Causal relationship between Alzheimer’s disease and obstructive sleep apnoea: Insights from a biomechanics-oriented bidirectional mendelian randomization study

  • Liumei Yuan Department of Acupuncture and Tuina, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
  • Thupten Palzang College of International Education, Hunan University of Traditional Chinese Medicine, Changsha 410000, China
  • Chao Ke Department of Acupuncture and Tuina, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
  • Emma Ardern College of International Education, Hunan University of Traditional Chinese Medicine, Changsha 410000, China
  • Zhuo Zhou Department of Acupuncture and Tuina, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
  • Wei Zhang Department of Acupuncture and Tuina, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
Keywords: Alzheimer’s disease; obstructive sleep apnoea; snoring; Mendelian randomization; biomechanical mechanisms
Article ID: 586

Abstract

Background: The latest observational studies revealed a possible association between Alzheimer ‘s disease (AD) and obstructive sleep apnoea (OSA). In AD, the accumulation of amyloid-beta plaques and tau tangles disrupts the normal structure and function of neurons in the brain. These pathological changes can affect the mechanical properties of neural tissues, altering their elasticity and stiffness. Such alterations might extend to the neural circuits responsible for regulating sleep and respiration, potentially influencing the occurrence of OSA. We used bidirectional Mendelian randomization approach to analyze causalities between OSA, its typical symptoms (snoring and daytime sleepiness) and AD in European populations. Methods: Single nucleotide polymorphisms of AD and OSA, snoring, daytime dozing were selected as instrumental variables. Preliminary MR analysis was inverse-variance weighted (IVW) method. The Cochran Q test, MR-Egger analysis, ‘leave-one-out’ test were used to verify the data robustness. Results were adjusted for Bonferroni correction thresholds. Results: Results from IVW demonstrated a suggestive correlation between AD and higher risks of sleep apnoea (OR 1.0008, 95%CI 1.0000–1.0016, p = 0.044) after Bonferroni correction. However, reverse MR analysis showed no association of genetically primed sleep apnoea towards AD (p = 0.294). No causal effect was detected between genetic AD and snoring, daytime dozing. From a biomechanical perspective, the positive correlation between AD and increased risk of sleep apnoea could be due to the fact that the structural changes in the brain caused by AD might lead to changes in the biomechanical forces exerted on the brainstem regions that control breathing during sleep. Conclusions: The findings of the MR study support that AD might increase the risk of OSA. Therefore, individuals with AD should strengthen sleep monitoring, sleep hygiene and develop a regular sleep-wake pattern. Understanding these underlying biomechanical mechanisms could provide valuable insights for developing targeted interventions to mitigate the risk of OSA in AD patients and potentially improve their overall sleep quality and disease management.

References

1. Villain N, Dubois B. Alzheimer’s disease including focal presentations. Seminars in Neurology. 2019; 39 (2):213-26. Epub 2019/03/30. doi: 10.1055/s-0039-1681041.

2. Ramachandran AK, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J. Neurodegenerative pathways in Alzheimer’s disease: a review. Current Neuropharmacology. 2021; 19 (5):679-92. Epub 2020/08/28. doi: 10.2174/1570159x18666200807130637.

3. Li F, Qin W, Zhu M, Jia J. Model-based projection of dementia prevalence in China and worldwide: 2020-2050. Journal of Alzheimer’s Disease: JAD. 2021; 82 (4):1823-31. Epub 2021/07/06. doi: 10.3233/jad-210493.

4. Hort J, O’Brien JT, Gainotti G, Pirttila T, Popescu BO, Rektorova I, et al. EFNS guidelines for the diagnosis and management of Alzheimer’s disease. European Journal of Neurology. 2010; 17 (10):1236-48. Epub 2010/09/14. doi: 10.1111/j.1468-1331.2010.03040.x.

5. Borges CR, Poyares D, Piovezan R, Nitrini R, Brucki S. Alzheimer’s disease and sleep disturbances: a review. Arquivos de Neuro-Psiquiatria. 2019; 77 (11):815-24. Epub 2019/12/12. doi: 10.1590/0004-282x20190149.

6. Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2020; 45 (1):104-20. Epub 2019/08/14. doi: 10.1038/s41386-019-0478-5.

7. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The Epidemiology of alzheimer’s disease modifiable risk factors and prevention. The Journal of Prevention of Alzheimer’s Disease. 2021; 8 (3):313-21. Epub 2021/06/09. doi: 10.14283/jpad.2021.15.

8. Khoreva MA, Kuznetsova MP, Karkavina MV, Safonova SS. Obstructive sleep apnea - underestimated cognitive impairments risk factor. Zhurnal Nevrologii I Psikhiatrii Imeni SS Korsakova. 2023; 123 (8):36-41. Epub 2023/09/01. doi: 10.17116/jnevro202312308136.

9. Rundo JV. Obstructive sleep apnea basics. Cleveland Clinic Journal of Medicine. 2019; 86 (9 Suppl 1):2-9. Epub 2019/09/12. doi: 10.3949/ccjm.86.s1.02.

10. Gaeta AM, Benítez ID, Jorge C, Torres G, Dakterzada F, Minguez O, et al. Prevalence of obstructive sleep apnea in Alzheimer’s disease patients. Journal of Neurology. 2020; 267 (4):1012-22. Epub 2019/12/14. doi: 10.1007/s00415-019-09668-4.

11. Tsai CY, Wu SM, Kuan YC, Lin YT, Hsu CR, Hsu WH, et al. Associations between risk of Alzheimer’s disease and obstructive sleep apnea, intermittent hypoxia, and arousal responses: A pilot study. Frontiers in Neurology. 2022; 13:1038735. Epub 2022/12/20. doi: 10.3389/fneur.2022.1038735.

12. Lutsey PL, Misialek JR, Mosley TH, Gottesman RF, Punjabi NM, Shahar E, et al. Sleep characteristics and risk of dementia and Alzheimer’s disease: The Atherosclerosis Risk in Communities Study. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2018; 14 (2):157-66. Epub 2017/07/25. doi: 10.1016/j.jalz.2017.06.2269.

13. Jiang X, Wang Z, Hu N, Yang Y, Xiong R, Fu Z. Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: a meta-analysis. Experimental Brain Research. 2021; 239 (12):3537-52. Epub 2021/09/22. doi: 10.1007/s00221-021-06225-2.

14. Tsai MS, Li HY, Huang CG, Wang RYL, Chuang LP, Chen NH, et al. Risk of alzheimer’s disease in obstructive sleep apnea patients with or without treatment: real-world evidence. The Laryngoscope. 2020; 130 (9):2292-8. Epub 2020/02/12. doi: 10.1002/lary.28558.

15. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Statistics in Medicine. 2008; 27 (8):1133-63. Epub 2007/09/22. doi: 10.1002/sim.3034.

16. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. European Journal of Epidemiology. 2018; 33 (10):947-52. Epub 2018/07/25. doi: 10.1007/s10654-018-0424-6.

17. Richmond RC, Davey Smith G. Mendelian randomization: concepts and scope. Cold Spring Harbor Perspectives in Medicine. 2022; 12 (1). Epub 2021/08/25. doi: 10.1101/cshperspect.a040501. PubMed PMID: 34426474; PubMed Central PMCID: PMCPMC8725623.

18. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR Statement. Jama. 2021; 326 (16):1614-21. Epub 2021/10/27. doi: 10.1001/jama.2021.18236.

19. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Research. 2019; 4:186. Epub 2020/08/11. doi: 10.12688/wellcomeopenres.15555.3.

20. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023; 613 (7944):508-18. Epub 2023/01/19. doi: 10.1038/s41586-022-05473-8.

21. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. 2020:2020.08.10.244293. doi: 10.1101/2020.08.10.244293.

22. Lyon M, Andrews SJ, Elsworth B, Gaunt TR, Hemani G, Marcora E. The variant call format provides efficient and robust storage of GWAS summary statistics. bioRxiv. 2020:2020.05.29.115824. doi: 10.1101/2020.05.29.115824.

23. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018; 7. Epub 2018/05/31. doi: 10.7554/eLife.34408.

24. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. International Journal of Epidemiology. 2011; 40 (3):755-64. Epub 2011/03/19. doi: 10.1093/ije/dyr036.

25. Sanderson E, Windmeijer F. A weak instrument [Formula: see text]-test in linear IV models with multiple endogenous variables. Journal of Econometrics. 2016; 190 (2):212-21. Epub 2016/02/01. doi: 10.1016/j.jeconom.2015.06.004.

26. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology. 2016; 40 (4):304-14. Epub 2016/04/12. doi: 10.1002/gepi.21965.

27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology. 2015; 44 (2):512-25. Epub 2015/06/08. doi: 10.1093/ije/dyv080.

28. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports. 2017; 4 (4):330-45. Epub 2017/12/12. doi: 10.1007/s40471-017-0128-6.

29. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology. 2017; 32 (5):377-89. Epub 2017/05/21. doi: 10.1007/s10654-017-0255-x.

30. Bowden J, Hemani G, Davey Smith G. Invited commentary: detecting individual and global horizontal pleiotropy in mendelian randomization-a job for the humble heterogeneity statistic? American Journal of Epidemiology. 2018; 187 (12):2681-5. Epub 2018/09/07. doi: 10.1093/aje/kwy185.

31. Cavaillès C, Andrews SJ, Leng Y, Chatterjee A, Daghlas I, Yaffe K. Causal associations of sleep apnea with alzheimer’s disease and cardiovascular disease: a bidirectional mendelian randomization analysis. medRxiv: the preprint server for health sciences. 2023. Epub 2023/12/04. doi: 10.1101/2023.11.20.23298793.

32. Blackman J, Swirski M, Clynes J, Harding S, Leng Y, Coulthard E. Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer’s disease: A systematic review. Journal of Sleep Research. 2021; 30 (4):e13229. Epub 2020/12/09. doi: 10.1111/jsr.13229.

33. Canessa N, Castronovo V, Cappa SF, Aloia MS, Marelli S, Falini A, et al. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. American Journal of Respiratory and Critical Care Medicine. 2011; 183 (10):1419-26. Epub 2010/11/03. doi: 10.1164/rccm.201005-0693OC.

34. Richards KC, Gooneratne N, Dicicco B, Hanlon A, Moelter S, Onen F, et al. CPAP adherence may slow 1-year cognitive decline in older adults with mild cognitive impairment and apnea. Journal of the American Geriatrics Society. 2019; 67 (3):558-64. Epub 2019/02/07. doi: 10.1111/jgs.15758.

35. Wang Y, Cheng C, Moelter S, Fuentecilla JL, Kincheloe K, Lozano AJ, et al. One year of continuous positive airway pressure adherence improves cognition in older adults with mild apnea and mild cognitive impairment. Nursing Research. 2020; 69 (2):157-64. Epub 2020/02/29. doi: 10.1097/nnr.0000000000000420.

36. Liguori C, Cremascoli R, Maestri M, Fernandes M, Izzi F, Tognoni G, et al. Obstructive sleep apnea syndrome and Alzheimer’s disease pathology: may continuous positive airway pressure treatment delay cognitive deterioration? Sleep & breathing = Schlaf & Atmung. 2021; 25 (4):2135-9. Epub 2021/02/24. doi: 10.1007/s11325-021-02320-4.

37. Carlsson CM. Management of Dementia. Continuum (Minneapolis, Minn). 2022; 28 (3):885-900. Epub 2022/06/10. doi: 10.1212/con.0000000000001132.

38. Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. Jama. 2011; 306 (6):613-9. Epub 2011/08/11. doi: 10.1001/jama.2011.1115.

39. Tian Q, Sun J, Li X, Liu J, Zhou H, Deng J, et al. Association between sleep apnoea and risk of cognitive impairment and Alzheimer’s disease: a meta-analysis of cohort-based studies. Sleep & breathing = Schlaf & Atmung. 2023. Epub 2023/10/20. doi: 10.1007/s11325-023-02934-w.

40. Guay-Gagnon M, Vat S, Forget MF, Tremblay-Gravel M, Ducharme S, Nguyen QD, et al. Sleep apnea and the risk of dementia: A systematic review and meta-analysis. Journal of Sleep Research. 2022; 31 (5):e13589. Epub 2022/04/03. doi: 10.1111/jsr.13589.

41. Li J, Zhao L, Ding X, Cui X, Qi L, Chen Y. Obstructive sleep apnea and the risk of Alzheimer’s disease and Parkinson disease: A Mendelian randomization study OSA, Alzheimer’s disease and Parkinson disease. Sleep Medicine. 2022; 97:55-63. Epub 2022/06/21. doi: 10.1016/j.sleep.2022.06.004.

42. Bubu OM, Andrade AG, Umasabor-Bubu OQ, Hogan MM, Turner AD, de Leon MJ, et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Medicine Reviews. 2020; 50:101250. Epub 2019/12/28. doi: 10.1016/j.smrv.2019.101250.

43. Legault J, Thompson C, Martineau-Dussault M, André C, Baril AA, Martinez Villar G, et al. Obstructive sleep apnea and cognitive decline: a review of potential vulnerability and protective factors. Brain Sciences. 2021; 11 (6). Epub 2021/06/03. doi: 10.3390/brainsci11060706.

44. Barletta P, Abreu AR, Ramos AR, Dib SI, Torre C, Chediak AD. Role of Obstructive Sleep Apnea in Cognitive Impairment. International Journal of Head and Neck Surgery. 2019; 10 (3):57-61. Epub 2019/07/01. doi: 10.5005/jp-journals-10001-1373.

45. Bhuniya S, Goyal M, Chowdhury N, Mishra P. Intermittent hypoxia and sleep disruption in obstructive sleep apnea increase serum tau and amyloid-beta levels. Journal of Sleep Research. 2022; 31 (5):e13566. Epub 2022/02/16. doi: 10.1111/jsr.13566.

46. Andrade AG, Bubu OM, Varga AW, Osorio RS. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. Journal of Alzheimer’s disease: JAD. 2018; 64 (s1):S255-s70. Epub 2018/05/22. doi: 10.3233/jad-179936.

47. Ercolano E, Bencivenga L, Palaia ME, Carbone G, Scognamiglio F, Rengo G, et al. Intricate relationship between obstructive sleep apnea and dementia in older adults. GeroScience. 2024; 46 (1):99-111. Epub 2023/10/10. doi: 10.1007/s11357-023-00958-4.

Published
2025-02-20
How to Cite
Yuan, L., Palzang, T., Ke, C., Ardern, E., Zhou, Z., & Zhang, W. (2025). Causal relationship between Alzheimer’s disease and obstructive sleep apnoea: Insights from a biomechanics-oriented bidirectional mendelian randomization study. Molecular & Cellular Biomechanics, 22(3), 586. https://doi.org/10.62617/mcb586
Section
Article