Research progress on the role of lycopene in promoting mammalian spermatogenesis

  • Yun Li School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
  • Guangzhao Ma School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
  • Enzhong Li School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
Keywords: lycopene; spermatogenesis; antioxidant; sperm cryopreservation
Article ID: 76

Abstract

A carotenoid called lycopene (LYC) is one of the most potent antioxidants. Superior physiological properties of LYC include cancer prevention, cholesterol reduction, antioxidant activity, scavenging of free radicals, immunity enhancement, prostate protection, and increased sperm viability. In recent times, male sperm quality has decreased. Following studies on LYC’s function in spermatogenesis, the therapy of male infertility diseases has made extensive use of it. Here, we give an accurate theoretical foundation for the use of LYC in large animal breeding and the treatment of male infertility in humans by summarising the variables influencing spermatogenesis and the enhancing effect of LYC on mammalian spermatogenesis.

References

1. Shannon P, Curson B. Site of aromatic L-amino acid oxidase in dead bovine spermatozoa and determination of between-bull differences in the percentage of dead spermatozoa by oxidase activity. Reproduction. 1982; 64(2): 469-473. doi: 10.1530/jrf.0.0640469

2. Ball BA, Medina V, Gravance CG, et al. Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5 C. Theriogenology. 2001; 56(4): 577-589. doi: 10.1016/s0093-691x(01)00590-8

3. Bilodeau PS, Urbanowski JL, Winistorfer SC, et al. The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biology. 2002; 4(7): 534-539. doi: 10.1038/ncb815

4. Nadal MA, Alomar C, Deudero S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands. Environmental Pollution. 2016; 214: 517-523. doi: 10.1016/j.envpol.2016.04.054

5. Fiyadh SS, AlSaadi MA, Jaafar WZ, et al. Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production. 2019; 230: 783-793. doi: 10.1016/j.jclepro.2019.05.154

6. Oborna I, Malickova K, Fingerova H, et al. A Randomized Controlled Trial of Lycopene Treatment on Soluble Receptor for Advanced Glycation End Products in Seminal and Blood Plasma of Normospermic Men. American Journal of Reproductive Immunology. 2011; 66(3): 179-184. doi: 10.1111/j.1600-0897.2011.00984.x

7. Agarwal A, Durairajanayagam D, Ong C, et al. Lycopene and male infertility. Asian Journal of Andrology. 2014; 16(3): 420. doi: 10.4103/1008-682x.126384

8. Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells. 2020; 9(3): 745. doi: 10.3390/cells9030745

9. Wang H, Yuan Q, Niu M, et al. Transcriptional regulation of P63 on the apoptosis of male germ cells and three stages of spermatogenesis in mice. Cell Death & Disease. 2018; 9(2). doi: 10.1038/s41419-017-0046-z

10. Gray S, Cohen PE. Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation. Annual Review of Genetics. 2016; 50(1): 175-210. doi: 10.1146/annurev-genet-120215-035111

11. Kubota H, Brinster RL. Spermatogonial stem cells†. Biology of Reproduction. 2018; 99(1): 52-74. doi: 10.1093/biolre/ioy077

12. Zhao B, Ito K, Iyengar PV, et al. MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochemistry and Cell Biology. 2012; 139(3): 447-460. doi: 10.1007/s00418-012-1043-z

13. Krzastek SC, Farhi J, Gray M, et al. Impact of environmental toxin exposure on male fertility potential. Translational Andrology and Urology. 2020; 9(6): 2797-2813. doi: 10.21037/tau-20-685

14. Teng Y, Kang X. The Application of Servo Control Technology n Robot Positioning and Tracking System via Heuristic Algorithm. Journal of Combinatorial Mathematics and Combinatorial Computing. 2024; 119: 277-289. doi: 61091/jcmcc119-27.

15. Vecoli C, Montano L, Andreassi MG. Environmental pollutants: genetic damage and epigenetic changes in male germ cells. Environmental Science and Pollution Research. 2016; 23(23): 23339-23348. doi: 10.1007/s11356-016-7728-4

16. Heinze J. Regional Differences Invalidate U.S. Sperm Trend Conclusions. Environmental Health Perspectives. 1999; 107(3): A132. doi: 10.2307/3434488

17. Safe SH. Endocrine disruptors and human health--is there a problem? An update. Environmental Health Perspectives. 2000; 108(6): 487-493. doi: 10.1289/ehp.00108487

18. Colbonr T, Clement C. Chemically-induced alterations in sexual and functional development : the wildlife/human connection. Environmental Science, Biology, Medicine; 1992.

19. Pinon-Lataillade G, Thoreux-Manlay A, Coffigny H, et al. Reproductive toxicity of chronic lead exposure in male and female mice. Human & Experimental Toxicology. 1995; 14(11): 872-878. doi: 10.1177/096032719501401103

20. Vaccaro TM, Brown-Woodman PD, & webster WS. Investigating the Possible teratogeniticity of Inorganic lead on rat embryos in vitro. Teratology. 1992; 45(3): 382-329.

21. Kilgallon SJ, Simmons LW. Image content influences men’s semen quality. Biology Letters. 2005; 1(3): 253-255. doi: 10.1098/rsbl.2005.0324

22. Lin MH, Kuo-Kuang Lee R, Li SH, et al. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertility and Sterility. 2008; 90(2): 352-359. doi: 10.1016/j.fertnstert.2007.06.018

23. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (scsa®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertility and Sterility. 2004; 81(5): 1289-1295. doi: 10.1016/j.fertnstert.2003.09.063

24. Kalem Z, Namli Kalem M, Anadol E, et al. Maternal Nutrition And Reproductive Functions Of Female And Male Offspring. Reproduction. Published online August 2018. doi: 10.1530/rep-18-0070

25. Lanfranco F, Kamischke A, Zitzmann M, et al. Klinefelter's syndrome. Lancet. 2004; 364(9430): 273-283. doi: 10.1016/S0140-6736(04)16678-6

26. O’Flynn O’Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: A review. Fertility and Sterility. 2010; 93(1): 1-12. doi: 10.1016/j.fertnstert.2009.10.045

27. Ferlin A, Vinanzi C, Garolla A, et al. Male infertility and androgen receptor gene mutations: clinical features and identification of seven novel mutations. Clinical Endocrinology. 2006; 65(5): 606-610. doi: 10.1111/j.1365-2265.2006.02635.x

28. Gallego Romero I, Ober C. CFTR mutations and reproductive outcomes in a population isolate. Human Genetics. 2007; 122(6): 583-588. doi: 10.1007/s00439-007-0432-1

29. Li CY, Jiang LY, Chen WY, et al. CFTR is essential for sperm fertilizing capacity and is correlated with sperm quality in humans. Human Reproduction. 2009; 25(2): 317-327. doi: 10.1093/humrep/dep406

30. Cheng CY, Sun F, eds. Molecular Mechanisms in Spermatogenesis. Springer International Publishing; 2021. doi: 10.1007/978-3-030-77779-1

31. Rao AV, Ray MR, Rao LG. Lycopene. Adv Food Nutr Res. 2006; 51: 99-164. doi:10.1016/S1043-4526(06)51002-2

32. Atasoy N. Biochemistry of Lycopene. Journal of Animal and Veterinary Advances. 2012; 11(15): 2605-2610. doi: 10.3923/javaa.2012.2605.2610

33. Gupta, Narmada P, & Rajeev Kumar. Lycopene Therapy in Idiopathic Male Infertility--a Preliminary Report. International Urology and Nephrology. 2002; 34(3): 369-372. doi:10.1023/a:1024483520560

34. Mohanty N, Kumar S, Jha A, et al. Management of idiopathic oligoasthenospermia with lycopene. Indian Journal of Urology. 2001; 18(1): 57. doi: 10.4103/0970-1591.37419

35. Briviba K. Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers. Carcinogenesis. 2004; 25(12): 2373-2378. doi: 10.1093/carcin/bgh249

36. Türk G, Ateşşahin A, Sönmez M, et al. Lycopene protects against cyclosporine A-induced testicular toxicity in rats. Theriogenology. 2007; 67(4): 778-785. doi: 10.1016/j.theriogenology.2006.10.013

37. Chew BP, Park JS. Carotenoid Action on the Immune Response. The Journal of Nutrition. 2004; 134(1): 257S-261S. doi: 10.1093/jn/134.1.257s

38. Aly HAA, El-Beshbishy HA, Banjar ZM. Mitochondrial dysfunction induced impairment of spermatogenesis in LPS-treated rats: Modulatory role of lycopene. European Journal of Pharmacology. 2012; 677(1-3): 31-38. doi: 10.1016/j.ejphar.2011.12.027

39. Chauhan K, Sharma S, Agarwal N, et al. Lycopene of tomato fame: its role in health and disease. International Journal of Pharmaceutical Sciences Review and Research. 2011; 10(1): 99-115.

40. Heber D, Lu QY. Overview of Mechanisms of Action of Lycopene. Experimental Biology and Medicine. 2002; 227(10): 920-923. doi: 10.1177/153537020222701013

41. Rao AV, Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr Res 1999; 19(2): 305-323. doi: 10.1016/S0271-5317(98)00193-6

42. Falchi L, Pau S, Pivato I, et al. Resveratrol supplementation and cryopreservation of buck semen. Cryobiology. 2020; 95: 60-67. doi: 10.1016/j.cryobiol.2020.06.005

43. Wang AW, Zhang H, Ikemoto I, et al. Reactive oxygen species generation by seminal cells during cryopreservation. Urology, 1997; 49(6): 921-925. doi: 10.1016/S0090-4295(97)00070-8

44. Li M, Meyers S, Tollner TL, et al. Damage to Chromosomes and DNA of Rhesus Monkey Sperm Following Cryopreservation. Journal of Andrology. 2007; 28(4): 493-501. doi: 10.2164/jandrol.106.000869

45. Ni F, Wang F, Li J, et al. BNC1 deficiency induces mitochondrial dysfunction-triggered spermatogonia apoptosis through the CREB/SIRT1/FOXO3 pathway: the therapeutic potential of nicotinamide riboside and metformin. Biology of Reproduction. 2024; 110(3): 615-631. doi: 10.1093/biolre/ioad168

46. Rosato MP, Centoducati G, Santacroce MP, et al. Effects of lycopene on in vitro quality and lipid peroxidation in refrigerated and cryopreserved turkey spermatozoa. British Poultry Science. 2012; 53(4): 545-552. doi: 10.1080/00071668.2012.716508

47. Liang ZW, Guo KM, Dai XF, et al. Protective Effect of Lycopene on Human Spermatozoa during Cryopreservation and Its Mechanism. Zhong hua Nan Ke Xue. 2015; 21(6): 521-26.

48. Bucak MN, Ataman MB, Başpınar N, et al. Lycopene and resveratrol improve post-thaw bull sperm parameters: sperm motility, mitochondrial activity and DNA integrity. Andrologia. 2014; 47(5): 545-552. doi: 10.1111/and.12301

Published
2024-06-03
How to Cite
Li, Y., Ma, G., & Li, E. (2024). Research progress on the role of lycopene in promoting mammalian spermatogenesis. Molecular & Cellular Biomechanics, 21, 76. https://doi.org/10.62617/mcb.v21.76
Section
Article