Analyzing the impact of ferroptosis on atherosclerotic plaque formation through biomechanical modeling

  • Ru Du The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
  • Yuhong Zuo The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
  • Xinan Wang The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
  • Jiawang Ding The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
Keywords: atherosclerosis; ferroptosis; biomechanics; plaque stability; stress analysis; iron metabolism; cardiovascular disease; mechanical modeling
Article ID: 825

Abstract

Atherosclerotic plaque rupture, a primary cause of acute cardiovascular events, is fundamentally influenced by biomechanical forces. While ferroptosis, an iron-dependent form of regulated cell death, has been implicated in atherosclerosis progression, its impact on plaque biomechanics and stability remains poorly understood. We developed a comprehensive biomechanical model integrating ferroptotic parameters with plaque structural mechanics. Human carotid endarterectomy specimens (n = 45) were analyzed using a multi-modal approach combining mechanical testing, molecular analysis, and computational modeling. Plaque samples were categorized into stable (n = 15), vulnerable (n = 15), and transitional (n = 15) groups. Changes in mechanical properties, ferroptotic markers, and stress distributions were assessed over 72 h under controlled conditions. Ferroptosis induction resulted in significant alterations of plaque biomechanics. Peak circumferential stress in the fibrous cap increased from 142.3 ± 12.4 kPa to 286.4 ± 22.7 kPa (p < 0.001), while cap thickness decreased from 165.4 ± 12.3 μm to 98.6 ± 18.4 μm (p < 0.001). The iron accumulation showed a strong negative correlation with plaque stability (r = −0.892, p < 0.001). Mechanical testing revealed a 56.5% reduction in tensile strength and a 52.3% decrease in strain at failure in vulnerable plaques. Sensitivity analysis identified fibrous cap thickness (NSC = 0.924) and iron concentration (NSC = 0.856) as critical determinants of plaque stability. Our findings establish ferroptosis as a significant mediator of plaque biomechanical deterioration. The strong correlations between ferroptotic markers and mechanical instability suggest that targeting ferroptotic pathways may provide novel approaches for maintaining plaque stability. This study provides a quantitative framework for understanding the mechanical consequences of ferroptosis in atherosclerotic disease progression and identifies potential therapeutic targets for plaque stabilization.

References

1. Stone, P. H., Libby, P., & Boden, W. E. (2023). Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management—the plaque hypothesis: a narrative review. JAMA cardiology, 8(2), 192-201.

2. Luo, X., Lv, Y., Bai, X., Qi, J., Weng, X., Liu, S., ... & Yu, B. (2021). Plaque erosion: a distinctive pathological mechanism of acute coronary syndrome. Frontiers in Cardiovascular Medicine, 8, 711453.

3. Lubrano, V., & Balzan, S. (2021). Status of biomarkers for the identification of stable or vulnerable plaques in atherosclerosis. Clinical Science, 135(16), 1981-1997.

4. Chen, X., Li, X., Xu, X., Li, L., Liang, N., Zhang, L., ... & Yin, H. (2021). Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free radical research, 55(4), 405-415.

5. Fang, X., Ardehali, H., Min, J., & Wang, F. (2023). The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nature Reviews Cardiology, 20(1), 7-23.

6. Coornaert, I. (2020). Stabilization of atherosclerotic plaques via inhibition of regulated necrosis (Doctoral dissertation, University of Antwerp).

7. Bu, L. L., Yuan, H. H., Xie, L. L., Guo, M. H., Liao, D. F., & Zheng, X. L. (2023). New dawn for atherosclerosis: Vascular endothelial cell senescence and death. International journal of molecular sciences, 24(20), 15160.

8. Gao, J., Cao, H., Hu, G., Wu, Y., Xu, Y., Cui, H., ... & Zheng, L. (2023). The mechanism and therapy of aortic aneurysms. Signal transduction and targeted therapy, 8(1), 55.

9. Chiorescu, R. M., Mocan, M., Inceu, A. I., Buda, A. P., Blendea, D., & Vlaicu, S. I. (2022). Vulnerable atherosclerotic plaque: is there a molecular signature?. International Journal of Molecular Sciences, 23(21), 13638.

10. Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J. R., Alloza, I., Vandenbroeck, K., ... & Martín, C. (2022). Pathophysiology of atherosclerosis. International journal of molecular sciences, 23(6), 3346.

11. Wissing, T. B., Van der Heiden, K., Serra, S. M., Smits, A. I. P. M., Bouten, C. V. C., & Gijsen, F. J. H. (2022). Tissue-engineered collagenous fibrous cap models to systematically elucidate atherosclerotic plaque rupture. Scientific Reports, 12(1), 5434.

12. Raeeszadeh-Sarmazdeh, M., Do, L. D., & Hritz, B. G. (2020). Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells, 9(5), 1313.

13. Costa, D., Scalise, E., Ielapi, N., Bracale, U. M., Andreucci, M., & Serra, R. (2024). Metalloproteinases as Biomarkers and Sociomarkers in Human Health and Disease. Biomolecules, 14(1), 96.

14. Migdalski, A., & Jawien, A. (2021). New insight into biology, molecular diagnostics and treatment options of unstable carotid atherosclerotic plaque: a narrative review. Annals of translational medicine, 9(14).

15. Chen, X., Li, J., Kang, R., Klionsky, D. J., & Tang, D. (2021). Ferroptosis: machinery and regulation. Autophagy, 17(9), 2054-2081.

16. Li, L., Liu, X., Han, C., Tian, L., Wang, Y., & Han, B. (2024). Ferroptosis in radiation-induced brain injury: roles and clinical implications. BioMedical Engineering OnLine, 23(1), 93.

17. Yu, M., Wang, Z., Wang, D., Aierxi, M., Ma, Z., & Wang, Y. (2023). Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. Journal of Neuroscience Research, 101(10), 1538-1554.

18. Di Nubila, A., Dilella, G., Simone, R., & Barbieri, S. S. (2024). Vascular Extracellular Matrix in Atherosclerosis. International Journal of Molecular Sciences, 25(22), 12017.

19. Fahed, A. C., & Jang, I. K. (2021). Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nature Reviews Cardiology, 18(10), 724-734.

20. Miceli, G., Basso, M. G., Pintus, C., Pennacchio, A. R., Cocciola, E., Cuffaro, M., ... & Tuttolomondo, A. (2024). Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. International Journal of Molecular Sciences, 25(8), 4351.

21. Russo, G., Pedicino, D., Chiastra, C., Vinci, R., Rizzini, M. L., Genuardi, L., ... & Liuzzo, G. (2023). Coronary artery plaque rupture and erosion: Role of wall shear stress profiling and biological patterns in acute coronary syndromes. International Journal of Cardiology, 370, 356-365.

Published
2025-02-11
How to Cite
Du, R., Zuo, Y., Wang, X., & Ding, J. (2025). Analyzing the impact of ferroptosis on atherosclerotic plaque formation through biomechanical modeling. Molecular & Cellular Biomechanics, 22(2), 825. https://doi.org/10.62617/mcb825
Section
Article