Assessment of the impact of high zinc intake on leptin receptor gene expression in wistar rats

  • Tanushree Das Department of Zoology, Sikkim University, Gangtok-737102 Sikkim, India
  • Rhea Ahongshangbam Department of Zoology, Dhanamanjuri University, Imphal 795001, Manipur, India
  • Romoka Chabungbam Department of Zoology, Dhanamanjuri University, Imphal 795001, Manipur, India
  • Banaraj Haobam Department of Biotechnology, Kamakhya Pemton College, Hiyangthang 795009, Manipur, India
  • Oinam Ibochouba Singh Department of Zoology, Manipur University, Canchipur 795003, Manipur, India
  • Kshetrimayum Birla Singh Department of Zoology, Manipur University, Canchipur 795003, Manipur, India
Keywords: trace element; leptin, gene expression; adipose tissue; obesity; animal models
Article ID: 471

Abstract

In recent years, zinc (Zn) has been extensively employed in agricultural and livestock practices, as well as in baby foods and multivitamin supplements, due to its perceived non-toxic nature and its ability to promote linear growth and body weight in consumers and consequently, its usage is increasing steadily. This study investigates the impact of prolonged excessive zinc intake on the expression levels of the leptin gene in adult Wistar rats without a genetic predisposition to obesity. Three groups of rats were fed basal diets containing 20 mg Zn per kg diet (control group, Group-C), 50 mg Zn per kg diet (Group-T1), and 80 mg Zn per kg diet (Group-T2) for 180 days. Following the dietary treatment, gene expression studies were conducted using adipose tissue from the experimental rats. The findings indicate that dietary zinc supplementation significantly increased leptin receptor gene expression in adipose tissue in a dose- dependent manner. Compared to the control group (Group C), leptin receptor mRNA levels were 3.19-fold (± 0.54) higher in Group T1 receiving 50 mg Zn/kg diet and 4.70-fold (± 0.59) higher in the group receiving 80 mg Zn/kg diet. Our findings indicate that excessive zinc intake can resulted in the upregulation of the leptin gene expression which may lead to leptin resistance and ultimately may contribute to obesity.

References

1. Haase, H., & Rink, L. (2014). Multiple impacts of zinc on immune function. Metallomics, 6(7), 1175-1180. https://doi.org/10.1039/c3mt00353a

2. Costa, M. I., Sarmento-Ribeiro, A. B., & Gonçalves, A. C. (2023). Zinc: from biological functions to therapeutic potential. International Journal of Molecular Sciences, 24(5), 4822. https://doi.org/10.3390/ijms24054822

3. Friedman, J M., & Halaas, J L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395(6704), 763-770.https://doi.org/10.1038/27376

4. Houseknecht, K L., Baile, C A., Matteri, R L., & Spurlock, M E. (1998). The biology of leptin: a review. Journal of Animal Science, 76(5), 1405-1405. https://doi.org/10.2527/1998.7651405x

5. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., & Friedman J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372(6505), 425-432. https://doi.org/10.1038/372425a0

6. Zhong W, Zhao Y, Sun X, Song Z, McClain CJ, Zhou Z (2013) Dietary Zinc Deficiency Exaggerates Ethanol-Induced Liver Injury in Mice: Involvement of Intrahepatic and Extrahepatic Factors. PLoS ONE 8(10): e76522. https://doi.org/10.1371/journal.pone.0076522

7. Hussain, A., Jiang, W., Wang, X., Shahid, S., Saba, N., Ahmad, M., ... & Mustafa, A. (2022). Mechanistic impact of zinc deficiency in human development. Frontiers in Nutrition, 9, 717064. https://doi.org/10.3389/fnut.2022.717064

8. Fung, E. B., Gildengorin, G., Talwar, S., Hagar, L., & Lal, A. (2015). Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients, 7(6),4296- 4307 https://doi.org/10.3390/nu7064296

9. Fosmire, G. J. (1990). Zinc toxicity. The American journal of clinical nutrition, 51(2), 225-227.https://doi.org/10.1093/ajcn/51.2.225

10. Pomp D., Oberbauer, A. M. and Murray, J. D (1992). “Growth and Body Composition of OMT-la- OGH Transgenic Male Mice with Differing Periods of Transgenic Activation,” Journal of Animal Science, Vol. 70, No. 1, 1992, pp. 198-201.

11. Schoofs, H., Schmit, J., & Rink, L. (2024). Zinc toxicity: understanding the limits. Molecules, 29(13), 3130. https://doi.org/10.3390/molecules29133130

12. Olechnowicz, J., Tinkov, A., Skalny, A., & Suliburska, J. (2018). Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. The journal of physiological sciences, 68(1), 19-31. https://doi.org/10.1007/s12576-017-0571-7

13. Feng Zou, S., Jiang, B., Wan, R., & Huang, Y. (2024). The adverse association of animal zinc intake with cardio-cerebrovascular and metabolic risk factors. International Journal of Cardiology Cardiovascular Risk and Prevention, 20, 200231.https://doi.org/10.1016%2Fj.ijcrp.2023.200231 .

14. Chen M., Song Y., & Lin P. (2000). Zinc may be a mediator of leptin production in humans. Life sciences,66 22, 2143-9. https://doi.org/10.1016/S0024-3205(00)00541-5.

15. Baltaci A. K., Mogulkoc R., & Halifeoglu I. (2005). Effects of zinc deficiency and supplementation on plasma leptin levels in rats. Biological trace element research, 104, 41-46. https://doi.org/10.1385/BTER:104:1:041

16. Taneja, S. K., Jain, M., Mandal, R., & Megha, K. (2012). Excessive zinc in diet induces leptin resistance in Wistar rat through increased uptake of nutrients at intestinal level. Journal of Trace Elements in Medicine and Biology, 26(4), 267-272. https://doi.org/10.1016/j.jtemb.2012.03.002

17. Vasselli J., Scarpace P., Harris R., & Banks W. (2013). Dietary components in the development of leptin resistance.. Advances in nutrition, 4 2, 164-75 . https://doi.org/10.3945/an.112.003152

18. Ott, E. S., & Shay, N. F. (2001). Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Experimental Biology and Medicine, 226(9), 841-846.doi- https://doi.org/10.1177/153537020122600906

19. Ueda, H., Nakai, T., Konishi, T., Tanaka, K., Sakazaki, F., & Min, K. S. (2014). Effects of zinc deficiency and supplementation on leptin and leptin receptor expression in pregnant mice. Biological and Pharmaceutical Bulletin, 37(4), 581-587. https://doi.org/10.1248/bpb.b13-00813

20. Mangian, H. F., Lee, R. G., Paul, G. L., Emmert, J. L., & Shay, N. F. (1998). Zinc deficiency suppresses plasma leptin concentrations in rats. The Journal of Nutritional Biochemistry, 9(1), 47- 51. https://doi.org/10.1016/S0955-2863(97)00165-4

21. M. C. Orgebin-Crist, M. Freeman, and D. H. Barney (1971). "Sperm formation in zinc- deficient rats," In Annals of Animal Biology Biochemistry Biophysics, vol. 11, pp. 547-558. https://doi.org/10.1051/rnd:19710403

22. D. Oberleas and B. F. Harland (1981). "Phytate content of foods: effect on dietary zinc bioavailability," Journal of the American Dietetic Association, vol. 79, no. 4, pp. 433-436. https://doi.org/10.1016/S0002-8223(21)39390-7

23. J. Turnlund, J. King, W. Keyes, B. Gong, and M. Michel, "A stable isotope study of zinc absorption in young men: effects of phytate and a-cellulose," The American Journal of Clinical Nutrition, vol. 40, no. 5, pp. 1071-1077, 1984. https://doi.org/10.1093/ajcn/40.5.1071

24. Huang, X., Jiang, D., Zhu, Y., Fang, Z., Che, L., Lin, Y., ... & Feng, B. (2017). Chronic high dose zinc supplementation induces visceral adipose tissue hypertrophy without altering body weight in mice. Nutrients, 9(10), 1138. PMID: 29057818 https://pmc.ncbi.nlm.nih.gov/articles/PMC5691754/

25. Chesters JK, & Quarterman J (1970). Effects of zinc deficiency on food intake and feeding patterns of rats. British Journal of Nutrition, 24(4), 1061-1069. doi:10.1079/BJN19700109

26. Singh KB (2012), "Long Term Excessive Zn Supplementation Induced Oxidative Stress in Wistar Rats Fed on Semi-Synthetic Diet," Food and Nutrition Sciences, Vol. 3 No. 6, 2012, pp. 724-731. doi: http://dx.doi.org/10.4236/fns.2012.36098.

27. Singh, K. B., & Taneja, S. K. (2012). Supplementation of Excessive Zn in the Diet in Long Term Basis Induced Obesity Associated Oxidative Stress in Wistar Rats. 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43. http://dx.doi.org/10.7763/IPCBEE.

28. Coleman, J. E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annual review of biochemistry, 61(1), 897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341

29. Sun, J., Jing, M., Wang, J., Zi, N., Fu, L., Lu, M., & Pan, L. (2006). Effect of zinc on biochemical parameters and changes in related gene expression assessed by cDNA microarrays in pituitary of growing rats.. Nutrition, 22 2, 187-96 . https://doi.org/10.1016/j.nut.2005.07.007

30. Friedman, J. (2010). Leptin and the regulation of body weight. Harvey lectures, 95, 107-36 . https://doi.org/10.2174/1996327001003030131

31. Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., & Collins, F. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269(5223), 540-543. https://doi.org/10.1126/science.7624776

32. Mantzoros, C. S., Prasad, A. S., Beck, F. W., Grabowski, S., Kaplan, J., Adair, C., & Brewer, G. J. (1998). Zinc may regulate serum leptin concentrations in humans. Journal of the American College of Nutrition, 17(3), 270-275. https://doi.org/10.1080/07315724.1998.10718758

33. Mohammad, M. K., Zhou, Z., Cave, M., Barve, A., & McClain, C. J. (2012). Zinc and liver disease. Nutrition in Clinical Practice, 27(1), 8-20.

34. Lee, S L., Kwak, E H., Kim, Y H., Choi, J Y., Kwon, S T., Beattie, J., & Kwun, I S. (2003). Leptin Gene Expression and Serum Leptin Levels in Zinc Deficiency: Implications for Appetite Regulation in Rats. https://doi.org/10.1089/109662003772519822

35. Konukoglu, D., Turhan, M. S., Ercan, M., & Serin, O. (2004). Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. The Journal of Nutritional Biochemistry, 15(12), 757-760. https://doi.org/10.1016/j.jnutbio.2004.07.007

36. Lee, J., Ha, J., Kim, D., Kwon, J., Cho, Y., & Kwun, I. (2022). Depletion of Zinc Causes Osteoblast Apoptosis with Elevation of Leptin Secretion and Phosphorylation of JAK2/STAT3. Nutrients, 15. https://doi.org/10.3390/nu15010077

37. Taneja, S. K., Mandal, R., & Chechi, A. (2012a). Attenuation of Zn-induced hyperleptinemia/leptin resistance in Wistar rat after feeding modified poultry egg. Nutrition & metabolism, 9(1), 85. https://doi.org/10.1186/1743-7075-9-85

38. Taneja, S. K., Jain, M., Mandal, R., & Megha, K. (2012b). Excessive zinc in diet induces leptin resistance in Wistar rat through increased uptake of nutrients at intestinal level. Journal of Trace Elements in Medicine and Biology, 26(4), 267-272. https://doi.org/10.1016/j.jtemb.2012.03.002

39. Tanushree Das, Sudeep Ghatani, Kshetrimayum Birla Singh (2023). Long term excessive zinc supplementation in diet induced alteration in serum lipids, hormones and minerals profile in wistar rats and has carry over effect in their F1 generation rats International Journal of Innovative Research and Scientific Studies, 6(1) 2023, pages: 185-192. https://doi.org/10.53894/ijirss.v6i1.1175

40. Chen, K., Li, F., Li, J., Cai, H., Strom, S., Bisello, A., & Zhao, A. Z. (2006). Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nature medicine, 12(4), 425- 432https://doi.org/10.1038/nm1372

41. Li, J., Wei, D., Mccrory, M., Szalai, A., Yang, G., Li, L., Li, F., & Zhao, A. (2016). Human C- reactive protein impedes entry of leptin into the CNS and attenuates its physiological actions in the CNS.. The Biochemical journal, 473 9, 1215-24https://doi.org/10.1042/bj20151282

42. Chika K, Toshiyuki F, Minoru K, Wakana O, Shintaro H, Toru A, Naoko U, Ichiro A, Hiroshi H, Masaaki M, Toshio H(2010). Zinc suppresses Th17 development via inhibition of STAT3 activation. International Immunology 22(5): 375–386. https://doi.org/10.1093/intimm/dxq017

Published
2024-11-21
How to Cite
Das, T., Ahongshangbam, R., Chabungbam, R., Haobam, B., Singh, O. I., & Singh, K. B. (2024). Assessment of the impact of high zinc intake on leptin receptor gene expression in wistar rats. Molecular & Cellular Biomechanics, 21(3), 471. https://doi.org/10.62617/mcb471
Section
Article