Exploring the mechanism of Danggui Buxue decoction against acute renal insufficiency using network pharmacology and molecular docking

  • Xiaoyue Lou College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Yongfeng Ma College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Jiuling Deng Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
  • You Lv College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Runhua Li College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Mingli Shang College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Qianwen Zhang College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
  • Xiuling Zhang Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
  • Tingting Hou College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
Keywords: Danggui Buxue decoction; acute renal insufficiency; network pharmacology; molecular docking
Article ID: 388

Abstract

The Danggui Buxue decoction (DGBX), consists of Angelica sinensis (Oliv.) Diels, and Astragalus membranaceus (Fisch.) Bunge is known to replenish the blood. However, the mechanisms underlying acute renal injury (ARI) as caused by DGBX are still unclear. Therefore, we aimed to investigate the pharmacological effects of DGBX using a mouse model induced by 1% HgCl2. The key components were selected based on an assessment of gastrointestinal absorption potential and drug-likeness characteristics utilizing the SwissADME tool. The core chemical compositions were screened using Gene Ontology (GO functional analysis and possible signaling pathways were identified through pathway enrichment analysis. After protein-protein interaction (PPI) analysis, a “herb-ingredient-target” network was established via target gene prediction of the DGBX and ARI. Finally, molecular docking was performed to determine the binding affinity between the active ingredients and disease targets. DGBX significantly reduced renal index and serum levels of blood urea nitrogen (BUN), and creatinine (CRE) in mice administered with 1% HgCl2. Network pharmacology analysis identified 3,9-di-O-methylnissolin, (6aR,11aR)-9,10-dimethoxy-6a, 11a-dihydro-6H-benzofurano[3,2-c] chromen-3-ol, (3R)-3-(2-hydroxy-3,4-dimethoxyphen-yl) chroman-7-ol, jaranol, kaempferol, and 7-O-methylisomucronulatol as the six core ingredients of DGBX. Epidermal Growth Factor Receptor (EGFR), RAC-alpha Serine/Threonine-ProteinKinase1(AKT1), Phosphoinositide-3-Kinase Catalytic Subunit Alpha (PIK3CA), Src homology 2 domain-containing tyrosine kinase (SRC), Mitogen-Activated Protein Kinase1(MAPK1), and Estrogen Receptor1(ESR1) were selected as the six effective core targets. Furthermore, molecular docking revealed that the six core ingredients interacted well with six primary targets. The components of DGBX, including A sinensis (Oliv.) Diels and A membranaceus (Fisch.) Bunge may treat ARI by affecting the expression of EGFR, AKT1, PIK3CA, SRC, MAPK1, and ESR1.

References

1. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi:10.1038/s41572-021-00284-z

2. Levey AS, James MT. Acute Kidney Injury. Ann Intern Med. 2017;167(9): ITC66-ITC80. doi:10.7326/AITC201711070

3. USTUNDAG S, SEN S, YALCIN O, et al. L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats[J]. Ren Fail, 2009,31(2): 124-133.

4. Mercado MG, Smith DK, Guard EL. Acute Kidney Injury: Diagnosis and Management. Am Fam Physician. 2019;100(11):687-694.

5. Zhong Y, Menon MC, Deng Y, Chen Y, He JC. Recent Advances in Traditional Chinese Medicine for Kidney Disease. Am J Kidney Dis. 2015;66(3):513-522. doi:10.1053/j.ajkd.2015.04.013

6. Gong G, Zhou X, Huang D, et al. Danggui Buxue Tang: A Review of its Major Components. Altern Ther Health Med. 2023;29(5):54-64.

7. Dou Y, Shu Y, Wang Y, et al. Combination treatment of Danggui Buxue Decoction and endothelial progenitor cells can enhance angiogenesis in rats with focal cerebral ischemia and hyperlipidemia. J Ethnopharmacol. 2023; 314:116563. doi:10.1016/j.jep.2023.116563

8. Zhang Y, Yang Y, Ren J, et al. Chinmedomics strategy for elucidating the effects and effective constituents of Danggui Buxue Decoction in treating blood deficiency syndrome. Front Mol Biosci. 2024; 11:1376345. Published 2024 Mar 15. doi:10.3389/fmolb.2024.1376345

9. Jiang X, He Y, Zhao Y, Pan Z, Wang Y. Danggui Buxue Decoction exerts its therapeutic effect on rheumatoid arthritis through the inhibition of Wnt/β-catenin signaling pathway. J Orthop Surg Res. 2023;18(1):944. Published 2023 Dec 9. doi:10.1186/s13018-023-04439-4

10. Hu G, Yang P, Zeng Y, Zhang S, Song J. Danggui Buxue decoction promotes angiogenesis by up-regulation of VEGFR1/2 expressions and down-regulation of sVEGFR1/2 expression in myocardial infarction rat. J Chin Med Assoc. 2018;81(1):37-46. doi:10.1016/j.jcma.2017.06.015

11. Xue M, Bian Y, Liu Y, et al. Danggui Buxue decoction ameliorates lipid metabolic defects involved in the initiation of diabetic atherosclerosis; identification of active compounds. J Tradit Chin Med. 2020;40(3):414-421. doi:10.19852/j.cnki.jtcm.2020.03.009

12. Song J, Meng L, Li S, Qu L, Li X. A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, improved renal microvascular insufficiency in 5/6 nephrectomized rats. Vascul Pharmacol. 2009 May-Jun;50(5-6):185-93. doi: 10.1016/j.vph.2009.01.005. PMID: 19563735.

13. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, Chen N, Zhang JE, Hu Z, Liu F, Hong D, Ma L, Liu H, Zhou X, Chen J, Pan L, Chen W, Wang W, Li X, Wang H. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012 Mar 3;379(9818):815-22. doi: 10.1016/S0140-6736(12)60033-6. Erratum in: Lancet. 2012 Aug 18;380(9842):650. PMID: 22386035.

14. Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine?. Expert Rev Mol Med. 2018;20:e4. Published 2018 May 11. doi:10.1017/erm.2018.3

15. Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. doi:10.1016/j.jep.2023.116306

16. Gao D, Zeng LN, Zhang P, et al. Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl₂)-Induced Acute Renal Failure. Molecules. 2016;21(3):298. Published 2016 Mar 8. doi:10.3390/molecules21030298

17. Shang L, Wang Y, Li J, et al. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J Ethnopharmacol. 2023;302(Pt A):115876. doi:10.1016/j.jep.2022.115876

18. Wang ZY, Li MZ, Li WJ, Ouyang JF, Gou XJ, Huang Y. Mechanism of action of Daqinjiao decoction in treating cerebral small vessel disease explored using network pharmacology and molecular docking technology. Phytomedicine. 2023;108:154538. doi:10.1016/j.phymed.2022.154538

19. Pan L, Peng C, Wang L, et al. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke. J Ethnopharmacol. 2022;294:115339. doi:10.1016/j.jep.2022.115339

20. Hunter SA, Cochran JR. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations. Methods Enzymol. 2016;580:21-44. doi:10.1016/bs.mie.2016.05.002

21. Kovács IA, Luck K, Spirohn K, et al. Network-based prediction of protein interactions. Nat Commun. 2019;10(1):1240. Published 2019 Mar 18. doi:10.1038/s41467-019-09177-y

22. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330-D338. doi:10.1093/nar/gky1055

23. Zhu J, Zhao Q, Katsevich E, Sabatti C. Exploratory Gene Ontology Analysis with Interactive Visualization. Sci Rep. 2019;9(1):7793. Published 2019 May 24. doi:10.1038/s41598-019-42178-x

24. Lewis SE. The Vision and Challenges of the Gene Ontology. Methods Mol Biol. 2017;1446:291-302. doi:10.1007/978-1-4939-3743-1_21

25. Ongtanasup T, Kamdenlek P, Manaspon C, Eawsakul K. Green-synthesized silver nanoparticles from Zingiber officinale extract: antioxidant potential, biocompatibility, anti-LOX properties, and in silico analysis. BMC Complement Med Ther. 2024, 24(1):84. doi: 10.1186/s12906-024-04381-w.

26. Ongtanasup T, Prommee N, Jampa O, Limcharoen T, Wanmasae S, Nissapatorn V, Paul AK, Pereira ML, Wilairatana P, Nasongkla N, Eawsakul K. The Cholesterol-Modulating Effect of the New Herbal Medicinal Recipe from Yellow Vine (Coscinium fenestratum (Goetgh.)), Ginger (Zingiber officinale Roscoe.), and Safflower (Carthamus tinctorius L.) on Suppressing PCSK9 Expression to Upregulate LDLR Expression in HepG2 Cells. Plants (Basel). 2022, 11(14):1835. doi: 10.3390/plants11141835.

27. Ongtanasup, T., Tawanwongsri, W., Manaspon, C., Srisang, S., & Eawsakul, K.. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, In vitro studies and phase 1 clinical trials. International Journal of Biological Macromolecules, 2024, 277(1): 134334. doi:https://doi.org/10.1016/j.ijbiomac.2024.134334.

28. Zhang S, Zhao YH, Chang ZW, Chen H, Hou HW. Insights into Molecular Mechanism of Nicotine Addiction Based on Network Pharmacology and Molecular Docking Strategy. Journal of Computational Biophysics and ChemistryVol. 2024, 23(01): 35-45. doi:https://doi.org/10.1142/S2737416523500497.

29. Li F, Tang R, Chen LB, Zhang KS, Huang XP, Deng CQ. Effects of Astragalus Combined with Angelica on Bone Marrow Hematopoiesis Suppression Induced by Cyclophosphamide in Mice. Biol Pharm Bull. 2017;40(5):598-609. doi:10.1248/bpb.b16-00802

30. Sun L, Yang Z, Zhao W, Chen Q, Bai H, Wang S, Yang L, Bi C, Shi Y, Liu Y. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. J Ethnopharmacol. 2022 Jan 30;283:114699. doi: 10.1016/j.jep.2021.114699. Epub 2021 Oct 2. PMID: 34610419.

31. Goto S, Fujii H, Watanabe K, et al. Renal protective effects of astragalus root in rat models of chronic kidney disease. Clin Exp Nephrol. 2023;27(7):593-602. doi:10.1007/s10157-023-02356-8

32. Shahzad M, Small DM, Morais C, Wojcikowski K, Shabbir A, Gobe GC. Protection against oxidative stress-induced apoptosis in kidney epithelium by Angelica and Astragalus. J Ethnopharmacol. 2016;179:412-419. doi:10.1016/j.jep.2015.12.027

33. Song S, Yu J. Integrating Network Pharmacology, Bioinformatics, and Mendelian Randomization Analysis to Identify Hub Targets and Mechanisms of Kunkui Baoshen Decoction in Treating Diabetic Kidney Disease. Curr Pharm Des. 2024;30(42):3367-3393. doi:10.2174/0113816128331463240816145054

34. Liu T, Zhuang XX, Zheng WJ, Gao JR. Integrative Multi-Omics and Network Pharmacology Reveal the Mechanisms of Fangji Huangqi Decoction in Treating IgA Nephropathy. J Ethnopharmacol. Published online October 25, 2024. doi:10.1016/j.jep.2024.118996

35. Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006;54(8):2951-2956. doi:10.1021/jf052900a

36. Chen Y, Li T, Tan P, et al. Kaempferol From Penthorum chinense Pursh Attenuates Hepatic Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Inflammation Through Activation of the Nrf2/HO-1 Signaling Pathway. Front Pharmacol. 2022;13:857015. Published 2022 Apr 1. doi:10.3389/fphar.2022.857015

37. Yao H, Sun J, Wei J, Zhang X, Chen B, Lin Y. Kaempferol Protects Blood Vessels From Damage Induced by Oxidative Stress and Inflammation in Association With the Nrf2/HO-1 Signaling Pathway. Front Pharmacol. 2020;11:1118. Published 2020 Jul 22. doi:10.3389/fphar.2020.01118

38. Rayego-Mateos S, Rodrigues-Diez R, Morgado-Pascual JL, et al. Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm. 2018;2018:8739473. Published 2018 Dec 23. doi:10.1155/2018/8739473

39. Zhang WR, Parikh CR. Biomarkers of Acute and Chronic Kidney Disease. Annu Rev Physiol. 2019;81:309-333. doi:10.1146/annurev-physiol-020518-114605

40. Cao S, Pan Y, Terker AS, et al. Epidermal growth factor receptor activation is essential for kidney fibrosis development. Nat Commun. 2023;14(1):7357. Published 2023 Nov 14. doi:10.1038/s41467-023-43226-x

41. Zhou L, Wong KY, Cao S, et al. A standardized extract of Danggui Buxue Tang decoction selectively exerts estrogenic activities distinctly from tamoxifen. Phytother Res. 2021;35(3):1456-1467. doi:10.1002/ptr.6909

42. Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail. 2021;43(1):619-642. doi:10.1080/0886022X.2021.1901739

43. Zhao T, Tian Y, Ding X, et al. Genetic Analysis and Targeted Therapy Using Buparlisib and MK2206 in a Patient with Triple Metachronous Cancers of the Kidney, Prostate, and Squamous Cell Carcinoma of the Lung: A Case Report. Onco Targets Ther. 2021;14:2839-2845. Published 2021 Apr 28. doi:10.2147/OTT.S298697

44. Wang Y, Wu D, Wang Y, et al. Bioinformatics study of the potential therapeutic effects of ginsenoside Rh3 in reversing insulin resistance. Front Mol Biosci. 2024;11:1339973. Published 2024 May 23. doi:10.3389/fmolb.2024.1339973

45. Kim IY, Song SH, Seong EY, Lee DW, Bae SS, Lee SB. Akt1 is involved in renal fibrosis and tubular apoptosis in a murine model of acute kidney injury-to-chronic kidney disease transition. Exp Cell Res. 2023;424(2):113509. doi:10.1016/j.yexcr.2023.113509

46. Yufang W, Mingfang L, Nan H, Tingting W. Quercetin-targeted AKT1 regulates the Raf/MEK/ERK signaling pathway to protect against doxorubicin-induced nephropathy in mice. Tissue Cell. 2023;85:102229. doi:10.1016/j.tice.2023.102229

47. Kim IY, Park YK, Song SH, et al. Akt1 is involved in tubular apoptosis and inflammatory response during renal ischemia-reperfusion injury. Mol Biol Rep. 2020;47(12):9511-9520. doi:10.1007/s11033-020-06021-1

48. Grigoryev DN, Liu M, Cheadle C, Barnes KC, Rabb H. Genomic profiling of kidney ischemia-reperfusion reveals expression of specific alloimmunity-associated genes: Linking "immune" and "nonimmune" injury events. Transplant Proc. 2006;38(10):3333-3336. doi:10.1016/j.transproceed.2006.10.129

49. Li N, Lin G, Zhang H, et al. Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules. 2022;12(7):984. Published 2022 Jul 14. doi:10.3390/biom12070984

50. Lizotte F, Rousseau M, Denhez B, et al. Deletion of protein tyrosine phosphatase SHP-1 restores SUMOylation of podocin and reverses the progression of diabetic kidney disease [published correction appears in Kidney Int. 2023 Dec;104(6):1228. doi: 10.1016/j.kint.2023.10.007]. Kidney Int. 2023;104(4):787-802. doi:10.1016/j.kint.2023.06.038

51. Yan S, Sui M, Tian H, et al. Transcriptomic Analysis Revealed an Important Role of Peroxisome-Proliferator-Activated Receptor Alpha Signaling in Src Homology Region 2 Domain-Containing Phosphatase-1 Insufficiency Leading to the Development of Renal Ischemia-Reperfusion Injury. Front Med (Lausanne). 2022;9:847512. Published 2022 May 10. doi:10.3389/fmed.2022.847512

Published
2024-11-25
How to Cite
Lou, X., Ma, Y., Deng, J., Lv, Y., Li, R., Shang, M., Zhang, Q., Zhang, X., & Hou, T. (2024). Exploring the mechanism of Danggui Buxue decoction against acute renal insufficiency using network pharmacology and molecular docking. Molecular & Cellular Biomechanics, 21(3), 388. https://doi.org/10.62617/mcb388
Section
Article