Research progress in bone cutting technology for dental implant sites preparation: A review
Abstract
With the increasing improvement of living standards and the popularization of dental implant restoration, dental implantation has become the preferred treatment for patients with missing teeth. The implant sites preparation is one of the most important procedures in dental implant surgery. The thermal and mechanical damage caused to the bone tissue during this process can directly affect the formation of osseointegration. To mitigate these adverse effects, many scholars have used methods such as optimizing cutting parameters and improving the structure of surgical tools to better control heat generation and cutting forces. At the same time, many new processing technologies such as milling, ultrasonic machining, and laser machining have also been explored for shaping implant site and have made some progress. This review aims to discuss the advantages and limitations of these techniques used in osteotomy, summarizes the current research status in 97 literatures of related fields.
References
1. Su Y. Contemporary oral implantology[M]. Beijing: People’s Medical Publishing House. 2004.
2. Wang C, Chen Z, Chen H, et al. A review on cutting mechanism for bone material. Chinese Journal of Mechanical Engineering, 2021, 57(11):31. doi:10.3901/JME.2021.11.002.
3. Yankov YG. Socket Preservation and Guided Bone Regeneration: Prerequisites for Successful Implant Dentistry. Cureus. 2023. doi: 10.7759/cureus.48785
4. Yeniyol S, Jimbo R, Marin C, et al. The effect of drilling speed on early bone healing to oral implants. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2013; 116(5): 550-555. doi: 10.1016/j.oooo.2013.07.001
5. Liu Y, Wu J, Zhang J, et al. Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area when Using a Surgical Guide. Journal of Prosthodontics. 2016; 27(1): 42-51. doi: 10.1111/jopr.12488
6. Xu S, Ge B, Xu Y. Practical Orthopedics. Beijing: People’s Military Medical Press. 2012.
7. Health Jade Team. Human skeletal system [OL]. Available online: https://healthjade.com/terms-of-use/ (accessed on 3 May 2024).
8. Morgan EF, Unnikrisnan GU, Hussein AI. Bone Mechanical Properties in Healthy and Diseased States. Annual Review of Biomedical Engineering. 2018; 20(1): 119-143. doi: 10.1146/annurev-bioeng-062117-121139
9. Feng Z, Rho J, Han S, Ziv I. Orientation and loading condition dependence of fracture toughness in cortical bone. Materials Science and Engineering: C. 2000; 11(1): 41-46. doi:10.1016/S0928-4931(00)00142-9
10. Bonfield W. Advances in the fracture mechanics of cortical bone. Journal of Biomechanics, 1987, 20(11-12): 1071-1081. doi: 10.1016/0021-9290(87)90025-x
11. Keaveny TM, Wachtel EF, Ford CM, et al. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. Journal of Biomechanics. 1994; 27(9): 1137-1146. doi:10.1016/0021-9290(94)90054-X.
12. Jacobs CH, Pope MH, Berry JT, Hoaglund F. A study of the bone machining process-orthogonal cutting. Journal of Biomechanics, 1974, 7(2), 131-136. doi: 10.1016/0021-9290(74)90051-7
13. Wiggins KL, Malkin S. Orthogonal Machining of Bone. Journal of Biomechanical Engineering. 1978; 100(3): 122-130. doi: 10.1115/1.3426202
14. Liao Z, Axinte DA. On chip formation mechanism in orthogonal cutting of bone. International Journal of Machine Tools and Manufacture. 2016; 102: 41-55. doi: 10.1016/j.ijmachtools.2015.12.004
15. Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. International Journal of Machine Tools and Manufacture. 2017; 118-119: 1-11. doi: 10.1016/j.ijmachtools.2017.03.009
16. Luo Y, Ren Y, Shu Y, et al. Cutting Behavior of Cortical Bone in Different Bone Osteon Cutting Angles and Depths of Cut. Chinese Journal of Mechanical Engineering. 2022; 35(1). doi: 10.1186/s10033-022-00769-2
17. Friberg B, Sennerby L, Roos J, et al. Evaluation of bone density using cutting resistance measurements and microradiography. An in vitro study in pig ribs. Clinical Oral Implants Research. 1995; 6(3): 164-171. doi: 10.1034/j.1600-0501.1995.060305.x
18. Wei YY, Zheng XH, Yu DD, et al. Experimental Study on Drilling Force during Mandible Drilling Process. Materials Science Forum. 2012; 723: 460-465. doi: 10.4028/www.scientific.net/msf.723.460
19. Chen YC, Tu YK, Tsai YJ, et al. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters. Computer Methods and Programs in Biomedicine. 2018; 162: 253-261. doi: 10.1016/j.cmpb.2018.05.018
20. Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature and necrosis: A FEM modelling and in vitro experiments. Computational Materials Science. 2012; 60: 13-18. doi: 10.1016/j.commatsci.2012.03.012
21. Möhlhenrich SC, Modabber A, Steiner T, et al. Heat generation and drill wear during dental implant site preparation: systematic review. British Journal of Oral and Maxillofacial Surgery. 2015; 53(8): 679-689. doi: 10.1016/j.bjoms.2015.05.004
22. Gehrke SA, Aramburú Júnior JS, Pérez‐Albacete Martínez C, et al. The influence of drill length and irrigation system on heat production during osteotomy preparation for dental implants: an ex vivo study. Clinical Oral Implants Research. 2016; 29(7): 772-778. doi: 10.1111/clr.12827
23. Birkenfeld F, Erika BM, Harder S, et al. Increased intraosseous temperature caused by ultrasonic devices during bone surgery and the influences of working pressure and cooling irrigation. International Journal of Oral & Maxillofacial Implants. 2012; 27(6): 1382-1388.
24. Mirzaie T, Rouhi G, Mehdi Dehghan M, et al. Dental implants’ stability dependence on rotational speed and feed-rate of drilling: In-vivo and ex-vivo investigations. Journal of Biomechanics. 2021; 127: 110696. doi: 10.1016/j.jbiomech.2021.110696
25. Li C, Zhao H, Ma H, et al. Simulation study on effect of cutting parameters and cooling mode on bone-drilling temperature field of superhard drill. The International Journal of Advanced Manufacturing Technology. 2015; 81(9-12): 2027-2038. doi: 10.1007/s00170-015-7259-z
26. Lee J, Chavez CL, Park J. Parameters affecting mechanical and thermal responses in bone drilling: A review. Journal of Biomechanics. 2018; 71: 4-21. doi: 10.1016/j.jbiomech.2018.02.025
27. Akhbar MFA. Thermomechanical damage in cortical bone caused by margins of surgical drill bit: A finite element analysis. Computer Methods and Programs in Biomedicine. 2023; 231: 107361. doi: 10.1016/j.cmpb.2023.107361
28. Shu L, Li S, Terashima M, et al. A novel self-centring drill bit design for low-trauma bone drilling. International Journal of Machine Tools and Manufacture. 2020; 154: 103568. doi: 10.1016/j.ijmachtools.2020.103568
29. Liu S, Wu D, Zhao J, et al. Novel crescent drill design and mechanistic force modeling for thrust force reduction in bone drilling. Medical Engineering & Physics. 2022; 103: 103795. doi: 10.1016/j.medengphy.2022.103795
30. Chen CH, Coyac BR, Arioka M, et al. A Novel Osteotomy Preparation Technique to Preserve Implant Site Viability and Enhance Osteogenesis. Journal of Clinical Medicine. 2019; 8(2): 170. doi: 10.3390/jcm8020170
31. Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. The Journal of Bone & Joint Surgery. 1972; 54(2): 297-308.
32. Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: An in vitro study. Medical Engineering & Physics. 2011; 33(10): 1221-1227. doi: 10.1016/j.medengphy.2011.05.013
33. Reingewirtz Y, Szmukler‐moncler S, Senger B. Influence of different parameters on bone heating and drilling time in implantology. Clinical Oral Implants Research. 1997; 8(3): 189-197. doi: 10.1034/j.1600-0501.1997.080305.x
34. Salomó-Coll O, Auriol-Muerza B, Lozano-Carrascal N, et al. Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study. Clinical Oral Investigations. 2020; 25(3): 1047-1053. doi: 10.1007/s00784-020-03398-y
35. Song S, Cheng X, Li T, et al. Experimental study of bone drilling by Kirschner wire. Medical Engineering & Physics. 2022; 106: 103835. doi: 10.1016/j.medengphy.2022.103835
36. Pandey RK, Panda SS. Drilling of bone: A comprehensive review. Journal of Clinical Orthopaedics and Trauma. 2013; 4(1): 15-30. doi: 10.1016/j.jcot.2013.01.002
37. Alam K, Silberschmidt VV. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technology and Health Care. 2014; 22(2): 243-252. doi: 10.3233/thc-140813
38. Liao W. Research on bone temperature field in template guided dental implant surgery [Master’s thesis]. Zhejiang University of Technology; 2012.
39. Feldmann A, Gavaghan K, Stebinger M, et al. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal. Annals of Biomedical Engineering. 2017; 45(9): 2088-2097. doi: 10.1007/s10439-017-1845-1
40. Cui Q, Wang R, Faller LM, et al. Temperature Field in Bone During Robotic Dental Implant Drilling: Theoretical Models and In Vitro Experiments. Journal of Medical and Biological Engineering. 2022; 42(2): 253-262. doi: 10.1007/s40846-022-00688-6
41. Lloyd BA, Rich JA, Brown WS. Effect of Cooling Techniques on Temperature Control and Cutting Rate for High-Speed Dental Drills. Journal of Dental Research. 1978; 57(5-6): 675-684. doi: 10.1177/00220345780570050201
42. Yang G, Dong Z, Kang Re, et al. Research progress of spiral milling technology. Journal of Aeronautical Studies. 2020; 41(07):18-32. doi: 10.7527/S1000-6893.2019.23311
43. Voss R, Henerichs M, Kuster F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP). CIRP Annals. 2016; 65(1): 137-140. doi: 10.1016/j.cirp.2016.04.001
44. Sakamoto S, Iwasa H. Effect of Cutting Revolution Speed on Cutting Temperature in Helical Milling of CFRP Composite Laminates. Key Engineering Materials. 2012; 523-524: 58-63. doi: 10.4028/www.scientific.net/kem.523-524.58
45. Al-Abdullah KIA lateef, Abdi H, Lim CP, et al. Force and temperature modelling of bone milling using artificial neural networks. Measurement. 2018; 116: 25-37. doi: 10.1016/j.measurement.2017.10.051
46. Al-Abdullah KI, Lim CP, Najdovski Z, et al. Optimization of the Milling Parameters of a Robotic-based Bone Milling System. 2019 IEEE International Conference on Industrial Technology (ICIT). 2019; 53: 163-168. doi: 10.1109/icit.2019.8755127
47. Chen QS, Dai L, Liu Y, et al. A cortical bone milling force model based on orthogonal cutting distribution method. Advances in Manufacturing. 2020; 8(2): 204-215. doi: 10.1007/s40436-020-00300-7
48. Chen Q sen, Liu Y, Dong Q shi. Modeling and experimental validation on temperature diffusion mechanism in high-speed bone milling. Journal of Materials Processing Technology. 2020; 286: 116810. doi: 10.1016/j.jmatprotec.2020.116810
49. Tahmasbi V, Qasemi M, Ghasemi R, et al. Experimental study and sensitivity analysis of force behavior in cortical bone milling. Medical Engineering & Physics. 2022; 105: 103821. doi: 10.1016/j.medengphy.2022.103821
50. Liao Z, Axinte D, Gao D. On modelling of cutting force and temperature in bone milling. Journal of Materials Processing Technology. 2019; 266: 627-638. doi: 10.1016/j.jmatprotec.2018.11.039
51. Sugita N, Ishii K, Sui J, et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Annals. 2014; 63(1): 101-104. doi: 10.1016/j.cirp.2014.03.069
52. Liao Z, Axinte DA, Gao D. A novel cutting tool design to avoid surface damage in bone machining. International Journal of Machine Tools and Manufacture. 2017; 116: 52-59. doi: 10.1016/j.ijmachtools.2017.01.003
53. Hu Y, Zhong J, He L, et al. Study the regularity of micro-texture parameters of bone milling tool surface for wettability improved and bone surface damage reduction. The International Journal of Advanced Manufacturing Technology. 2024; 131(9-10): 5343-5352. doi: 10.1007/s00170-024-13098-6
54. Federspil PA, Geisthoff UW, Henrich D, et al. Development of the First Force‐Controlled Robot for Otoneurosurgery. The Laryngoscope. 2003; 113(3): 465-471. doi: 10.1097/00005537-200303000-00014
55. Shi Q. Research on robot bone milling force modeling and cutting mechanism [PhD thesis]. Northeastern University; 2019.
56. Zhang D. Research on cutting force prediction and control of robotic orthopedic surgery [PhD thesis]. Northeastern University; 2020.
57. Xia G, Wang R, Zhang J, et al. Analysis and modeling of lamina milling temperature based on full factorial experimental design. Chinese Journal of Scientific Instrument. 2021; 42 (07): 135-144. doi: 10.19650/j.cnki.cjsi.J2107881
58. Du F, Sun Q. The application of the piezosurgery device in oral field. International Journal of Stomatology. 2008; (3): 268-270.
59. Aly LAA. Piezoelectric surgery: Applications in oral & maxillofacial surgery. Future Dental Journal. 2018; 4(2): 105-111. doi: 10.1016/j.fdj.2018.09.002
60. Su Y. Development and clinical application of ultrasonic osteotomy in dentistry. Shanghai Journal of Stomatology. 2007; (1): 1-7.
61. Chen X. The clinical effects of ultrasonic implant site preparation and conventional implant site preparation: A meta-analysis [PhD thesis]. Nanchang University; 2018.
62. Falisi G, Severino M, Rastelli C, et al. The effects of surgical preparation techniques and implant macro-geometry on primary stability: An in vitro study. Medicina Oral Patología Oral y Cirugia Bucal. 2017.doi: 10.4317/medoral.21286
63. Rebaudi A, Rebaudi F, Barberis F, et al. Peri-Implant Bone Damage Procured by Piezoelectric and Conventional Implant Site Preparation: An In Vitro Comparison. Applied Sciences. 2020; 10(24): 8909. doi: 10.3390/app10248909
64. Soheilifar S, Bidgoli M, Houshyar E, et al. Comparing the effect of preparation of the implant sites with piezosurgery and conventional drilling on the stability of implants at 5-months follow-up. Journal of Long-Term Effects of Medical Implants. 2018; 28(1): 1-8. doi: 10.1615/jlongtermeffmedimplants.2018020398
65. Alberti LD, Donnini F, Alberti CD, et al. A comparative study of bone densitometry during osseointegration: Piezoelectric surgery versus rotary protocols. Quintessence International, 2010, 41(8): 639-44.doi: 10.1016/j.tripleo.2010.03.041.
66. Mozzati M, Gallesio G, Goker F, et al. Immediate Oral Rehabilitation With Quad Zygomatic Implants: Ultrasonic Technique vs Conventional Drilling. Journal of Oral Implantology. 2020; 47(3): 205-213. doi: 10.1563/aaid-joi-d-19-00195
67. Zhang Y. Review of Ultrasonic Vibration Assisted Drilling. Journal of Mechanical Engineering. 2017; 53(19): 33. doi: 10.3901/jme.2017.19.033
68. Alam K, Mitrofanov AV, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Medical Engineering & Physics. 2011; 33(2): 234-239. doi: 10.1016/j.medengphy.2010.10.003
69. Gupta V, Pandey PM, Silberschmidt VV. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage. Medical Engineering & Physics. 2017; 41: 1-8. doi: 10.1016/j.medengphy.2016.11.004
70. Singh RP, Pandey PM, Mridha AR, et al. Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2019; 234(2): 148-162. doi: 10.1177/0954411919889913
71. Shakouri E, Sadeghi MH, Karafi MR, et al. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2015; 229(2): 137-149. doi: 10.1177/0954411915573064
72. Agarwal R, Singh RP, Gupta V, et al. Influence of cutting force on temperature, microcracks and chip morphology during rotary ultrasonic bone drilling: An in-vitro study. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022; 44(7). doi: 10.1007/s40430-022-03608-6
73. Sun Z, Wang Y, Xu K, et al. Experimental investigations of drilling temperature of high-energy ultrasonically assisted bone drilling. Medical Engineering & Physics. 2019; 65: 1-7. doi: 10.1016/j.medengphy.2018.12.019
74. Bai X, Hou S, Li K, et al. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies. Medical Engineering & Physics. 2020; 83: 73-81. doi: 10.1016/j.medengphy.2020.07.016
75. Gupta V, Pandey PM. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling. Medical Engineering & Physics. 2016; 38(11): 1330-1338. doi: 10.1016/j.medengphy.2016.08.012
76. Agarwal R, Singh J, Gupta V. An intelligent approach to predict thermal injuries during orthopaedic bone drilling using machine learning. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022; 44(8). doi: 10.1007/s40430-022-03630-8
77. Zhang H, Hu Y, Zheng Q, et al. Study on ultrasonic vibration assisted drilling of surface quality on cortical bone. Machine Tool & Hydraulics. 2019; 47(21): 74-77. doi:10.3969/j.issn.1001-3881.2019.21.017
78. Yan Z, Hu Y, Zhang C, et al. Study on ultrasonic vibration assisted three-point drill for drilling cortical bone. Machinery Design & Manufacture. 2021; 0(3):132-135+139. doi: 10.3969/j.issn.1001-3997.2021.03.029
79. Chen Y. The application of ultrasound osteotome sinus lateral wall window elevation technique in patients with severe bone deficiency. Modern Diagnosis and Treatment. 2018; 29 (20): 3329-3331. doi: 10.3969/j.issn.1001-8174.2018.20.069
80. Gao Y, Jiang A, Li B, et al. Comparison of piezosurgery and chisel osteotomy in the extraction of mandibular impacted third molars. West China Journal of Stomatology. 2011; 29(04): 372-374. doi: 10.3969/j.issn.1000-1182.2011.04.010
81. Penarrocha M, Gomez D, Garcia B, et al. Treatment of Bone Defects Produced by Lower Molar Extraction Using Ultrasound-Harvested Autologous Bone Grafts. Journal of Oral and Maxillofacial Surgery. 2008; 66(1): 189-192. doi: 10.1016/j.joms.2006.09.019
82. Lin H, Xie S, Li H, et al. Discussion on the ablation threshold of laser radiation in biotissue. Acta Laser Biology Sinica. 2004; 13(6): 425-428. doi: 10.3969/j.issn.1007-7146.2004.06.006
83. Markolf H. Laser-Tissue Interactions. Heidelberg: Springer Berlin. 2007: 45-48.
84. El-Montaser M, Devlin H, Dickinson MR, et al. Osseointegration of Titanium Metal Implants in Erbium-YAG Laser-Prepared Bone. Implant Dentistry. 1999; 8(1): 79-85. doi: 10.1097/00008505-199901000-00010
85. Schwarz F, Olivier W, Herten M, et al. Influence of implant bed preparation using an Er: YAG laser on the osseointegration of titanium implants: a histomorphometrical study in dogs. Journal of Oral Rehabilitation. 2007; 34(4): 273-281. doi: 10.1111/j.1365-2842.2006.01704.x
86. Świder K, Marzena D. Er: YAG and diode laser application in implant bed preparation and implant uncovering: A case report. Dental and Medical Problems. 2019; 56(1): 111-116. doi: 10.17219/dmp/100386
87. Whiting P, Dowden JM, Kapadia PD, et al. A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers in Medical Science. 1992; 7(1-4): 357-368. doi: 10.1007/bf02594073
88. Pantawane MV, Chipper RT, Robertson WB, et al. Evolution of surface morphology of Er: YAG laser-machined human bone. Lasers in Medical Science. 2019; 35(7): 1477-1485. doi: 10.1007/s10103-019-02927-w
89. Sasaki KM, Aoki A, Ichinose S, et al. Ultrastructural analysis of bone tissue irradiated by Er: YAG Laser. Lasers in Surgery and Medicine. 2002; 31(5): 322-332. doi: 10.1002/lsm.10110
90. Zhang X. Hard biotissue ablation with pulse lasers and its novel medical technology [PhD thesis]. Fujian Normal University; 2010.
91. Panduric DG, Juric IB, Music S, et al. Morphological and Ultrastructural Comparative Analysis of Bone Tissue After Er: YAG Laser and Surgical Drill Osteotomy. Photomedicine and Laser Surgery. 2014; 32(7): 401-408. doi: 10.1089/pho.2014.3711
92. Eyrich GKH. Laser-osteotomy induced changes in bone. Medical Laser Application. 2005; 20(1): 25-36. doi: 10.1016/j.mla.2005.02.003
93. Payne JT, Peavy GM, Reinisch L, et al. Cortical bone healing following laser osteotomy using 6.1 μm wavelength*. Lasers in Surgery and Medicine. 2001; 29(1): 38-43. doi: 10.1002/lsm.1084
94. Liang S, Zheng J, Yuan F. Preliminary study on the osseointegration effects of contactless automated implant cavity preparation via femtosecond laser ablation. Biomedical Optics Express. 2021; 13(1): 82. doi: 10.1364/boe.446602
95. Wolff R, Weitz J, Poitzsch L, et al. Accuracy of navigated control concepts using an Er: Yag-laser for cavity preparation. In: Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011; 85: 2101-2106. doi: 10.1109/iembs.2011.6090391
96. Zhao H, Zhang X, Zhan Z, et al. Influence of an applied water film on bone hard tissue ablation with pulsed CO2 laser. Chinese Journal of Lasers. 2011; 38(01):99-103. doi: 10.3788/CJL201138.0104002
97. Kang HW, Oh J, Welch AJ. Investigations on laser hard tissue ablation under various environments. Physics in Medicine and Biology. 2008; 53(12): 3381-3390. doi: 10.1088/0031-9155/53/12/021
Copyright (c) 2024 Jia You, Xiangyu Zhou, Xixi Xu, Tingyu Li, Yunfeng Liu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.