Zanthoxylum bungeanum-derived extracellular vesicles alleviate liver fibrosis via TGF-β1/Smad pathway
Abstract
The activation of hepatic stellate cells (aHSCs) play a role for the occurrence and progression of liver fibrosis. However, effective drugs that can prevent or reverse this pathological process remain unavailable. Zanthoxylum bungeanum Maxim. (Rutaceae) is an edible and medicinal plant with diverse bioactivities, including antiparasitic, antimicrobial, and anti-inflammatory effects. This study investigates the therapeutic potential and underlying mechanisms of Zanthoxylum bungeanum-derived extracellular vesicles (ZEVs) in liver fibrosis, using the human HSCs LX-2 cells and alcohol-induced mice model of liver fibrosis. The results show that ZEVs significantly inhibit the proliferation and migration of LX-2 cells, while downregulating the fibrosis-related proteins and genes expression. Furthermore, oral administration of ZEVs significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice with liver fibrosis, reducing liver inflammation, collagen deposition, and lipid droplet accumulation. Additionally, miR-9 and miR-17 in ZEVs were found to significantly reduce the synthesis of fibrosis-related proteins in activated LX-2 cells. Mechanistic studies further revealed that ZEVs suppressed the gene levels of TGF-β1, Smad2 and Smad3 in activated LX-2 cells. In conclusion, ZEVs are a possible treatment option for liver fibrosis, potentially through modulation of the TGF-β1/Smad signaling pathway.
References
1. Qin L, Qin J, Zhen X, et al. Curcumin protects against hepatic stellate cells activation and migration by inhibiting the CXCL12/CXCR4 biological axis in liver fibrosis: A study in vitro and in vivo. Biomedicine & Pharmacotherapy. 2018; 101: 599-607. doi: 10.1016/j.biopha.2018.02.091
2. Kisseleva T, Brenner DA. Mechanisms of Fibrogenesis. Experimental Biology and Medicine. 2008; 233(2): 109–122. doi: 10.3181/0707-mr-190
3. Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World Journal of Gastroenterology. 2014; 20(23): 7260. doi: 10.3748/wjg.v20.i23.7260
4. Qin DM, Zhang Y, Li L. Progress in research of Chinese herbal medicines with anti-hepatic fibrosis activity. World Chinese Journal of Digestology. 2017; 25(11): 958. doi: 10.11569/wcjd.v25.i11.958
5. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews. 2017; 121: 27–42. doi: 10.1016/j.addr.2017.05.007
6. Aydin MM, Akcali KC. Liver fibrosis. The Turkish Journal of Gastroenterology. 2018; 29(1): 14–21. doi: 10.5152/tjg.2018.17330
7. Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World Journal of Gastroenterology. 2016; 22(48): 10512. doi: 10.3748/wjg.v22.i48.10512
8. Li D, He L, Guo H, et al. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging. EJNMMI Research. 2015; 5(1). doi: 10.1186/s13550-015-0151-x
9. Puche JE, Saiman Y, Friedman SL. Hepatic Stellate Cells and Liver Fibrosis. Comprehensive Physiology. 2013; 3(4): 1473–1492. doi: 10.1002/cphy.c120035
10. Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Frontiers in Pharmacology. 2022; 13. doi: 10.3389/fphar.2022.787748
11. Xu L. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut. 2005; 54(1): 142–151. doi: 10.1136/gut.2004.042127
12. Xu S, Chen Y, Miao J, et al. Esculin inhibits hepatic stellate cell activation and CCl4-induced liver fibrosis by activating the Nrf2/GPX4 signaling pathway. Phytomedicine. 2024; 128: 155465. doi: 10.1016/j.phymed.2024.155465
13. Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Current Opinion in Cell Biology. 2009; 21(4): 575–581. doi: 10.1016/j.ceb.2009.03.007
14. Zhuang X, Deng Z, Mu J, et al. Ginger-derived nanoparticles protect against alcohol‐induced liver damage. Journal of Extracellular Vesicles. 2015; 4(1). doi: 10.3402/jev.v4.28713
15. Gao Q, Chen N, Li B, et al. Natural lipid nanoparticles extracted from Morus nigra L. leaves for targeted treatment of hepatocellular carcinoma via the oral route. Journal of Nanobiotechnology. 2024; 22(1). doi: 10.1186/s12951-023-02286-3
16. Zhang L, He F, Gao L, et al. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. International Journal of Nanomedicine. 2021; Volume 16: 1575–1586. doi: 10.2147/ijn.s293067
17. Gong Q, Zeng Z, Jiang T, et al. Anti-fibrotic effect of extracellular vesicles derived from tea leaves in hepatic stellate cells and liver fibrosis mice. Frontiers in Nutrition. 2022; 9. doi: 10.3389/fnut.2022.1009139
18. Park SM, Kim JK, Kim EO, et al. Hepatoprotective Effect of Pericarpium zanthoxyli Extract Is Mediated via Antagonism of Oxidative Stress. Da Silva Filho AA, ed. Evidence-Based Complementary and Alternative Medicine. 2020; 2020(1). doi: 10.1155/2020/6761842
19. Wagner EBH, Bauer R, Melchart D, et al. Chromatographic Fingerprint Analysis of Herbal Medicines. Springer Vienna; 2011.
20. Zhou M, Shi F, Chen K, et al. Research progress of the medicinal value of Zanthoxylum bungeanum Maxim. Farm Products Processing. 2020; 495: 65–72.
21. Huang X, Yuan Z, Liu X, et al. Integrative multi-omics unravels the amelioration effects of Zanthoxylum bungeanum Maxim. on non-alcoholic fatty liver disease. Phytomedicine. 2023; 109: 154576. doi: 10.1016/j.phymed.2022.154576
22. Peng W, He CX, Li RL, et al. Zanthoxylum bungeanum amides ameliorates nonalcoholic fatty liver via regulating gut microbiota and activating AMPK/Nrf2 signaling. Journal of Ethnopharmacology. 2024; 318: 116848. doi: 10.1016/j.jep.2023.116848
23. Zu M, Xie D, Canup BSB, et al. ‘Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials. 2021; 279: 121178. doi: 10.1016/j.biomaterials.2021.121178
24. Qiu P, Mi A, Hong C, et al. An integrated network pharmacology approach reveals that Ampelopsis grossedentata improves alcoholic liver disease via TLR4/NF-κB/MLKL pathway. Phytomedicine. 2024; 132: 155658. doi: 10.1016/j.phymed.2024.155658
25. Khanova E, Wu R, Wang W, et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology. 2018; 67(5): 1737–1753. doi: 10.1002/hep.29645
26. Avila MA, Dufour JF, Gerbes AL, et al. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut. 2019; 69(4): 764–780. doi: 10.1136/gutjnl-2019-319720
27. Wu X, Liu X qi, Liu Z ni, et al. CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated activation of hepatic stellate cells through AMPK/AKT/mTOR signaling pathway. International Immunopharmacology. 2022; 113: 109229. doi: 10.1016/j.intimp.2022.109229
28. Brenner DA, Kisseleva T, Scholten D, et al. Origin of myofibroblasts in liver fibrosis. Fibrogenesis & Tissue Repair. 2012; 5(S1). doi: 10.1186/1755-1536-5-s1-s17
29. Du X, Hua R, He X, et al. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGF-β1-induced LX-2 cells. Parasit Vectors. 2024;17(1):190. doi:10.1186/s13071-024-06222-8.
30. Grada A, Otero-Vinas M, Prieto-Castrillo F, et al. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. Journal of Investigative Dermatology. 2017; 137(2): e11–e16. doi: 10.1016/j.jid.2016.11.020
31. Itoh Y. MT1-MMP: A key regulator of cell migration in tissue. IUBMB Life. 2006; 58(10): 589–596. doi: 10.1080/15216540600962818
32. Friedman SL. Mechanisms of Hepatic Fibrogenesis. Gastroenterology. 2008; 134(6): 1655–1669. doi: 10.1053/j.gastro.2008.03.003
33. Teng Y, Xu F, Zhang X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Molecular Therapy. 2021; 29(8): 2424–2440. doi: 10.1016/j.ymthe.2021.05.005
34. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine. 2019; 65: 37–55. doi: 10.1016/j.mam.2018.09.002
35. Dewidar B, Meyer C, Dooley S, et al. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells. 2019; 8(11): 1419. doi: 10.3390/cells8111419
36. Gao B, Xu MJ, Bertola A, et al. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expression. 2017; 17(3): 173–186. doi: 10.3727/105221617x695519
37. Ying HZ, Chen Q, Zhang WY, et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Molecular Medicine Reports. 2017; 16(6): 7879–7889. doi: 10.3892/mmr.2017.7641
38. Xu F, Liu C, Zhou D, et al. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. Journal of Histochemistry & Cytochemistry. 2016; 64(3): 157–167. doi: 10.1369/0022155415627681
39. Nishikawa K, Osawa Y, Kimura K. Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antifibrotic Drugs. International Journal of Molecular Sciences. 2018; 19(10): 3103. doi: 10.3390/ijms19103103
40. Tarantino G, Citro V. What are the common downstream molecular events between alcoholic and nonalcoholic fatty liver? Lipids in Health and Disease. 2024; 23(1). doi: 10.1186/s12944-024-02031-1
41. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003; 425(6958): 577–584. doi: 10.1038/nature02006
42. Fukasawa H, Yamamoto T, Togawa A, et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proceedings of the National Academy of Sciences. 2004; 101(23): 8687–8692. doi: 10.1073/pnas.0400035101
43. Lei XF, Fu W, Kim-Kaneyama J ri, et al. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. Journal of Hepatology. 2016; 64(1): 110–117. doi: 10.1016/j.jhep.2015.08.026
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.