlled Trial With 2-Year Follow-up. Orthop J Sports Med. 2023 Nov 17;11(11):23259671231210035. doi: 10.1177/23259671231210035. PMID: 38021297; PMCID: PMC10656805.

267. Ardern, C. L., Webster, K. E., Taylor, N. F., & Feller, J. A. (2011). Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. British Journal of Sports Medicine, 45(7), 596–606.

268. Hewett, T. E., & Myer, G. D. (2011). The mechanistic connection between the menstrual cycle and anterior cruciate ligament injuries. Journal of Athletic Training, 46(2), 140–149.

269. Holcomb, W. R., Rubley, M. D., Lee, H. J., & Guadagnoli, M. A. (2007). Effect of hamstring-emphasized resistance training on hamstring strength ratios. Journal of Strength and Conditioning Research, 21(1), 41–47.

270. Dvir, Z. (2004). Isokinetics: Muscle Testing, Interpretation, and Clinical Applications (2nd ed.). Churchill Livingstone.

271. Lephart, S. M., Pincivero, D. M., Giraldo, J. L., & Fu, F. H. (1997). The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine, 25(1), 130–137.

272. Wang, J. H.-C., & Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology, 5(1), 1–16.

273. Provenzano, P. P., Heisey, D., Hayashi, K., Lakes, R., & Vanderby, R. (2002). Subfailure damage in ligament: A structural and cellular evaluation. Journal of Applied Physiology, 92(1), 362–371.

274. Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 10(1), 21–33.

275. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827.

276. Molloy, T., Wang, Y., & Murrell, G. A. C. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33(5), 381–394.

277. Murray, M. M., Spindler, K. P., Ballard, P., Welch, T. P., Zurakowski, D., & Nanney, L. B. (2007). Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. Journal of Orthopaedic Research, 25(8), 1007–1017.

278. Ilic, M. Z., & Handley, C. J. (1997). Proteoglycans of human ligament. Biochemical Journal, 322(2), 537–543.

279. Han, W. M., Heo, S. J., Driscoll, T. P., et al. (2016). Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nature Materials, 15(4), 477–484.

280. Posthumus, M., September, A. V., O'Cuinneagain, D., van der Merwe, W., Schwellnus, M. P., & Collins, M. (2009). The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine, 37(11), 2234–2240.

281. Collins, M., & Posthumus, M. (2011). Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exercise and Sport Sciences Reviews, 39(4), 191–198.

282. Nadler, D., & Pryor, J. (2019). Wearable technology and digital biomarker monitoring in ACL injury rehabilitation. Current Reviews in Musculoskeletal Medicine, 12(1), 41–47.

283. Tipton, K. D., & Wolfe, R. R. (2004). Protein and amino acids for athletes. Journal of Sports Sciences, 22(1), 65–79.

284. Bohl, C. H., & Volpe, S. L. (2002). Magnesium and exercise. Critical Reviews in Food Science and Nutrition, 42(6), 533–563.

285. Calder, P. C. (2006). n−3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.

286. Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.

287. Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243–1276.

288. Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 106–124.

289. Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 106–124.

290. Hodges, R. E., Hood, J., Canham, J. E., Sauberlich, H. E., & Baker, E. M. (1971). Clinical manifestations of ascorbic acid deficiency in man. The American Journal of Clinical Nutrition, 24(4), 432–443.

291. Kagan, H. M., & Li, W. (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. Journal of Cellular Biochemistry, 88(4), 660–672.

292. Calder, P. C. (2010). Omega-3 fatty acids and inflammatory processes. Nutrients, 2(3), 355–374.

293. Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277(11), 8755–8758.

294. Provenzano, P. P., & Vanderby, R. Jr. (2006). Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biology, 25(2), 71-84.

295. Collins, M., September, A. V., & Posthumus, M. (2015). Biological variation and exercise-related injuries: implications for personalized nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 515-520.

296. van der Horst, N., Backx, F. J. G., Esseveld, M., & Mosterd, W. L. (2015). Injuries in Dutch elite field hockey players: a prospective cohort study. Clinical Journal of Sport Medicine, 25(6), 493-500.

297. Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563-1582.

298. O'Connor, P. J., & Crowe, M. J. (2007). Effects of six weeks of β-hydroxy-β-methylbutyrate (HMB) and HMB/creatine supplementation on strength, body composition, and muscle damage in response to resistance training. Journal of Strength and Conditioning Research, 21(4), 1000-1009.

299. Tipton, K. D. (2015). Nutritional support for exercise-induced injuries. Sports Medicine, 45(Suppl 1), S93-S104.

300. Mandelbaum, B. R., Silvers, H. J., Watanabe, D. S., Knarr, J. F., Thomas, S. D., Griffin, L. Y., Kirkendall, D. T., & Garrett, W. (2005). Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. The American Journal of Sports Medicine, 33(7), 1003–1010.

301. Souryal, T. O., & Freeman, T. R. (1993). Intercondylar notch size and anterior cruciate ligament injuries in athletes: A prospective study. The American Journal of Sports Medicine, 21(4), 535–539.

302. Hewett, T. E., Ford, K. R., & Myer, G. D. (2006). Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. The American Journal of Sports Medicine, 34(3), 490–498.

303. Wojtys, E. M., Huston, L. J., Boynton, M. D., Spindler, K. P., & Lindenfeld, T. N. (2002). The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. The American Journal of Sports Medicine, 30(2), 182–188.

304. Wang, J. H.-C., & Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology, 5(1), 1–16.

305. Posthumus, M., September, A. V., O'Cuinneagain, D., van der Merwe, W., Schwellnus, M. P., & Collins, M. (2009). The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine, 37(11), 2234–2240.

306. Griffin, L. Y., Albohm, M. J., Arendt, E. A., Bahr, R., Beynnon, B. D., DeMaio, M., et al. (2006). Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. The American Journal of Sports Medicine, 34(9), 1512–1532.

307. Griffin, L. Y., Albohm, M. J., Arendt, E. A., Bahr, R., Beynnon, B. D., DeMaio, M., et al. (2006). Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II Meeting. The American Journal of Sports Medicine, 34(9), 1512–1532.

308. Hewett, T. E., Myer, G. D., Ford, K. R., et al. (2005). Biomechanical measures of neuromuscular control and valgus loading predict ACL injury risk in female athletes. The American Journal of Sports Medicine, 33(4), 492–501.

309. Hashemi, J., Chandrashekar, N., Mansouri, H., et al. (2010). Shallow medial tibial plateau and steep medial and lateral tibial slopes: New risk factors for anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 54–62.

310. Mandelbaum, B. R., Silvers, H. J., Watanabe, D. S., Knarr, J. F., Thomas, S. D., Griffin, L. Y., & Kirkendall, D. T. (2005). Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. The American Journal of Sports Medicine, 33(7), 1003–1010.

311. Collins, M., September, A. V., & Posthumus, M. (2015). Biological variation and exercise-related injuries: Implications for personalized nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 515–520.

312. Wang, J. H.-C., & Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology, 5(1), 1–16.

313. van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819.

314. Tipton, K. D. (2015). Nutritional support for exercise-induced injuries. Sports Medicine, 45(Suppl 1), S93–S104.

315. Murray, M. M., Spindler, K. P., Ballard, P., Welch, T. P., Zurakowski, D., & Nanney, L. B. (2007). Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. Journal of Orthopaedic Research, 25(8), 1007–1017.

316. LaBella, C. R., Hennrikus, W., Hewett, T. E., & Council on Sports Medicine and Fitness. (2014). Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention. Pediatrics, 133(5), e1437–e1450.

317. Schlaepfer, D. D., & Mitra, S. K. (2004). Integrin signalling and focal adhesion dynamics. Nature Reviews Molecular Cell Biology, 5(8), 700–711.

318. Provenzano, P. P., & Vanderby, R. Jr. (2006). Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biology, 25(2), 71–84.

319. Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry & Cell Biology, 37(10), 1974–1984.

320. Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiological Reviews, 84(2), 649–698.

321. Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776–1782.

322. Purves, D., Augustine, G. J., Fitzpatrick, D., et al. (2001). Neuroscience (2nd ed.). Sinauer Associates.

323. Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 106–124.

324. Calder, P. C. (2006). n–3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.

325. van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819.

326. Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563–1582.

327. Collins, M., September, A. V., & Posthumus, M. (2015). Biological variation and exercise-related injuries: Implications for personalized nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 515–520.

328. Padua, D. A., Marshall, S. W., Boling, M. C., Thigpen, C. A., Garrett, W. E., & Beutler, A. I. (2009). The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. The American Journal of Sports Medicine, 37(10), 1996–2002.

329. Cook, G., Burton, L., Hoogenboom, B. J., & Voight, M. (2014). Functional movement screening: The use of fundamental movements as an assessment of function—Part 1. International Journal of Sports Physical Therapy, 9(3), 396–409.

330. Collins, M., & Raleigh, S. M. (2009). Genetic risk factors for musculoskeletal soft tissue injuries. Medicine and Sport Science, 54, 136–149.

331. Khoschnau, S., Melhus, H., Jacobson, A., et al. (2008). Type I collagen α1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. The American Journal of Sports Medicine, 36(12), 2432–2436.

332. McLean, S. G., Huang, X., & Van Den Bogert, A. J. (2005). Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clinical Biomechanics, 20(8), 863–870.

333. Wang, J. H.-C., & Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomechanics and Modeling in Mechanobiology, 5(1), 1–16.

334. Nagase, H., & Woessner, J. F. Jr. (1999). Matrix metalloproteinases. Journal of Biological Chemistry, 274(31), 21491–21494.

335. Fujii, T., Yamagishi, T., Nagafuchi, T., et al. (2013). Biomarkers in anterior cruciate ligament injury. Journal of Orthopaedic Science, 18(1), 110–118.

336. Madigan, M. L., & Pidcoe, P. E. (2003). Changes in landing biomechanics during a fatiguing landing activity. Journal of Electromyography and Kinesiology, 13(5), 491–498.

337. Borotikar, B. S., Newcomer, R., Koppes, R., & McLean, S. G. (2008). Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clinical Biomechanics, 23(1), 81–92.

338. Wojtys, E. M., Huston, L. J., Lindenfeld, T. N., Hewett, T. E., & Greenfield, M. L. V. H. (1998). Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. The American Journal of Sports Medicine, 26(5), 614–619.

339. Frank, C. B. (2004). Ligament structure, physiology and function. Journal of Musculoskeletal & Neuronal Interactions, 4(2), 199–201.

340. Provenzano, P. P., Heisey, D., Hayashi, K., Lakes, R., & Vanderby, R. (2002). Subfailure damage in ligament: a structural and cellular evaluation. Journal of Applied Physiology, 92(1), 362–371.

341. Kirk, T. A., Campbell, P. G., Rubash, H. E., & Wang, J. Y. (2000). TGF-beta superfamily members are expressed during ligament healing. Clinical Orthopaedics and Related Research, (370), 276–284.

342. Wang, H., Zhang, X., Li, Y., Liu, P., & Yuan, J. (2010). TGF-β1 promotes the chemotactic migration of mesenchymal stem cells through Akt and p38 signaling pathways. Molecular Medicine Reports, 2(6), 1095–1100.

343. Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19(4), 283–295.

344. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., & Dyhre-Poulsen, P. (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. Journal of Applied Physiology, 92(6), 2309–2318.

345. Lephart, S. M., Pincivero, D. M., Giraldo, J. L., & Fu, F. H. (1997). The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine, 25(1), 130–137.

346. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., ... & Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3(11), 1014–1019.

347. Magnusson, S. P., Hansen, P., & Kjaer, M. (2003). Tendon properties in relation to muscular activity and physical training. Scandinavian Journal of Medicine & Science in Sports, 13(4), 211–223.

348. Charge, S. B. P., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238.

349. Besier, T. F., Lloyd, D. G., & Ackland, T. R. (2003). Muscle activation strategies at the knee during running and cutting maneuvers. Medicine & Science in Sports & Exercise, 35(1), 119–127.

350. Crema, M. D., Roemer, F. W., Marra, M. D., & Guermazi, A. (2011). Magnetic resonance imaging of knee ligaments and menisci: systematic approach with relevant anatomy and pitfalls. Radiologic Clinics of North America, 49(6), 1211–1231.

351. Murray, M. M., Martin, S. D., Martin, T. L., & Spector, M. (2000). Histological changes in the human anterior cruciate ligament after rupture. Journal of Bone and Joint Surgery. American Volume, 82(10), 1387–1397.

352. Ardern, C. L., Webster, K. E., Taylor, N. F., & Feller, J. A. (2011). Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. British Journal of Sports Medicine, 45(7), 596–606.

Published
2024-11-05
How to Cite
Kacprzak, B., Stańczak, M., Hagner-Derengowska, M., Surmacz, J., & Yarmohammadi, A. A. (2024). Biophysics of ACL injuries . Molecular & Cellular Biomechanics, 21(2), 392. https://doi.org/10.62617/mcb.v21i2.392
Section
Article