Evolving therapeutic landscape of EGFR-TKIs in NSCLC

  • Chenfeina Feng The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
  • Rendong Li Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang 330052, Jiangxi, China
  • Xiaolei Li Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang 330052, Jiangxi, China
  • Xinping Xu Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang 330052, Jiangxi, China
Keywords: non-small cell lung cancer (NSCLC); epidermal growth factor receptor (EGFR); epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI)
Article ID: 230

Abstract

Lung cancer is one of the most common cancers worldwide and the leading cause of cancer-related death. Over the past two decades, the classification of lung cancer has significantly evolved. Today, non-small cell lung cancer (NSCLC) consists of various molecular oncogenic subsets that impact both prognosis and disease management. EGFR is the first targeted oncogenic alteration identified in 2004. Since then, nearly two decades of research have enabled scientists to understand its biological function and to identify and often overcome the molecular basis of acquired resistance mechanisms to EGFR-TKIs. This article reviews the role of EGFR in NSCLC and the research progress of EGFR-TKIs in patients with EGFR mutant lung cancer, discussing potential treatment strategies for drug resistance to improve survival and achieve precision drug use.

References

1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72(1): 7-33. doi: 10.3322/caac.21708

2. Luo YH, Luo L, Wampfler JA, et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US Preventive Services Task Force criteria: a prospective, observational cohort study. Lancet Oncol. 2019; 20(8): 1098-1108. doi:10.1016/s1470-2045(19)30329-8

3. Rowinsky EK. The erbB Family: Targets for Therapeutic Development Against Cancer and Therapeutic Strategies Using Monoclonal Antibodies and Tyrosine Kinase Inhibitors. Annual Review of Medicine. 2004; 55(1): 433-457. doi: 10.1146/annurev.med.55.091902.104433

4. Haeder M, Rotsch M, Bepler G, et al. Epidermal growth factor receptor expression in human lung cancer cell lines. Cancer Res. 1988; 48(5): 1132-1136.

5. Lynch TJ, Bell DW, Sordella R, et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine. 2004; 350(21): 2129-2139. doi: 10.1056/nejmoa040938

6. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer. 2007; 7(3): 169-181. doi: 10.1038/nrc2088

7. Cohen S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol. 1965; 12(3): 394-407. doi: 10.1016/0012-1606(65)90005-9. https://doi.org/10.1016/0012-1606(65)90005-9

8. Carpenter G, Lembach KJ, Morrison MM, Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975; 250(11): 4297-4304. doi: 10.1016/S0021-9258(19)41417-8

9. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology. 2001; 2(2): 127-137. doi: 10.1038/35052073

10. Wells A. EGF receptor. Int J Biochem Cell Biol. 1999; 31(6): 637-643. doi: 10.1016/s1357-2725(99)00015-1

11. Morrow MR, Grant CW. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Biophys J. 2000; 79(4): 2024-2032. doi: 10.1016/s0006-3495(00)76450-2

12. Tanner KG, Kyte J. Dimerization of the Extracellular Domain of the Receptor for Epidermal Growth Factor Containing the Membrane-spanning Segment in Response to Treatment with Epidermal Growth Factor. Journal of Biological Chemistry. 1999; 274(50): 35985-35990. doi: 10.1074/jbc.274.50.35985

13. Zhang X, Gureasko J, Shen K, et al. An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor. Cell. 2006; 125(6): 1137-1149. doi: 10.1016/j.cell.2006.05.013

14. Walton GM, Chen WS, Rosenfeld MG, Gill GN. Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J Biol Chem. 1990; 265(3): 1750-1754. doi:10.1016/S0021-9258(19)40080-X

15. Yun CH, Boggon TJ, Li Y, et al. Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of Activation and Insights into Differential Inhibitor Sensitivity. Cancer Cell. 2007; 11(3): 217-227. doi: 10.1016/j.ccr.2006.12.017

16. Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduction and Targeted Therapy. 2019; 4(1). doi: 10.1038/s41392-019-0038-9

17. Jimeno A, Hidalgo M. Pharmacogenomics of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2006; 1766(2): 217-229. doi: 10.1016/j.bbcan.2006.08.008

18. Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer. Lancet. 2021; 398(10299): 535-554. doi: 10.1016/s0140-6736(21)00312-3

19. Douillard JY, Ostoros G, Cobo M, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. British Journal of Cancer. 2013; 110(1): 55-62. doi: 10.1038/bjc.2013.721

20. Rosell R, Moran T, Queralt C, et al. Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. New England Journal of Medicine. 2009; 361(10): 958-967. doi: 10.1056/nejmoa0904554

21. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine. 2009; 361(10): 947-957. doi: 10.1056/nejmoa0810699

22. Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker Analyses and Final Overall Survival Results From a Phase III, Randomized, Open-Label, First-Line Study of Gefitinib Versus Carboplatin/Paclitaxel in Clinically Selected Patients With Advanced Non–Small-Cell Lung Cancer in Asia (IPASS). Journal of Clinical Oncology. 2011; 29(21): 2866-2874. doi: 10.1200/jco.2010.33.4235

23. Shigematsu H, Lin L, Takahashi T, et al. Clinical and Biological Features Associated With Epidermal Growth Factor Receptor Gene Mutations in Lung Cancers. JNCI Journal of the National Cancer Institute. 2005; 97(5): 339-346. doi: 10.1093/jnci/dji055

24. Janning M, Süptitz J, Albers-Leischner C, et al. Treatment outcome of atypical EGFR mutations in the German National Network Genomic Medicine Lung Cancer (nNGM). Annals of Oncology. 2022; 33(6): 602-615. doi: 10.1016/j.annonc.2022.02.225

25. Lung Cancer. New England Journal of Medicine. 2009; 360(1): 87-88. doi: 10.1056/nejmc082208

26. Morgensztern D, Ng SH, Gao F, et al. Trends in Stage Distribution for Patients with Non-small Cell Lung Cancer: A National Cancer Database Survey. Journal of Thoracic Oncology. 2010; 5(1): 29-33. doi: 10.1097/jto.0b013e3181c5920c

27. Morin MJ. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene. 2000; 19(56): 6574-6583. doi: 10.1038/sj.onc.1204102

28. Fukuoka M, Yano S, Giaccone G, et al. Multi-Institutional Randomized Phase II Trial of Gefitinib for Previously Treated Patients With Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2003; 21(12): 2237-2246. doi: 10.1200/jco.2003.10.038

29. Kris MG, Natale RB, Herbst RS, et al. Efficacy of Gefitinib, an Inhibitor of the Epidermal Growth Factor Receptor Tyrosine Kinase, in Symptomatic Patients With Non–Small Cell Lung Cancer. JAMA. 2003; 290(16): 2149. doi: 10.1001/jama.290.16.2149

30. Paez JG, Jänne PA, Lee JC, et al. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science. 2004; 304(5676): 1497-1500. doi: 10.1126/science.1099314

31. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in Previously Treated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2005; 353(2): 123-132. doi: 10.1056/nejmoa050753

32. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFRMutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine. 2005; 352(8): 786-792. doi: 10.1056/nejmoa044238

33. Pao W, Miller VA, Politi KA, et al. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLoS Medicine. 2005; 2(3): e73. doi: 10.1371/journal.pmed.0020073

34. Mulloy R, Ferrand A, Kim Y, et al. Epidermal Growth Factor Receptor Mutants from Human Lung Cancers Exhibit Enhanced Catalytic Activity and Increased Sensitivity to Gefitinib. Cancer Research. 2007; 67(5): 2325-2330. doi: 10.1158/0008-5472.can-06-4293

35. Vikis H, Sato M, James M, et al. EGFR-T790M Is a Rare Lung Cancer Susceptibility Allele with Enhanced Kinase Activity. Cancer Research. 2007; 67(10): 4665-4670. doi: 10.1158/0008-5472.can-07-0217

36. Yuza Y, Glatt KA, Jiang J, et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biology & Therapy. 2007; 6(5): 661-667. doi: 10.4161/cbt.6.5.4003

37. Greulich H, Chen TH, Feng W, et al. Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants. Rosen N, ed. PLoS Medicine. 2005; 2(11): e313. doi: 10.1371/journal.pmed.0020313

38. Engelman JA, Zejnullahu K, Gale CM, et al. PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models withEGFRandERBB2Mutations that Are Resistant to Gefitinib. Cancer Research. 2007; 67(24): 11924-11932. doi: 10.1158/0008-5472.can-07-1885

39. Ercan D, Zejnullahu K, Yonesaka K, et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene. 2010; 29(16): 2346-2356. doi: 10.1038/onc.2009.526

40. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008; 27(34): 4702-4711. doi: 10.1038/onc.2008.109

41. Miller VA, Hirsh V, Cadranel J, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012; 13(5): 528-538. doi: 10.1016/s1470-2045(12)70087-6

42. Ellis PM, Shepherd FA, Millward M, et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2014; 15(12): 1379-1388. doi: 10.1016/s1470-2045(14)70472-3

43. Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015; 16(2): 141-151. doi: 10.1016/s1470-2045(14)71173-8

44. Sequist LV, Yang JCH, Yamamoto N, et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. Journal of Clinical Oncology. 2013; 31(27): 3327-3334. doi: 10.1200/jco.2012.44.2806

45. Yang JCH, Hirsh V, Schuler M, et al. Symptom Control and Quality of Life in LUX-Lung 3: A Phase III Study of Afatinib or Cisplatin/Pemetrexed in Patients With Advanced Lung Adenocarcinoma With EGFR Mutations. Journal of Clinical Oncology. 2013; 31(27): 3342-3350. doi: 10.1200/jco.2012.46.1764

46. Urata Y, Katakami N, Morita S, et al. Randomized Phase III Study Comparing Gefitinib With Erlotinib in Patients With Previously Treated Advanced Lung Adenocarcinoma: WJOG 5108L. Journal of Clinical Oncology. 2016; 34(27): 3248-3257. doi: 10.1200/jco.2015.63.4154

47. Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016; 17(5): 577-589. doi: 10.1016/s1470-2045(16)30033-x

48. Paz-Ares L, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Annals of Oncology. 2017; 28(2): 270-277. doi: 10.1093/annonc/mdw611

49. Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017; 18(11): 1454-1466. doi: 10.1016/s1470-2045(17)30608-3

50. Lee HJ, Schaefer G, Heffron TP, et al. Noncovalent Wild-type–Sparing Inhibitors of EGFR T790M. Cancer Discovery. 2013; 3(2): 168-181. doi: 10.1158/2159-8290.cd-12-0357

51. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. New England Journal of Medicine. 2017; 376(7): 629-640. doi: 10.1056/nejmoa1612674

52. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in UntreatedEGFR-Mutated Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2018; 378(2): 113-125. doi: 10.1056/nejmoa1713137

53. Mezquita L, Varga A, Planchard D. Safety of osimertinib in EGFR-mutated non-small cell lung cancer. Expert Opinion on Drug Safety. 2018; 17(12): 1239-1248. doi: 10.1080/14740338.2018.1549222

54. Ballard P, Yates JWT, Yang Z, et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clinical Cancer Research. 2016; 22(20): 5130-5140. doi: 10.1158/1078-0432.ccr-16-0399

55. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. New England Journal of Medicine. 2020; 382(1): 41-50. doi: 10.1056/nejmoa1913662

56. Reungwetwattana T, Nakagawa K, Cho BC, et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2018; 36(33): 3290-3297. doi: 10.1200/jco.2018.78.3118

57. Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019; 20(5): 625-635. doi: 10.1016/s1470-2045(19)30035-x

58. Oxnard GR, Yang JCH, Yu H, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Annals of Oncology. 2020; 31(4): 507-516. doi: 10.1016/j.annonc.2020.01.013

59. Wu YL, Tsuboi M, He J, et al. Osimertinib in ResectedEGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2020; 383(18): 1711-1723. doi: 10.1056/nejmoa2027071

60. Herbst RS, Tsuboi M, John T, et al. Overall survival analysis from the ADAURA trial of adjuvant osimertinib in patients with resected EGFR-mutated (EGFRm) stage IB-IIIA non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2023; 41: LBA3-LBA3. doi: 10.1200/JCO.2023.41.17_suppl.LBA3

61. Walter AO, Sjin RTT, Haringsma HJ, et al. Discovery of a Mutant-Selective Covalent Inhibitor of EGFR that Overcomes T790M-Mediated Resistance in NSCLC. Cancer Discovery. 2013; 3(12): 1404-1415. doi: 10.1158/2159-8290.cd-13-0314

62. Lecia V, Sequist, Soria JC. Rociletinib in EGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2015; 373(6): 578-579. doi: 10.1056/nejmc1506831

63. Sequist LV, Soria JC, Camidge DR. Update to Rociletinib Data with the RECIST Confirmed Response Rate. New England Journal of Medicine. 2016; 374(23): 2296-2297. doi: 10.1056/nejmc1602688

64. Sequist LV, Piotrowska Z, Niederst MJ, et al. Osimertinib Responses After Disease Progression in Patients Who Had Been Receiving Rociletinib. JAMA Oncology. 2016; 2(4): 541. doi: 10.1001/jamaoncol.2015.5009

65. Nagasaka M, Zhu VW, Lim SM, et al. Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors For Advanced EGFR+ NSCLC. Journal of Thoracic Oncology. 2021; 16(5): 740-763. doi: 10.1016/j.jtho.2020.11.028

66. Kim ES. Olmutinib: First Global Approval. Drugs. 2016; 76(11): 1153-1157. doi: 10.1007/s40265-016-0606-z

67. Kim DW, Lee DH, Han JY, et al. Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer. 2019; 135: 66-72. doi: 10.1016/j.lungcan.2019.07.007

68. Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009; 462(7276): 1070-1074. doi: 10.1038/nature08622

69. Nakagawa T, Takeuchi S, Yamada T, et al. Combined Therapy with Mutant-Selective EGFR Inhibitor and Met Kinase Inhibitor for Overcoming Erlotinib Resistance in EGFR-Mutant Lung Cancer. Molecular Cancer Therapeutics. 2012; 11(10): 2149-2157. doi: 10.1158/1535-7163.mct-12-0195

70. Ding J, Ding X, Zeng J, et al. Furmonertinib for EGFR-mutant advanced non-small cell lung cancer: a glittering diamond in the rough of EGFR-TKI. Frontiers in Pharmacology. 2024; 15. doi: 10.3389/fphar.2024.1357913

71. Shi Y, Hu X, Zhang S, et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 2021; 9(8): 829-839. doi: 10.1016/s2213-2600(20)30455-0

72. Shi Y, Zhang S, Hu X, et al. Safety, Clinical Activity, and Pharmacokinetics of Alflutinib (AST2818) in Patients With Advanced NSCLC With EGFR T790M Mutation. Journal of Thoracic Oncology. 2020; 15(6): 1015-1026. doi: 10.1016/j.jtho.2020.01.010

73. Tang ZH, Lu JJ. Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Letters. 2018; 420: 242-246. doi: 10.1016/j.canlet.2018.02.004

74. Califano R, Tariq N, Compton S, et al. Expert Consensus on the Management of Adverse Events from EGFR Tyrosine Kinase Inhibitors in the UK. Drugs. 2015; 75(12): 1335-1348. doi: 10.1007/s40265-015-0434-6

75. Passaro A, Di Maio M, Del Signore E, et al. Management of Nonhematologic Toxicities Associated With Different EGFR-TKIs in Advanced NSCLC: A Comparison Analysis. Clinical Lung Cancer. 2014; 15(4): 307-312. doi: 10.1016/j.cllc.2014.04.006

76. Lacouture ME, Laabs SM, Koehler M, et al. Analysis of dermatologic events in patients with cancer treated with lapatinib. Breast Cancer Research and Treatment. 2008; 114(3): 485-493. doi: 10.1007/s10549-008-0020-7

77. Melosky B, Hirsh V. Management of Common Toxicities in Metastatic NSCLC Related to Anti-Lung Cancer Therapies with EGFR—TKIs. Frontiers in Oncology. 2014; 4. doi: 10.3389/fonc.2014.00238

78. Hirsh V. Managing Treatment-Related Adverse Events Associated with egfr Tyrosine Kinase Inhibitors in Advanced Non-Small-Cell Lung Cancer. Current Oncology. 2011; 18(3): 126-138. doi: 10.3747/co.v18i3.877

79. Drug-induced Liver Disease Study Group CSoH, Chinese Medical Association. - Guidelines for the management of drug-induced liver injury. Journal of Clinical Hepatology. 2015; 31(11): 1752. doi: 10.3969/j.issn.1001-5256.2015.11.002.

80. Kashiwabara K, Semba H, Fujii S, et al. Outcome in advanced non-small cell lung cancer patients with successful rechallenge after recovery from epidermal growth factor receptor tyrosine kinase inhibitor-induced interstitial lung disease. Cancer Chemotherapy and Pharmacology. 2017; 79(4): 705-710. doi: 10.1007/s00280-017-3261-5

81. Chong-ju N. Clinical analysis of acute interstitial lung disease induced by gefitinib. Practical Geriatrics. 2015.

82. Ricordel C, Friboulet L, Facchinetti F, et al. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Annals of Oncology. 2018; 29: i28-i37. doi: 10.1093/annonc/mdx705

83. Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. British Journal of Cancer. 2019; 121(9): 725-737. doi: 10.1038/s41416-019-0573-8

84. Westover D, Zugazagoitia J, Cho BC, et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology. 2018; 29: i10-i19. doi: 10.1093/annonc/mdx703

85. Yang Z, Yang N, Ou Q, et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non–Small Cell Lung Cancer Patients. Clinical Cancer Research. 2018; 24(13): 3097-3107. doi: 10.1158/1078-0432.ccr-17-2310

86. Schoenfeld AJ, Yu HA. The Evolving Landscape of Resistance to Osimertinib. Journal of Thoracic Oncology. 2020; 15(1): 18-21. doi: 10.1016/j.jtho.2019.11.005

87. Jänne PA, Yang JCH, Kim DW, et al. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2015; 372(18): 1689-1699. doi: 10.1056/nejmoa1411817

88. Niederst MJ, Hu H, Mulvey HE, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clinical Cancer Research. 2015; 21(17): 3924-3933. doi: 10.1158/1078-0432.ccr-15-0560

89. Ou SHI, Cui J, Schrock AB, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/G and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer. 2017; 108: 228-231. doi: 10.1016/j.lungcan.2017.04.003

90. Fassunke J, Müller F, Keul M, et al. Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nature Communications. 2018; 9(1). doi: 10.1038/s41467-018-07078-0

91. Le X, Puri S, Negrao MV, et al. Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clinical Cancer Research. 2018; 24(24): 6195-6203. doi: 10.1158/1078-0432.ccr-18-1542

92. Oxnard GR, Hu Y, Mileham KF, et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients WithEGFRT790M–Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncology. 2018; 4(11): 1527. doi: 10.1001/jamaoncol.2018.2969

93. Nukaga S, Yasuda H, Tsuchihara K, et al. Amplification of EGFR Wild-Type Alleles in Non–Small Cell Lung Cancer Cells Confers Acquired Resistance to Mutation-Selective EGFR Tyrosine Kinase Inhibitors. Cancer Research. 2017; 77(8): 2078-2089. doi: 10.1158/0008-5472.can-16-2359

94. Ramalingam SS, Cheng Y, Zhou C, et al. Mechanisms of acquired resistance to first-line osimertinib: Preliminary data from the phase III FLAURA study. Annals of Oncology. 2018; 29: viii740. doi: 10.1093/annonc/mdy424.063

95. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science. 2007; 316(5827): 1039-1043. doi: 10.1126/science.1141478

96. Hsu CC, Liao BC, Liao WY, et al. Exon 16–Skipping HER2 as a Novel Mechanism of Osimertinib Resistance in EGFR L858R/T790M–Positive Non–Small Cell Lung Cancer. Journal of Thoracic Oncology. 2020; 15(1): 50-61. doi: 10.1016/j.jtho.2019.09.006

97. Han R, Guo H, Shi J, et al. Tumour microenvironment changes after osimertinib treatment resistance in non-small cell lung cancer. European Journal of Cancer. 2023; 189: 112919. doi: 10.1016/j.ejca.2023.05.007

98. Wu S, Luo M, To KKW, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Molecular Cancer. 2021; 20(1). doi: 10.1186/s12943-021-01307-9

99. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022; 12(1): 31-46. doi: 10.1158/2159-8290.cd-21-1059

100. Quintanal-Villalonga Á, Chan JM, Yu HA, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nature Reviews Clinical Oncology. 2020; 17(6): 360-371. doi: 10.1038/s41571-020-0340-z

101. Nilsson MB, Sun H, Robichaux J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Science Translational Medicine. 2020; 12(559). doi: 10.1126/scitranslmed.aaz4589

102. Tamura T, Kato Y, Ohashi K, et al. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations. Biochemical and Biophysical Research Communications. 2018; 495(1): 360-367. doi: 10.1016/j.bbrc.2017.10.175

103. Jia Y, Li X, Zhao C, et al. Impact of serum vascular endothelial growth factor and interleukin-6 on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer. Lung Cancer. 2018; 125: 22-28. doi: 10.1016/j.lungcan.2018.08.025

104. Umeguchi H, Sueoka-aragane N, Kobayashi N, et al. Usefulness of plasma HGF level for monitoring acquired resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Oncology Reports. 2014; 33(1): 391-396. doi: 10.3892/or.2014.3560

105. Cho JH, You YM, Yeom YI, et al. RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-κB-mediated ERK reactivation. Cell Death & Disease. 2018; 9(6). doi: 10.1038/s41419-018-0651-5

106. Tsukita Y, Fujino N, Miyauchi E, et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Molecular Cancer. 2019; 18(1). doi: 10.1186/s12943-019-0953-y

107. Fernando RI, Hamilton DH, Dominguez C, et al. IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget. 2016; 7(27): 42031-42044. doi: 10.18632/oncotarget.9662

108. Soucheray M, Capelletti M, Pulido I, et al. Intratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition. Cancer Research. 2015; 75(20): 4372-4383. doi: 10.1158/0008-5472.can-15-0377

109. Zhang B, Zhang Y, Zhao J, et al. M2-polarized macrophages contribute to the decreased sensitivity of EGFR-TKIs treatment in patients with advanced lung adenocarcinoma. Medical Oncology. 2014; 31(8). doi: 10.1007/s12032-014-0127-0

110. Feng PH, Yu CT, Chen KY, et al. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB. Oncotarget. 2018; 9(7): 7631-7643. doi: 10.18632/oncotarget.24146

111. Venugopalan A, Lee MJ, Niu G, et al. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget. 2016; 7(34): 54137-54156. doi: 10.18632/oncotarget.11021

112. Isomoto K, Haratani K, Hayashi H, et al. Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation–Positive Non–Small Cell Lung Cancer. Clinical Cancer Research. 2020; 26(8): 2037-2046. doi: 10.1158/1078-0432.ccr-19-2027

113. Liu L, Wang C, Li S, et al. Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: a narrative review. Translational Lung Cancer Research. 2021; 10(9): 3823-3839. doi: 10.21037/tlcr-21-572

114. Jia Y, Yun CH, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016; 534(7605): 129-132. doi: 10.1038/nature17960

115. To C, Jang J, Chen T, et al. Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discovery. 2019; 9(7): 926-943. doi: 10.1158/2159-8290.cd-18-0903

116. Kashima K, Kawauchi H, Tanimura H, et al. CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Molecular Cancer Therapeutics. 2020; 19(11): 2288-2297. doi: 10.1158/1535-7163.mct-20-0229

117. Schalm SS, Dineen T, Lim SM, et al. 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Annals of Oncology. 2020; 31: S839. doi: 10.1016/j.annonc.2020.08.1610

118. Conti C, Campbell J, Woessner R, et al. Abstract 1262: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Research. 2021; 81: 1262-1262. doi: 10.1158/1538-7445.am2021-1262

119. Lim SM, Park CW, Zhang Z, et al. Abstract 1467: BLU-945, a fourth-generation, potent and highly selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with intracranial activity, demonstrates robust in vivo antitumor activity in models of osimertinib-resistant non-small cell lung cancer (NSCLC). Cancer Research. 2021; 81: 1467-1467. doi: 10.1158/1538-7445.am2021-1467

120. Tavera L, Zhang Z, Wardwell S, et al. BLU-701 tumour suppression and intracranial activity as a single agent and in combination with BLU-945 in models of non-small cell lung cancer (NSCLC) driven by EGFR mutations. Lung Cancer. 2022; 165: S37. doi: 10.1016/S0169-5002(22)00125-8

121. Liu X, Zhang X, Yang L, et al. Abstract 1320: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. Cancer Research. 2019; 79: 1320-1320. doi: 10.1158/1538-7445.am2019-1320

122. Lim SM, Ahn JS, Hong MH, et al. MA07.09 BBT-176, a 4th generation EGFR TKI, for Progressed NSCLC after EGFR TKI Therapy: PK, Safety and Efficacy from Phase 1 Study. Journal of Thoracic Oncology. 2022; 17(9): S70-S71. doi: 10.1016/j.jtho.2022.07.118

123. Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR Exon 20 Insertion–Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. Journal of Clinical Oncology. 2021; 39(30): 3391-3402. doi: 10.1200/jco.21.00662

124. Cho BC, Lee KH, Cho EK, et al. 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Annals of Oncology. 2020; 31: S813. doi: 10.1016/j.annonc.2020.08.1572

125. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in Combination With Paclitaxel and Carboplatin in Advanced Non–Small-Cell Lung Cancer: A Phase III Trial—INTACT 2. Journal of Clinical Oncology. 2004; 22(5): 785-794. doi: 10.1200/jco.2004.07.215

126. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in Combination With Gemcitabine and Cisplatin in Advanced Non–Small-Cell Lung Cancer: A Phase III Trial—INTACT 1. Journal of Clinical Oncology. 2004; 22(5): 777-784. doi: 10.1200/jco.2004.08.001

127. Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase III Study of Erlotinib in Combination With Cisplatin and Gemcitabine in Advanced Non–Small-Cell Lung Cancer: The Tarceva Lung Cancer Investigation Trial. Journal of Clinical Oncology. 2007; 25(12): 1545-1552. doi: 10.1200/jco.2005.05.1474

128. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: A Phase III Trial of Erlotinib Hydrochloride (OSI-774) Combined With Carboplatin and Paclitaxel Chemotherapy in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2005; 23(25): 5892-5899. doi: 10.1200/jco.2005.02.840

129. Sugawara S, Oizumi S, Minato K, et al. Randomized phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations: NEJ005/TCOG0902. Annals of Oncology. 2015; 26(5): 888-894. doi: 10.1093/annonc/mdv063

130. Oizumi S, Sugawara S, Minato K, et al. Updated survival outcomes of NEJ005/TCOG0902: a randomised phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations. ESMO Open. 2018; 3(2): e000313. doi: 10.1136/esmoopen-2017-000313

131. Hosomi Y, Morita S, Sugawara S, et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non–Small-Cell Lung Cancer With Mutated Epidermal Growth Factor Receptor: NEJ009 Study. Journal of Clinical Oncology. 2020; 38(2): 115-123. doi: 10.1200/jco.19.01488

132. Jänne PA, Planchard D, Kobayashi K, et al. CNS Efficacy of Osimertinib With or Without Chemotherapy in Epidermal Growth Factor Receptor–Mutated Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2024; 42(7): 808-820. doi: 10.1200/jco.23.02219

133. Le X, Nilsson M, Goldman J, et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. Journal of Thoracic Oncology. 2021; 16(2): 205-215. doi: 10.1016/j.jtho.2020.10.006

134. Naumov GN, Nilsson MB, Cascone T, et al. Combined Vascular Endothelial Growth Factor Receptor and Epidermal Growth Factor Receptor (EGFR) Blockade Inhibits Tumor Growth in Xenograft Models of EGFR Inhibitor Resistance. Clinical Cancer Research. 2009; 15(10): 3484-3494. doi: 10.1158/1078-0432.ccr-08-2904

135. Rosell R, Dafni U, Felip E, et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir Med. 2017; 5(5): 435-444. doi: 10.1016/s2213-2600(17)30129-7

136. Seto T, Kato T, Nishio M,et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014; 15(11): 1236-1244. doi: 10.1016/s1470-2045(14)70381-x

137. Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019; 20(12): 1655-1669. doi: 10.1016/s1470-2045(19)30634-5

138. Akamatsu H, Toi Y, Hayashi H, et al. Efficacy of Osimertinib Plus Bevacizumab vs Osimertinib in Patients With EGFR T790M–Mutated Non–Small Cell Lung Cancer Previously Treated With Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitor. JAMA Oncology. 2021; 7(3): 386. doi: 10.1001/jamaoncol.2020.6758

139. Rotow JK, Costa DB, Paweletz CP, et al. Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2020; 38(15_suppl): 9507-9507. doi: 10.1200/JCO.2020.38.15_suppl.9507

140. Cho BC, Felip E, Hayashi H, et al. MARIPOSA: phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncology. 2021; 18(6): 639-647. doi: 10.2217/fon-2021-0923

141. Tang Y, Xia B, Xie R, et al. Timing in combination with radiotherapy and patterns of disease progression in non-small cell lung cancer treated with EGFR-TKI. Lung Cancer. 2020; 140: 65-70. doi: 10.1016/j.lungcan.2019.12.009

142. Guan J, Chen M, Xiao N, et al. EGFR mutations are associated with higher incidence of distant metastases and smaller tumor size in patients with non-small-cell lung cancer based on PET/CT scan. Medical Oncology. 2015; 33(1). doi: 10.1007/s12032-015-0714-8

143. Jia W, Guo H, Jing W, et al. An especially high rate of radiation pneumonitis observed in patients treated with thoracic radiotherapy and simultaneous osimertinib. Radiotherapy and Oncology. 2020; 152: 96-100. doi: 10.1016/j.radonc.2020.07.051

144. Das AK, Sato M, Story MD, et al. Non–Small Cell Lung Cancers with Kinase Domain Mutations in the Epidermal Growth Factor Receptor Are Sensitive to Ionizing Radiation. Cancer Research. 2006; 66(19): 9601-9608. doi: 10.1158/0008-5472.can-06-2627

145. Wang N, Wang L, Meng X, et al. Osimertinib (AZD9291) increases radio sensitivity in EGFR T790M non small cell lung cancer. Oncology Reports. Published online October 17, 2018. doi: 10.3892/or.2018.6803

146. Wu WS, Chen YM, Tsai CM, et al. The epidermal growth factor receptor-tyrosine kinase inhibitor era has changed the causes of death of patients with advanced non-small-cell lung cancer. Journal of the Chinese Medical Association. 2013; 76(12): 682-685. doi: 10.1016/j.jcma.2013.08.006

147. Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-24384-2

148. Xie L, Nagpal S, Wakelee HA, et al. Osimertinib for EGFR-Mutant Lung Cancer with Brain Metastases: Results from a Single-Center Retrospective Study. The Oncologist. 2018; 24(6): 836-843. doi: 10.1634/theoncologist.2018-0264

149. Garon EB, Hellmann MD, Rizvi NA, et al. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of Clinical Oncology. 2019; 37(28): 2518-2527. doi: 10.1200/jco.19.00934

150. Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2016; 34(25): 2980-2987. doi: 10.1200/jco.2016.66.9929

151. Plesca I, Tunger A, Müller L, et al. Characteristics of Tumor-Infiltrating Lymphocytes Prior to and During Immune Checkpoint Inhibitor Therapy. Frontiers in Immunology. 2020; 11. doi: 10.3389/fimmu.2020.00364

152. Hughes PE, Caenepeel S, Wu LC. Targeted Therapy and Checkpoint Immunotherapy Combinations for the Treatment of Cancer. Trends in Immunology. 2016; 37(7): 462-476. doi: 10.1016/j.it.2016.04.010

153. Li X, Lian Z, Wang S, et al. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC. Cancer Letters. 2018; 418: 1-9. doi: 10.1016/j.canlet.2018.01.005

154. Lizotte PH, Hong RL, Luster TA, et al. A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing. Cancer Immunology Research. 2018; 6(12): 1511-1523. doi: 10.1158/2326-6066.cir-18-0193

155. Thress KS, Jacobs V, Angell HK, et al. Modulation of Biomarker Expression by Osimertinib: Results of the Paired Tumor Biopsy Cohorts of the AURA Phase I Trial. Journal of Thoracic Oncology. 2017; 12(10): 1588-1594. doi: 10.1016/j.jtho.2017.07.011

156. Qi YA, Maity TK, Gao S, et al. Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma. Cancers. 2021; 13(19): 4977. doi: 10.3390/cancers13194977

157. Yang JCH, Shepherd FA, Kim DW, et al. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M–Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report. Journal of Thoracic Oncology. 2019; 14(5): 933-939. doi: 10.1016/j.jtho.2019.02.001

158. Oshima Y, Tanimoto T, Yuji K, et al. EGFR–TKI-Associated Interstitial Pneumonitis in Nivolumab-Treated Patients With Non–Small Cell Lung Cancer. JAMA Oncology. 2018; 4(8): 1112. doi: 10.1001/jamaoncol.2017.4526

159. Takenaka T, Yamazaki K, Miura N, et al. Osimertinib reactivated immune-related colitis after treatment with anti-PD1 antibody for non-small cell lung cancer. Investigational New Drugs. 2017; 35(6): 848-850. doi: 10.1007/s10637-017-0481-9

160. Yamaguchi O, Kaira K, Kawasaki T, et al. Severe hepatotoxicity due to osimertinib after nivolumab therapy in patients with non‐small cell lung cancer harboring EGFR mutation. Thoracic Cancer. 2020; 11(4): 1045-1051. doi: 10.1111/1759-7714.13363

161. Gianni C, Bronte G, Delmonte A, et al. Case Report: Stevens-Johnson Syndrome and Hepatotoxicity Induced by Osimertinib Sequential to Pembrolizumab in a Patient With EGFR-Mutated Lung Adenocarcinoma. Frontiers in Pharmacology. 2021; 12. doi: 10.3389/fphar.2021.672233

162. Schoenfeld AJ, Arbour KC, Rizvi H, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Annals of Oncology. 2019; 30(5): 839-844. doi: 10.1093/annonc/mdz077

163. Shinno Y, Goto Y, Ohuchi M, et al. The Long Half-Life of Programmed Cell Death Protein 1 Inhibitors May Increase the Frequency of Immune-Related Adverse Events After Subsequent EGFR Tyrosine Kinase Inhibitor Therapy. JTO Clinical and Research Reports. 2020; 1(1): 100008. doi: 10.1016/j.jtocrr.2020.100008

164. Li J, Yan J, Cao R, et al. Lung Adenocarcinoma Harboring EGFR Kinase Domain Duplication (EGFR-KDD) Confers Sensitivity to Osimertinib and Nivolumab: A Case Report. Frontiers in Oncology. 2020; 10. doi: 10.3389/fonc.2020.575739

165. Peng J, Zhao X, Zhao K, et al. Case Report: Long Progression-Free Survival of Immunotherapy for Lung Adenocarcinoma With Epidermal Growth Factor Receptor Mutation. Frontiers in Oncology. 2021; 11. doi: 10.3389/fonc.2021.731429

166. Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nature Reviews Clinical Oncology. 2018; 15(12): 748-762. doi: 10.1038/s41571-018-0111-2

167. Li J, Xiang C, Wang Y, et al. The genomic characteristics of different progression patterns in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors. Annals of Translational Medicine. 2021; 9(9): 779-779. doi: 10.21037/atm-20-6910

168. Huang X, Xia L, Lan F, et al. Treatment of Nivolumab Results in Hyperprogressive Disease in a Patient Harboring EGFR Exon 20 Insertion and MYC Amplification. Journal of Thoracic Oncology. 2019; 14(9): e189-e191. doi: 10.1016/j.jtho.2019.04.009

169. Pilié PG, Gay CM, Byers LA, et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clinical Cancer Research. 2019; 25(13): 3759-3771. doi: 10.1158/1078-0432.ccr-18-0968

Published
2024-09-10
How to Cite
Feng, C., Li, R., Li, X., & Xu, X. (2024). Evolving therapeutic landscape of EGFR-TKIs in NSCLC. Molecular & Cellular Biomechanics, 21, 230. https://doi.org/10.62617/mcb.v21.230
Section
Review