COL5A3: A prognostic biomarker and potential therapeutic target in pancreatic cancer
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a high mortality rate and a poor prognosis. While type V collagen 3 (COL5A3) is extensively expressed in many tumor tissues, its prognostic significance and immune infiltration in pancreatic cancer remain unknown. As a result, we investigated COL5A3’s predictive function in pancreatic cancer and its relationship to immune infiltration. COL5A3 is significantly expressed in pancreatic cancer tissues compared to normal tissues. High COL5A3 expression is associated with poor clinicopathological characteristics and a worse prognosis of pancreatic cancer. The Kaplan-Meier survival analysis revealed that pancreatic cancer patients with high COL5A3 expression had a poorer prognosis than those with low COL5A3 expression. According to the ROC curve, COL5A3 has high sensitivity and specificity in the detection of pancreatic cancer. Correlation studies revealed that COL5A3 mRNA expression is associated with immune cell infiltration. This work indicates for the first time that COL5A3 may be a novel predictive biomarker linked to immune infiltration, providing a new target for pancreatic cancer detection and therapy.
References
1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020 2020 Jun 27;395(10242):2008-20. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32593337&query_hl=1 doi: 10.1016/S0140-6736(20)30974-0
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2018 2018 Nov;68(6):394-424. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30207593&query_hl=1 doi: 10.3322/caac.21492
3. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018 2018 Nov 21;24(43):4846-61. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30487695&query_hl=1 doi: 10.3748/wjg.v24.i43.4846
4. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-pd-l1 antibody in patients with advanced cancer. N Engl J Med. 2012 2012 Jun 28;366(26):2455-65. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=22658128&query_hl=1 doi: 10.1056/NEJMoa1200694
5. Rosenberg AR, Tabacchi M, Ngo KH, Wallendorf M, Rosman IS, Cornelius LA, et al. Skin cancer precursor immunotherapy for squamous cell carcinoma prevention. Jci Insight. 2019 2019 Mar 21;4(6). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30895944&query_hl=1 doi: 10.1172/jci.insight.125476
6. Terranova-Barberio M, Pawlowska N, Dhawan M, Moasser M, Chien AJ, Melisko ME, et al. Exhausted t cell signature predicts immunotherapy response in er-positive breast cancer. Nat Commun. 2020 2020 Jul 17;11(1):3584. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32681091&query_hl=1 doi: 10.1038/s41467-020-17414-y
7. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, et al. Pd-1/pd-l1 and immunotherapy for pancreatic cancer. Cancer Lett. 2017 2017 Oct 28;407:57-65. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=28826722&query_hl=1 doi: 10.1016/j.canlet.2017.08.006
8. Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020 2020 Oct 2;13(1):130. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33008426&query_hl=1 doi: 10.1186/s13045-020-00958-3
9. Haq F, Ahmed N, Qasim M. Comparative genomic analysis of collagen gene diversity. 3 Biotech. 2019 2019 Mar;9(3):83. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30800594&query_hl=1 doi: 10.1007/s13205-019-1616-9
10. Yun-Feng W, Matsuo N, Sumiyoshi H, Yoshioka H. Sp7/osterix up-regulates the mouse pro-alpha3(v) collagen gene (col5a3) during the osteoblast differentiation. Biochem Biophys Res Commun. 2010 2010 Apr 9;394(3):503-08. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=20206127&query_hl=1 doi: 10.1016/j.bbrc.2010.02.171
11. Huang W, Zhao C, Zhong H, Zhang S, Xia Y, Cai Z. Bisphenol s induced epigenetic and transcriptional changes in human breast cancer cell line mcf-7. Environ Pollut. 2019 2019 Mar;246:697-703. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30616060&query_hl
12. Li W, Nie A, Li Q, Cao H, Song Y, Ling Y, et al. Bioinformatic analysis of differentially expressed genes and screening of hub genes in uveal melanoma cells with brca1-associated protein 1 related protein 1 depletion. J Biomed Nanotechnol. 2020 2020 Aug 1;16(8):1205-18. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33397551&query_hl=1 doi: 10.1166/jbn.2020.2968
13. Ruiz-Deya G, Matta J, Encarnacion-Medina J, Ortiz-Sanchez C, Dutil J, Putney R, et al. Differential dna methylation in prostate tumors from puerto rican men. Int J Mol Sci. 2021 2021 Jan 13;22(2). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33450964&query_hl=1 doi: 10.3390/ijms22020733
14. Chen Y, Teng L, Liu W, Cao Y, Ding D, Wang W, et al. Identification of biological targets of therapeutic intervention for clear cell renal cell carcinoma based on bioinformatics approach. Cancer Cell Int. 2016 2016/1/1;16:16. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=26941587&query_hl=1 doi: 10.1186/s12935-016-0291-8
15. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018 2018 Jun;15(6):333-48. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29717230&query_hl=1 doi: 10.1038/s41575-018-0005-x
16. Margaritte-Jeannin P, Babron MC, Laprise C, Lavielle N, Sarnowski C, Brossard M, et al. The col5a3 and mmp9 genes interact in eczema susceptibility. Clin Exp Allergy. 2018 2018 Mar;48(3):297-305. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29168291&query_hl=1 doi: 10.1111/cea.13064
17. Wu YF, Matsuo N, Sumiyoshi H, Yoshioka H. The sp1 and cbf/nf-y transcription factors cooperatively regulate the mouse pro-alpha3(v) collagen gene (col5a3) in osteoblastic cells. Acta Med Okayama. 2010 2010 Apr;64(2):95-108. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=20424664&query_hl=1 doi: 10.18926/AMO/32850
18. Etschmann B, Gattenlohner S. [Tumor microenvironment in gastrointestinal tumors]. Pathologe. 2011 2011 Nov;32 Suppl 2:321-25. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=22033687&query_hl=1 doi: 10.1007/s00292-011-1530-3
19. Weniger M, Honselmann KC, Liss AS. The extracellular matrix and pancreatic cancer: a complex relationship. Cancers (Basel). 2018 2018 Sep 6;10(9). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=30200666&query_hl=1 doi: 10.3390/cancers10090316
20. Dey S, Liu S, Factora TD, Taleb S, Riverahernandez P, Udari L, et al. Global targetome analysis reveals critical role of mir-29a in pancreatic stellate cell mediated regulation of pdac tumor microenvironment. Bmc Cancer. 2020 2020 Jul 13;20(1):651. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32660466&query_hl=1 doi: 10.1186/s12885-020-07135-2
21. Leibovici J, Itzhaki O, Huszar M, Sinai J. The tumor microenvironment: part 1. Immunotherapy. 2011 2011 Nov;3(11):1367-84. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=22053887&query_hl=1 doi: 10.2217/imt.11.111
22. Arneth B. Tumor microenvironment. Medicina (Kaunas). 2019 2019 Dec 30;56(1). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31906017&query_hl=1 doi: 10.3390/medicina56010015
23. Jarosz-Biej M, Smolarczyk R, Cichon T, Kulach N. Tumor microenvironment as a "game changer" in cancer radiotherapy. Int J Mol Sci. 2019 2019 Jun 29;20(13). Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31261963&query_hl=1 doi: 10.3390/ijms20133212
24. Deepak K, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020 2020 Mar;153:104683. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32050092&query_hl=1 doi: 10.1016/j.phrs.2020.104683
25. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020 2020 Jan 14;52(1):17-35. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31940268&query_hl=1 doi: 10.1016/j.immuni.2019.12.011
26. DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020 2020 Feb 27;382(9):869-71. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=32101671&query_hl=1 doi: 10.1056/NEJMcibr1914890
27. Frankel T, Lanfranca MP, Zou W. The role of tumor microenvironment in cancer immunotherapy. Adv Exp Med Biol. 2017 2017/1/1;1036:51-64. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29275464&query_hl=1 doi: 10.1007/978-3-319-67577-0_4
28. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018 2018 Jun;22(12):3855-64. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=29949179&query_hl=1 doi: 10.26355/eurrev_201806_15270
29. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 2019 Sep 15;79(18):4557-66. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31350295&query_hl=1 doi: 10.1158/0008-5472.CAN-18-3962
30. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017 2017 Feb 28;387:61-68. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=26845449&query_hl=1 doi: 10.1016/j.canlet.2016.01.043
Copyright (c) 2024 Yongjie Li, Min Zeng, Ting Wang, Feng Jiang, Chengjian Li
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.