Evolving therapeutic landscape of EGFR-TKIs in NSCLC
Abstract
Lung cancer is one of the most common cancers worldwide and the leading cause of cancer-related death. Over the past two decades, the classification of lung cancer has significantly evolved. Today, non-small cell lung cancer (NSCLC) consists of various molecular oncogenic subsets that impact both prognosis and disease management. EGFR is the first targeted oncogenic alteration identified in 2004. Since then, nearly two decades of research have enabled scientists to understand its biological function and to identify and often overcome the molecular basis of acquired resistance mechanisms to EGFR-TKIs. This article reviews the role of EGFR in NSCLC and the research progress of EGFR-TKIs in patients with EGFR mutant lung cancer, discussing potential treatment strategies for drug resistance to improve survival and achieve precision drug use.
References
1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72(1): 7-33. doi: 10.3322/caac.21708
2. Luo YH, Luo L, Wampfler JA, et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US Preventive Services Task Force criteria: a prospective, observational cohort study. Lancet Oncol. 2019; 20(8): 1098-1108. doi:10.1016/s1470-2045(19)30329-8
3. Rowinsky EK. The erbB Family: Targets for Therapeutic Development Against Cancer and Therapeutic Strategies Using Monoclonal Antibodies and Tyrosine Kinase Inhibitors. Annual Review of Medicine. 2004; 55(1): 433-457. doi: 10.1146/annurev.med.55.091902.104433
4. Haeder M, Rotsch M, Bepler G, et al. Epidermal growth factor receptor expression in human lung cancer cell lines. Cancer Res. 1988; 48(5): 1132-1136.
5. Lynch TJ, Bell DW, Sordella R, et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine. 2004; 350(21): 2129-2139. doi: 10.1056/nejmoa040938
6. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer. 2007; 7(3): 169-181. doi: 10.1038/nrc2088
7. Cohen S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol. 1965; 12(3): 394-407. doi: 10.1016/0012-1606(65)90005-9. https://doi.org/10.1016/0012-1606(65)90005-9
8. Carpenter G, Lembach KJ, Morrison MM, Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975; 250(11): 4297-4304. doi: 10.1016/S0021-9258(19)41417-8
9. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology. 2001; 2(2): 127-137. doi: 10.1038/35052073
10. Wells A. EGF receptor. Int J Biochem Cell Biol. 1999; 31(6): 637-643. doi: 10.1016/s1357-2725(99)00015-1
11. Morrow MR, Grant CW. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Biophys J. 2000; 79(4): 2024-2032. doi: 10.1016/s0006-3495(00)76450-2
12. Tanner KG, Kyte J. Dimerization of the Extracellular Domain of the Receptor for Epidermal Growth Factor Containing the Membrane-spanning Segment in Response to Treatment with Epidermal Growth Factor. Journal of Biological Chemistry. 1999; 274(50): 35985-35990. doi: 10.1074/jbc.274.50.35985
13. Zhang X, Gureasko J, Shen K, et al. An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor. Cell. 2006; 125(6): 1137-1149. doi: 10.1016/j.cell.2006.05.013
14. Walton GM, Chen WS, Rosenfeld MG, Gill GN. Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J Biol Chem. 1990; 265(3): 1750-1754. doi:10.1016/S0021-9258(19)40080-X
15. Yun CH, Boggon TJ, Li Y, et al. Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of Activation and Insights into Differential Inhibitor Sensitivity. Cancer Cell. 2007; 11(3): 217-227. doi: 10.1016/j.ccr.2006.12.017
16. Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduction and Targeted Therapy. 2019; 4(1). doi: 10.1038/s41392-019-0038-9
17. Jimeno A, Hidalgo M. Pharmacogenomics of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2006; 1766(2): 217-229. doi: 10.1016/j.bbcan.2006.08.008
18. Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer. Lancet. 2021; 398(10299): 535-554. doi: 10.1016/s0140-6736(21)00312-3
19. Douillard JY, Ostoros G, Cobo M, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. British Journal of Cancer. 2013; 110(1): 55-62. doi: 10.1038/bjc.2013.721
20. Rosell R, Moran T, Queralt C, et al. Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. New England Journal of Medicine. 2009; 361(10): 958-967. doi: 10.1056/nejmoa0904554
21. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine. 2009; 361(10): 947-957. doi: 10.1056/nejmoa0810699
22. Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker Analyses and Final Overall Survival Results From a Phase III, Randomized, Open-Label, First-Line Study of Gefitinib Versus Carboplatin/Paclitaxel in Clinically Selected Patients With Advanced Non–Small-Cell Lung Cancer in Asia (IPASS). Journal of Clinical Oncology. 2011; 29(21): 2866-2874. doi: 10.1200/jco.2010.33.4235
23. Shigematsu H, Lin L, Takahashi T, et al. Clinical and Biological Features Associated With Epidermal Growth Factor Receptor Gene Mutations in Lung Cancers. JNCI Journal of the National Cancer Institute. 2005; 97(5): 339-346. doi: 10.1093/jnci/dji055
24. Janning M, Süptitz J, Albers-Leischner C, et al. Treatment outcome of atypical EGFR mutations in the German National Network Genomic Medicine Lung Cancer (nNGM). Annals of Oncology. 2022; 33(6): 602-615. doi: 10.1016/j.annonc.2022.02.225
25. Lung Cancer. New England Journal of Medicine. 2009; 360(1): 87-88. doi: 10.1056/nejmc082208
26. Morgensztern D, Ng SH, Gao F, et al. Trends in Stage Distribution for Patients with Non-small Cell Lung Cancer: A National Cancer Database Survey. Journal of Thoracic Oncology. 2010; 5(1): 29-33. doi: 10.1097/jto.0b013e3181c5920c
27. Morin MJ. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene. 2000; 19(56): 6574-6583. doi: 10.1038/sj.onc.1204102
28. Fukuoka M, Yano S, Giaccone G, et al. Multi-Institutional Randomized Phase II Trial of Gefitinib for Previously Treated Patients With Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2003; 21(12): 2237-2246. doi: 10.1200/jco.2003.10.038
29. Kris MG, Natale RB, Herbst RS, et al. Efficacy of Gefitinib, an Inhibitor of the Epidermal Growth Factor Receptor Tyrosine Kinase, in Symptomatic Patients With Non–Small Cell Lung Cancer. JAMA. 2003; 290(16): 2149. doi: 10.1001/jama.290.16.2149
30. Paez JG, Jänne PA, Lee JC, et al. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science. 2004; 304(5676): 1497-1500. doi: 10.1126/science.1099314
31. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in Previously Treated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2005; 353(2): 123-132. doi: 10.1056/nejmoa050753
32. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFRMutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine. 2005; 352(8): 786-792. doi: 10.1056/nejmoa044238
33. Pao W, Miller VA, Politi KA, et al. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLoS Medicine. 2005; 2(3): e73. doi: 10.1371/journal.pmed.0020073
34. Mulloy R, Ferrand A, Kim Y, et al. Epidermal Growth Factor Receptor Mutants from Human Lung Cancers Exhibit Enhanced Catalytic Activity and Increased Sensitivity to Gefitinib. Cancer Research. 2007; 67(5): 2325-2330. doi: 10.1158/0008-5472.can-06-4293
35. Vikis H, Sato M, James M, et al. EGFR-T790M Is a Rare Lung Cancer Susceptibility Allele with Enhanced Kinase Activity. Cancer Research. 2007; 67(10): 4665-4670. doi: 10.1158/0008-5472.can-07-0217
36. Yuza Y, Glatt KA, Jiang J, et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biology & Therapy. 2007; 6(5): 661-667. doi: 10.4161/cbt.6.5.4003
37. Greulich H, Chen TH, Feng W, et al. Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants. Rosen N, ed. PLoS Medicine. 2005; 2(11): e313. doi: 10.1371/journal.pmed.0020313
38. Engelman JA, Zejnullahu K, Gale CM, et al. PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models withEGFRandERBB2Mutations that Are Resistant to Gefitinib. Cancer Research. 2007; 67(24): 11924-11932. doi: 10.1158/0008-5472.can-07-1885
39. Ercan D, Zejnullahu K, Yonesaka K, et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene. 2010; 29(16): 2346-2356. doi: 10.1038/onc.2009.526
40. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008; 27(34): 4702-4711. doi: 10.1038/onc.2008.109
41. Miller VA, Hirsh V, Cadranel J, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012; 13(5): 528-538. doi: 10.1016/s1470-2045(12)70087-6
42. Ellis PM, Shepherd FA, Millward M, et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2014; 15(12): 1379-1388. doi: 10.1016/s1470-2045(14)70472-3
43. Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015; 16(2): 141-151. doi: 10.1016/s1470-2045(14)71173-8
44. Sequist LV, Yang JCH, Yamamoto N, et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. Journal of Clinical Oncology. 2013; 31(27): 3327-3334. doi: 10.1200/jco.2012.44.2806
45. Yang JCH, Hirsh V, Schuler M, et al. Symptom Control and Quality of Life in LUX-Lung 3: A Phase III Study of Afatinib or Cisplatin/Pemetrexed in Patients With Advanced Lung Adenocarcinoma With EGFR Mutations. Journal of Clinical Oncology. 2013; 31(27): 3342-3350. doi: 10.1200/jco.2012.46.1764
46. Urata Y, Katakami N, Morita S, et al. Randomized Phase III Study Comparing Gefitinib With Erlotinib in Patients With Previously Treated Advanced Lung Adenocarcinoma: WJOG 5108L. Journal of Clinical Oncology. 2016; 34(27): 3248-3257. doi: 10.1200/jco.2015.63.4154
47. Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016; 17(5): 577-589. doi: 10.1016/s1470-2045(16)30033-x
48. Paz-Ares L, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Annals of Oncology. 2017; 28(2): 270-277. doi: 10.1093/annonc/mdw611
49. Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017; 18(11): 1454-1466. doi: 10.1016/s1470-2045(17)30608-3
50. Lee HJ, Schaefer G, Heffron TP, et al. Noncovalent Wild-type–Sparing Inhibitors of EGFR T790M. Cancer Discovery. 2013; 3(2): 168-181. doi: 10.1158/2159-8290.cd-12-0357
51. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. New England Journal of Medicine. 2017; 376(7): 629-640. doi: 10.1056/nejmoa1612674
52. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in UntreatedEGFR-Mutated Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2018; 378(2): 113-125. doi: 10.1056/nejmoa1713137
53. Mezquita L, Varga A, Planchard D. Safety of osimertinib in EGFR-mutated non-small cell lung cancer. Expert Opinion on Drug Safety. 2018; 17(12): 1239-1248. doi: 10.1080/14740338.2018.1549222
54. Ballard P, Yates JWT, Yang Z, et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clinical Cancer Research. 2016; 22(20): 5130-5140. doi: 10.1158/1078-0432.ccr-16-0399
55. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. New England Journal of Medicine. 2020; 382(1): 41-50. doi: 10.1056/nejmoa1913662
56. Reungwetwattana T, Nakagawa K, Cho BC, et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2018; 36(33): 3290-3297. doi: 10.1200/jco.2018.78.3118
57. Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019; 20(5): 625-635. doi: 10.1016/s1470-2045(19)30035-x
58. Oxnard GR, Yang JCH, Yu H, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Annals of Oncology. 2020; 31(4): 507-516. doi: 10.1016/j.annonc.2020.01.013
59. Wu YL, Tsuboi M, He J, et al. Osimertinib in ResectedEGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2020; 383(18): 1711-1723. doi: 10.1056/nejmoa2027071
60. Herbst RS, Tsuboi M, John T, et al. Overall survival analysis from the ADAURA trial of adjuvant osimertinib in patients with resected EGFR-mutated (EGFRm) stage IB-IIIA non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2023; 41: LBA3-LBA3. doi: 10.1200/JCO.2023.41.17_suppl.LBA3
61. Walter AO, Sjin RTT, Haringsma HJ, et al. Discovery of a Mutant-Selective Covalent Inhibitor of EGFR that Overcomes T790M-Mediated Resistance in NSCLC. Cancer Discovery. 2013; 3(12): 1404-1415. doi: 10.1158/2159-8290.cd-13-0314
62. Lecia V, Sequist, Soria JC. Rociletinib in EGFR-Mutated Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2015; 373(6): 578-579. doi: 10.1056/nejmc1506831
63. Sequist LV, Soria JC, Camidge DR. Update to Rociletinib Data with the RECIST Confirmed Response Rate. New England Journal of Medicine. 2016; 374(23): 2296-2297. doi: 10.1056/nejmc1602688
64. Sequist LV, Piotrowska Z, Niederst MJ, et al. Osimertinib Responses After Disease Progression in Patients Who Had Been Receiving Rociletinib. JAMA Oncology. 2016; 2(4): 541. doi: 10.1001/jamaoncol.2015.5009
65. Nagasaka M, Zhu VW, Lim SM, et al. Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors For Advanced EGFR+ NSCLC. Journal of Thoracic Oncology. 2021; 16(5): 740-763. doi: 10.1016/j.jtho.2020.11.028
66. Kim ES. Olmutinib: First Global Approval. Drugs. 2016; 76(11): 1153-1157. doi: 10.1007/s40265-016-0606-z
67. Kim DW, Lee DH, Han JY, et al. Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer. 2019; 135: 66-72. doi: 10.1016/j.lungcan.2019.07.007
68. Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009; 462(7276): 1070-1074. doi: 10.1038/nature08622
69. Nakagawa T, Takeuchi S, Yamada T, et al. Combined Therapy with Mutant-Selective EGFR Inhibitor and Met Kinase Inhibitor for Overcoming Erlotinib Resistance in EGFR-Mutant Lung Cancer. Molecular Cancer Therapeutics. 2012; 11(10): 2149-2157. doi: 10.1158/1535-7163.mct-12-0195
70. Ding J, Ding X, Zeng J, et al. Furmonertinib for EGFR-mutant advanced non-small cell lung cancer: a glittering diamond in the rough of EGFR-TKI. Frontiers in Pharmacology. 2024; 15. doi: 10.3389/fphar.2024.1357913
71. Shi Y, Hu X, Zhang S, et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 2021; 9(8): 829-839. doi: 10.1016/s2213-2600(20)30455-0
72. Shi Y, Zhang S, Hu X, et al. Safety, Clinical Activity, and Pharmacokinetics of Alflutinib (AST2818) in Patients With Advanced NSCLC With EGFR T790M Mutation. Journal of Thoracic Oncology. 2020; 15(6): 1015-1026. doi: 10.1016/j.jtho.2020.01.010
73. Tang ZH, Lu JJ. Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Letters. 2018; 420: 242-246. doi: 10.1016/j.canlet.2018.02.004
74. Califano R, Tariq N, Compton S, et al. Expert Consensus on the Management of Adverse Events from EGFR Tyrosine Kinase Inhibitors in the UK. Drugs. 2015; 75(12): 1335-1348. doi: 10.1007/s40265-015-0434-6
75. Passaro A, Di Maio M, Del Signore E, et al. Management of Nonhematologic Toxicities Associated With Different EGFR-TKIs in Advanced NSCLC: A Comparison Analysis. Clinical Lung Cancer. 2014; 15(4): 307-312. doi: 10.1016/j.cllc.2014.04.006
76. Lacouture ME, Laabs SM, Koehler M, et al. Analysis of dermatologic events in patients with cancer treated with lapatinib. Breast Cancer Research and Treatment. 2008; 114(3): 485-493. doi: 10.1007/s10549-008-0020-7
77. Melosky B, Hirsh V. Management of Common Toxicities in Metastatic NSCLC Related to Anti-Lung Cancer Therapies with EGFR—TKIs. Frontiers in Oncology. 2014; 4. doi: 10.3389/fonc.2014.00238
78. Hirsh V. Managing Treatment-Related Adverse Events Associated with egfr Tyrosine Kinase Inhibitors in Advanced Non-Small-Cell Lung Cancer. Current Oncology. 2011; 18(3): 126-138. doi: 10.3747/co.v18i3.877
79. Drug-induced Liver Disease Study Group CSoH, Chinese Medical Association. - Guidelines for the management of drug-induced liver injury. Journal of Clinical Hepatology. 2015; 31(11): 1752. doi: 10.3969/j.issn.1001-5256.2015.11.002.
80. Kashiwabara K, Semba H, Fujii S, et al. Outcome in advanced non-small cell lung cancer patients with successful rechallenge after recovery from epidermal growth factor receptor tyrosine kinase inhibitor-induced interstitial lung disease. Cancer Chemotherapy and Pharmacology. 2017; 79(4): 705-710. doi: 10.1007/s00280-017-3261-5
81. Chong-ju N. Clinical analysis of acute interstitial lung disease induced by gefitinib. Practical Geriatrics. 2015.
82. Ricordel C, Friboulet L, Facchinetti F, et al. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Annals of Oncology. 2018; 29: i28-i37. doi: 10.1093/annonc/mdx705
83. Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. British Journal of Cancer. 2019; 121(9): 725-737. doi: 10.1038/s41416-019-0573-8
84. Westover D, Zugazagoitia J, Cho BC, et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology. 2018; 29: i10-i19. doi: 10.1093/annonc/mdx703
85. Yang Z, Yang N, Ou Q, et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non–Small Cell Lung Cancer Patients. Clinical Cancer Research. 2018; 24(13): 3097-3107. doi: 10.1158/1078-0432.ccr-17-2310
86. Schoenfeld AJ, Yu HA. The Evolving Landscape of Resistance to Osimertinib. Journal of Thoracic Oncology. 2020; 15(1): 18-21. doi: 10.1016/j.jtho.2019.11.005
87. Jänne PA, Yang JCH, Kim DW, et al. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2015; 372(18): 1689-1699. doi: 10.1056/nejmoa1411817
88. Niederst MJ, Hu H, Mulvey HE, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clinical Cancer Research. 2015; 21(17): 3924-3933. doi: 10.1158/1078-0432.ccr-15-0560
89. Ou SHI, Cui J, Schrock AB, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/G and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer. 2017; 108: 228-231. doi: 10.1016/j.lungcan.2017.04.003
90. Fassunke J, Müller F, Keul M, et al. Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nature Communications. 2018; 9(1). doi: 10.1038/s41467-018-07078-0
91. Le X, Puri S, Negrao MV, et al. Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clinical Cancer Research. 2018; 24(24): 6195-6203. doi: 10.1158/1078-0432.ccr-18-1542
92. Oxnard GR, Hu Y, Mileham KF, et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients WithEGFRT790M–Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncology. 2018; 4(11): 1527. doi: 10.1001/jamaoncol.2018.2969
93. Nukaga S, Yasuda H, Tsuchihara K, et al. Amplification of EGFR Wild-Type Alleles in Non–Small Cell Lung Cancer Cells Confers Acquired Resistance to Mutation-Selective EGFR Tyrosine Kinase Inhibitors. Cancer Research. 2017; 77(8): 2078-2089. doi: 10.1158/0008-5472.can-16-2359
94. Ramalingam SS, Cheng Y, Zhou C, et al. Mechanisms of acquired resistance to first-line osimertinib: Preliminary data from the phase III FLAURA study. Annals of Oncology. 2018; 29: viii740. doi: 10.1093/annonc/mdy424.063
95. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science. 2007; 316(5827): 1039-1043. doi: 10.1126/science.1141478
96. Hsu CC, Liao BC, Liao WY, et al. Exon 16–Skipping HER2 as a Novel Mechanism of Osimertinib Resistance in EGFR L858R/T790M–Positive Non–Small Cell Lung Cancer. Journal of Thoracic Oncology. 2020; 15(1): 50-61. doi: 10.1016/j.jtho.2019.09.006
97. Han R, Guo H, Shi J, et al. Tumour microenvironment changes after osimertinib treatment resistance in non-small cell lung cancer. European Journal of Cancer. 2023; 189: 112919. doi: 10.1016/j.ejca.2023.05.007
98. Wu S, Luo M, To KKW, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Molecular Cancer. 2021; 20(1). doi: 10.1186/s12943-021-01307-9
99. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022; 12(1): 31-46. doi: 10.1158/2159-8290.cd-21-1059
100. Quintanal-Villalonga Á, Chan JM, Yu HA, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nature Reviews Clinical Oncology. 2020; 17(6): 360-371. doi: 10.1038/s41571-020-0340-z
101. Nilsson MB, Sun H, Robichaux J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Science Translational Medicine. 2020; 12(559). doi: 10.1126/scitranslmed.aaz4589
102. Tamura T, Kato Y, Ohashi K, et al. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations. Biochemical and Biophysical Research Communications. 2018; 495(1): 360-367. doi: 10.1016/j.bbrc.2017.10.175
103. Jia Y, Li X, Zhao C, et al. Impact of serum vascular endothelial growth factor and interleukin-6 on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer. Lung Cancer. 2018; 125: 22-28. doi: 10.1016/j.lungcan.2018.08.025
104. Umeguchi H, Sueoka-aragane N, Kobayashi N, et al. Usefulness of plasma HGF level for monitoring acquired resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Oncology Reports. 2014; 33(1): 391-396. doi: 10.3892/or.2014.3560
105. Cho JH, You YM, Yeom YI, et al. RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-κB-mediated ERK reactivation. Cell Death & Disease. 2018; 9(6). doi: 10.1038/s41419-018-0651-5
106. Tsukita Y, Fujino N, Miyauchi E, et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Molecular Cancer. 2019; 18(1). doi: 10.1186/s12943-019-0953-y
107. Fernando RI, Hamilton DH, Dominguez C, et al. IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget. 2016; 7(27): 42031-42044. doi: 10.18632/oncotarget.9662
108. Soucheray M, Capelletti M, Pulido I, et al. Intratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition. Cancer Research. 2015; 75(20): 4372-4383. doi: 10.1158/0008-5472.can-15-0377
109. Zhang B, Zhang Y, Zhao J, et al. M2-polarized macrophages contribute to the decreased sensitivity of EGFR-TKIs treatment in patients with advanced lung adenocarcinoma. Medical Oncology. 2014; 31(8). doi: 10.1007/s12032-014-0127-0
110. Feng PH, Yu CT, Chen KY, et al. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB. Oncotarget. 2018; 9(7): 7631-7643. doi: 10.18632/oncotarget.24146
111. Venugopalan A, Lee MJ, Niu G, et al. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget. 2016; 7(34): 54137-54156. doi: 10.18632/oncotarget.11021
112. Isomoto K, Haratani K, Hayashi H, et al. Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation–Positive Non–Small Cell Lung Cancer. Clinical Cancer Research. 2020; 26(8): 2037-2046. doi: 10.1158/1078-0432.ccr-19-2027
113. Liu L, Wang C, Li S, et al. Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: a narrative review. Translational Lung Cancer Research. 2021; 10(9): 3823-3839. doi: 10.21037/tlcr-21-572
114. Jia Y, Yun CH, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016; 534(7605): 129-132. doi: 10.1038/nature17960
115. To C, Jang J, Chen T, et al. Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discovery. 2019; 9(7): 926-943. doi: 10.1158/2159-8290.cd-18-0903
116. Kashima K, Kawauchi H, Tanimura H, et al. CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Molecular Cancer Therapeutics. 2020; 19(11): 2288-2297. doi: 10.1158/1535-7163.mct-20-0229
117. Schalm SS, Dineen T, Lim SM, et al. 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Annals of Oncology. 2020; 31: S839. doi: 10.1016/j.annonc.2020.08.1610
118. Conti C, Campbell J, Woessner R, et al. Abstract 1262: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Research. 2021; 81: 1262-1262. doi: 10.1158/1538-7445.am2021-1262
119. Lim SM, Park CW, Zhang Z, et al. Abstract 1467: BLU-945, a fourth-generation, potent and highly selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with intracranial activity, demonstrates robust in vivo antitumor activity in models of osimertinib-resistant non-small cell lung cancer (NSCLC). Cancer Research. 2021; 81: 1467-1467. doi: 10.1158/1538-7445.am2021-1467
120. Tavera L, Zhang Z, Wardwell S, et al. BLU-701 tumour suppression and intracranial activity as a single agent and in combination with BLU-945 in models of non-small cell lung cancer (NSCLC) driven by EGFR mutations. Lung Cancer. 2022; 165: S37. doi: 10.1016/S0169-5002(22)00125-8
121. Liu X, Zhang X, Yang L, et al. Abstract 1320: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. Cancer Research. 2019; 79: 1320-1320. doi: 10.1158/1538-7445.am2019-1320
122. Lim SM, Ahn JS, Hong MH, et al. MA07.09 BBT-176, a 4th generation EGFR TKI, for Progressed NSCLC after EGFR TKI Therapy: PK, Safety and Efficacy from Phase 1 Study. Journal of Thoracic Oncology. 2022; 17(9): S70-S71. doi: 10.1016/j.jtho.2022.07.118
123. Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR Exon 20 Insertion–Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. Journal of Clinical Oncology. 2021; 39(30): 3391-3402. doi: 10.1200/jco.21.00662
124. Cho BC, Lee KH, Cho EK, et al. 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Annals of Oncology. 2020; 31: S813. doi: 10.1016/j.annonc.2020.08.1572
125. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in Combination With Paclitaxel and Carboplatin in Advanced Non–Small-Cell Lung Cancer: A Phase III Trial—INTACT 2. Journal of Clinical Oncology. 2004; 22(5): 785-794. doi: 10.1200/jco.2004.07.215
126. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in Combination With Gemcitabine and Cisplatin in Advanced Non–Small-Cell Lung Cancer: A Phase III Trial—INTACT 1. Journal of Clinical Oncology. 2004; 22(5): 777-784. doi: 10.1200/jco.2004.08.001
127. Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase III Study of Erlotinib in Combination With Cisplatin and Gemcitabine in Advanced Non–Small-Cell Lung Cancer: The Tarceva Lung Cancer Investigation Trial. Journal of Clinical Oncology. 2007; 25(12): 1545-1552. doi: 10.1200/jco.2005.05.1474
128. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: A Phase III Trial of Erlotinib Hydrochloride (OSI-774) Combined With Carboplatin and Paclitaxel Chemotherapy in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2005; 23(25): 5892-5899. doi: 10.1200/jco.2005.02.840
129. Sugawara S, Oizumi S, Minato K, et al. Randomized phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations: NEJ005/TCOG0902. Annals of Oncology. 2015; 26(5): 888-894. doi: 10.1093/annonc/mdv063
130. Oizumi S, Sugawara S, Minato K, et al. Updated survival outcomes of NEJ005/TCOG0902: a randomised phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations. ESMO Open. 2018; 3(2): e000313. doi: 10.1136/esmoopen-2017-000313
131. Hosomi Y, Morita S, Sugawara S, et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non–Small-Cell Lung Cancer With Mutated Epidermal Growth Factor Receptor: NEJ009 Study. Journal of Clinical Oncology. 2020; 38(2): 115-123. doi: 10.1200/jco.19.01488
132. Jänne PA, Planchard D, Kobayashi K, et al. CNS Efficacy of Osimertinib With or Without Chemotherapy in Epidermal Growth Factor Receptor–Mutated Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2024; 42(7): 808-820. doi: 10.1200/jco.23.02219
133. Le X, Nilsson M, Goldman J, et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. Journal of Thoracic Oncology. 2021; 16(2): 205-215. doi: 10.1016/j.jtho.2020.10.006
134. Naumov GN, Nilsson MB, Cascone T, et al. Combined Vascular Endothelial Growth Factor Receptor and Epidermal Growth Factor Receptor (EGFR) Blockade Inhibits Tumor Growth in Xenograft Models of EGFR Inhibitor Resistance. Clinical Cancer Research. 2009; 15(10): 3484-3494. doi: 10.1158/1078-0432.ccr-08-2904
135. Rosell R, Dafni U, Felip E, et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir Med. 2017; 5(5): 435-444. doi: 10.1016/s2213-2600(17)30129-7
136. Seto T, Kato T, Nishio M,et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014; 15(11): 1236-1244. doi: 10.1016/s1470-2045(14)70381-x
137. Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019; 20(12): 1655-1669. doi: 10.1016/s1470-2045(19)30634-5
138. Akamatsu H, Toi Y, Hayashi H, et al. Efficacy of Osimertinib Plus Bevacizumab vs Osimertinib in Patients With EGFR T790M–Mutated Non–Small Cell Lung Cancer Previously Treated With Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitor. JAMA Oncology. 2021; 7(3): 386. doi: 10.1001/jamaoncol.2020.6758
139. Rotow JK, Costa DB, Paweletz CP, et al. Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2020; 38(15_suppl): 9507-9507. doi: 10.1200/JCO.2020.38.15_suppl.9507
140. Cho BC, Felip E, Hayashi H, et al. MARIPOSA: phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncology. 2021; 18(6): 639-647. doi: 10.2217/fon-2021-0923
141. Tang Y, Xia B, Xie R, et al. Timing in combination with radiotherapy and patterns of disease progression in non-small cell lung cancer treated with EGFR-TKI. Lung Cancer. 2020; 140: 65-70. doi: 10.1016/j.lungcan.2019.12.009
142. Guan J, Chen M, Xiao N, et al. EGFR mutations are associated with higher incidence of distant metastases and smaller tumor size in patients with non-small-cell lung cancer based on PET/CT scan. Medical Oncology. 2015; 33(1). doi: 10.1007/s12032-015-0714-8
143. Jia W, Guo H, Jing W, et al. An especially high rate of radiation pneumonitis observed in patients treated with thoracic radiotherapy and simultaneous osimertinib. Radiotherapy and Oncology. 2020; 152: 96-100. doi: 10.1016/j.radonc.2020.07.051
144. Das AK, Sato M, Story MD, et al. Non–Small Cell Lung Cancers with Kinase Domain Mutations in the Epidermal Growth Factor Receptor Are Sensitive to Ionizing Radiation. Cancer Research. 2006; 66(19): 9601-9608. doi: 10.1158/0008-5472.can-06-2627
145. Wang N, Wang L, Meng X, et al. Osimertinib (AZD9291) increases radio sensitivity in EGFR T790M non small cell lung cancer. Oncology Reports. Published online October 17, 2018. doi: 10.3892/or.2018.6803
146. Wu WS, Chen YM, Tsai CM, et al. The epidermal growth factor receptor-tyrosine kinase inhibitor era has changed the causes of death of patients with advanced non-small-cell lung cancer. Journal of the Chinese Medical Association. 2013; 76(12): 682-685. doi: 10.1016/j.jcma.2013.08.006
147. Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-24384-2
148. Xie L, Nagpal S, Wakelee HA, et al. Osimertinib for EGFR-Mutant Lung Cancer with Brain Metastases: Results from a Single-Center Retrospective Study. The Oncologist. 2018; 24(6): 836-843. doi: 10.1634/theoncologist.2018-0264
149. Garon EB, Hellmann MD, Rizvi NA, et al. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of Clinical Oncology. 2019; 37(28): 2518-2527. doi: 10.1200/jco.19.00934
150. Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology. 2016; 34(25): 2980-2987. doi: 10.1200/jco.2016.66.9929
151. Plesca I, Tunger A, Müller L, et al. Characteristics of Tumor-Infiltrating Lymphocytes Prior to and During Immune Checkpoint Inhibitor Therapy. Frontiers in Immunology. 2020; 11. doi: 10.3389/fimmu.2020.00364
152. Hughes PE, Caenepeel S, Wu LC. Targeted Therapy and Checkpoint Immunotherapy Combinations for the Treatment of Cancer. Trends in Immunology. 2016; 37(7): 462-476. doi: 10.1016/j.it.2016.04.010
153. Li X, Lian Z, Wang S, et al. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC. Cancer Letters. 2018; 418: 1-9. doi: 10.1016/j.canlet.2018.01.005
154. Lizotte PH, Hong RL, Luster TA, et al. A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing. Cancer Immunology Research. 2018; 6(12): 1511-1523. doi: 10.1158/2326-6066.cir-18-0193
155. Thress KS, Jacobs V, Angell HK, et al. Modulation of Biomarker Expression by Osimertinib: Results of the Paired Tumor Biopsy Cohorts of the AURA Phase I Trial. Journal of Thoracic Oncology. 2017; 12(10): 1588-1594. doi: 10.1016/j.jtho.2017.07.011
156. Qi YA, Maity TK, Gao S, et al. Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma. Cancers. 2021; 13(19): 4977. doi: 10.3390/cancers13194977
157. Yang JCH, Shepherd FA, Kim DW, et al. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M–Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report. Journal of Thoracic Oncology. 2019; 14(5): 933-939. doi: 10.1016/j.jtho.2019.02.001
158. Oshima Y, Tanimoto T, Yuji K, et al. EGFR–TKI-Associated Interstitial Pneumonitis in Nivolumab-Treated Patients With Non–Small Cell Lung Cancer. JAMA Oncology. 2018; 4(8): 1112. doi: 10.1001/jamaoncol.2017.4526
159. Takenaka T, Yamazaki K, Miura N, et al. Osimertinib reactivated immune-related colitis after treatment with anti-PD1 antibody for non-small cell lung cancer. Investigational New Drugs. 2017; 35(6): 848-850. doi: 10.1007/s10637-017-0481-9
160. Yamaguchi O, Kaira K, Kawasaki T, et al. Severe hepatotoxicity due to osimertinib after nivolumab therapy in patients with non‐small cell lung cancer harboring EGFR mutation. Thoracic Cancer. 2020; 11(4): 1045-1051. doi: 10.1111/1759-7714.13363
161. Gianni C, Bronte G, Delmonte A, et al. Case Report: Stevens-Johnson Syndrome and Hepatotoxicity Induced by Osimertinib Sequential to Pembrolizumab in a Patient With EGFR-Mutated Lung Adenocarcinoma. Frontiers in Pharmacology. 2021; 12. doi: 10.3389/fphar.2021.672233
162. Schoenfeld AJ, Arbour KC, Rizvi H, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Annals of Oncology. 2019; 30(5): 839-844. doi: 10.1093/annonc/mdz077
163. Shinno Y, Goto Y, Ohuchi M, et al. The Long Half-Life of Programmed Cell Death Protein 1 Inhibitors May Increase the Frequency of Immune-Related Adverse Events After Subsequent EGFR Tyrosine Kinase Inhibitor Therapy. JTO Clinical and Research Reports. 2020; 1(1): 100008. doi: 10.1016/j.jtocrr.2020.100008
164. Li J, Yan J, Cao R, et al. Lung Adenocarcinoma Harboring EGFR Kinase Domain Duplication (EGFR-KDD) Confers Sensitivity to Osimertinib and Nivolumab: A Case Report. Frontiers in Oncology. 2020; 10. doi: 10.3389/fonc.2020.575739
165. Peng J, Zhao X, Zhao K, et al. Case Report: Long Progression-Free Survival of Immunotherapy for Lung Adenocarcinoma With Epidermal Growth Factor Receptor Mutation. Frontiers in Oncology. 2021; 11. doi: 10.3389/fonc.2021.731429
166. Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nature Reviews Clinical Oncology. 2018; 15(12): 748-762. doi: 10.1038/s41571-018-0111-2
167. Li J, Xiang C, Wang Y, et al. The genomic characteristics of different progression patterns in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors. Annals of Translational Medicine. 2021; 9(9): 779-779. doi: 10.21037/atm-20-6910
168. Huang X, Xia L, Lan F, et al. Treatment of Nivolumab Results in Hyperprogressive Disease in a Patient Harboring EGFR Exon 20 Insertion and MYC Amplification. Journal of Thoracic Oncology. 2019; 14(9): e189-e191. doi: 10.1016/j.jtho.2019.04.009
169. Pilié PG, Gay CM, Byers LA, et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clinical Cancer Research. 2019; 25(13): 3759-3771. doi: 10.1158/1078-0432.ccr-18-0968
Copyright (c) 2024 Chenfeina Feng, Rendong Li, Xiaolei Li, Xinping Xu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.