Study on dexterous structure and control of bio-inspired musculoskeletal robots in artificial intelligence environment

  • Qiyuan Wang School of Computer Science, Beijing Information Science and Technology University, Beijing 100101, China
Keywords: artificial intelligence; bio-inspired; musculoskeletal robots; structural design; control
Article ID: 689

Abstract

The design and development process of bio-inspired musculoskeletal robots in the artificial intelligence environment integrates mechanical design, control algorithms, real-time computing, variable sensing, and other fields of technology, which can provide effective mechanical support for the user’s actions in the process of use, and has a broader application prospect in a number of fields. In the process of exoskeleton robots moving from experimental research and development to practical applications, the comfort of the use process is an important evaluation criterion. Therefore, from the perspective of user comfort, this paper takes the waist exoskeleton robot as the research object, and conducts a design study on the structure and control of the exoskeleton robot.

References

1. Juhani Ukko, Minna Saunila, Janne Heikkinen, R. Scott Semken, Aki Mikkola. Real-time Simulation for Sustainable Production: Enhancing User Experience and Creating Business Value. Taylor and Francis:2020-12-14.

2. Kurumaya S, Suzumori K, Nabae H, et al. Musculoskeletal lower-limb robot driven by multifilament muscles. Robomech Journal, 2016, 3: 1-15.

3. Zhang J, Chen J, Wu W, et al. A cerebellum-inspired prediction and correction model for motion control of a musculoskeletal robot. IEEE Transactions on Cognitive and Developmental Systems, 2022, 15(3): 1209-1223.

4. Zhong S, Chen Z, Zhou J. Structure transforming for constructing constraint force field in musculoskeletal robot. Assembly Automation, 2022, 42(2): 169-180.

5. Na G, Nabae H, Suzumori K. Braided thin mckibben muscles for musculoskeletal robots. Sensors and Actuators A: Physical, 2023, 357: 114381.

6. Nipatphonsakun K, Kawasetsu T, Hosoda K. The experimental investigation of foot slip-turning motion of the musculoskeletal robot on toe joints. Frontiers in Robotics and AI, 2023, 10: 1187297.

7. Takahashi R, Wang Y, Wang J, et al. Implementation of basic reflex functions on musculoskeletal robots driven by pneumatic artificial muscles. IEEE Robotics and Automation Letters, 2023, 8(4): 1920-1926.

8. Payedimarri A B, Ratti M, Rescinito R, et al. Effectiveness of platform-based robot-assisted rehabilitation for musculoskeletal or neurologic injuries: a systematic review. Bioengineering, 2022, 9(4): 129.

9. Shugaba A, Lambert J E, Bampouras T M, et al. Should all minimal access surgery be robot-assisted? A systematic review into the musculoskeletal and cognitive demands of laparoscopic and robot-assisted laparoscopic surgery. Journal of Gastrointestinal Surgery, 2022, 26(7): 1520-1530.

10. Tsuboi S, Kino H, Tahara K. End-Point stiffness and joint viscosity control of musculoskeletal robotic arm using muscle redundancy//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022: 4997-5002.

11. Wu Y, Chen J, Qiao H. Anti-interference analysis of bio-inspired musculoskeletal robotic system. Neurocomputing, 2021, 436: 114-125.

12. Li N, Yang T, Yang Y, et al. Bioinspired musculoskeletal model-based soft wrist exoskeleton for stroke rehabilitation. Journal of Bionic Engineering, 2020, 17: 1163-1174.

13. Qiao H, Chen J, Huang X. A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems. IEEE Transactions on Cybernetics, 2021, 52(10): 11267-11280.

14. Junius K, Moltedo M, Cherelle P, et al. Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics. Bioinspiration & biomimetics, 2017, 12(6): 061001.

15. Bilancia P, Baggetta M, Berselli G, et al. Design of a bio-inspired contact-aided compliant wrist. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102028.

16. Guan, J., Su, Y., Su, L., Sivaparthipan, C. B., & Muthu, B. A. (2021). Bio-inspired algorithms for industrial robot control using deep learning methods. Sustainable Energy Technologies and Assessments, 47, 101473. https://doi.org/10.1016/j.seta.2021.101473

17. Belghiti Alaoui, S., El Kari, B., Chaibi, Y., Chalh, Z., Benslimane, M. (2024). Bio-Inspired Algorithms in Robotics Systems: An Overview. In: Mahboub, O., Haddouch, K., Omara, H., Hefnawi, M. (eds) Big Data and Internet of Things. BDIoT 2024. Lecture Notes in Networks and Systems, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-031-74491-4_38

18. Butnaru, D. (2021). Exoskeletons, Rehabilitation and Bodily Capacities. Body & Society, 27(3), 28-57. https://doi.org/10.1177/1357034X211025600

19. Lingampally, P. K., Ramanathan, K. C., Shanmugam, R., Cepova, L., & Salunkhe, S. (2024). Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review. Machines, 12(6), 415. https://doi.org/10.3390/machines12060415

20. Seo, Y. W., La Marca, V., Tandon, A., Chiao, J. -C., & Drummond, C. K. (2024). Exploring the Design for Wearability of Wearable Devices: A Scoping Review. Computers, 13(12), 326. https://doi.org/10.3390/computers13120326

Published
2025-01-17
How to Cite
Wang, Q. (2025). Study on dexterous structure and control of bio-inspired musculoskeletal robots in artificial intelligence environment. Molecular & Cellular Biomechanics, 22(2), 689. https://doi.org/10.62617/mcb689
Section
Article