A common pathogenic chain link of immune-mediated skin diseases in local disorders of immune-endocrine regulation

  • Denis Zagreshenko Russian Continuous Postgraduate Education Academy, Novokuznetsk branch, 5 Stroitel av., Novokuznetsk 654005, Russia
  • Vladimir Klimov Immunology and Allergy Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
  • Olga Urazova Pathophysiol Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
  • Pavel Isaev Kanevskaya Central Hospital, 108 Bolnichnaya, village Kanevskaya 353730, Russia
  • Marina Musina Student Hospital, 74 Kievskaya, Tomsk 634041, Russia
  • Andrew Denisov Immunology and Allergy Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
  • Andrew Klimov Immunology and Allergy Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
  • Yaroslav Kukharev Immunology and Allergy Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
  • Nadezhda Kovalenko Foreign Lang Dept, Siberian State Medical University, 2 Moscow tr., Tomsk 634050, Russia
Keywords: skin window; skin chamber; skin exudate; ACTH; cytokines; inflammasomes; atopic comorbidity
Article ID: 1349

Abstract

The goal of the study was to reveal a common pathogenic link of immune-mediated skin conditions such as disorders of interaction of adrenocorticotropic hormone and pro-inflammatory cytokines directly in the skin. 94 patients aged 18 to 45 years, of both sexes, with immune-mediated conditions, including atopic dermatitis, limited scleroderma, chronic spontaneous urticaria, and plaque psoriasis, were studied. A majority of patients, except for scleroderma, had atopic constitution with or without manifestation of respiratory allergic disease and food allergies. All patients also had various concomitant chronic conditions, primarily of cardiovascular and gastrointestinal systems. A patented modification of “skin window,” when a chamber with saline is installed on the scarified skin area to accumulate exudate containing targeted molecules, corticotropin, and cytokines Interleukin-1β, Interleikin-18, Interleukin-6, and Tumor Necrosis Factor-α, is used. Determination of values of molecules is carried out using electro chemiluminescent immunoassay and other analyses. In all patients, the skin exudate adrenocorticotropic hormone value was significantly reduced compared to the control group, whereas the content of cytokines obtained from the “skin window” exceeded similar indicators in healthy individuals. A high degree of correlation between adrenocorticotropic hormone and IL-6 was registered. The forgotten “skin window” technology demonstrates a proper opportunity to acquire biological material from the skin for investigation of targeted molecules at the local level.

References

1. Afshari M, Kolackova M, Rosecka M, Celakovska J, Krejsek J. Unraveling the skin; a comprehensive review of atopic dermatitis, current understanding, and approaches. Front Immunol. 2024; 15: 1361005. doi: 10.3389/fimmu.2024.1361005

2. Pondeljak N, Lugovic-Mihic L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters. Clin Ther. 2020; 42 (5): 757–770. doi: 10.1016/j.clinthera.2020.03.008

3. Tang L, Zhou F. Inflammasomes in common immune-related skin diseases. Front Immunol. 2020; 11: 882. doi: 10.3389/fimmu.2020.00882

4. Danis J, Mellett M. Nod-Like receptors in host defence and disease at the epidermal barrier. Int. J. Mol. Sci. 2021; 22: 4677. doi: 10.3390/ijms22094677

5. Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Healthand Disease. Front Immunol. 2020; 11: 613170. doi: 10.3389/fimmu.2020.613170

6. Klimov VV, Zagreshenko DS, Urazova OI, et al. Inflammasome as an early pathophysiological phenomenon of inflammation in skin diseases and other pathologies. Bulletin of Siberian Medicine. 2023; 22(2): 111–121. doi: 10.20538/1682-0363-2023-2-111-121

7. Rebuck JW, Crowley JH. Leukocytic functions in vivo. Ann NY Acad. Sci. 1955; 59: 757–794

8. Hu F, Fosnaugh P, Livingood CS. Human Skin Window Studies. II. Comparison of Cellular Response to Staphylococcus in Controls and in Patients with Cutaneous Bacterial Infections. Journal of Investigative Dermatology. 1963; 41(5): 325–334.

9. Dale DC, Wolff SM. Skin Window Studies of the Acute Inflammatory Responses of Neutropenic Patients. Blood. 1971; 58(2): 138–142. doi: 10.1182/blood.V38.2.138.138

10. Seinfeld BM, McCombs RP. Skin window: An aid in the diagnosis of drug allergy. Journal of Allergy and Clinical Immunology. 1966; 38(3): 156–165. doi: 10.1016/0021-8707(66)90038-4

11. Zigmond SH, Hirsch JG. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. Journal of Allergy and Clinical Immunology. 1973; 137(2): 387–410.

12. Marks D, Radulovic M, Maccartney S, Segal AW. Modified skin window technique for the extended characterisation of acute inflammation in humans. Inflamm. Res. 2007; 56(4): 168–174. doi: 10.1007/s00011-006-6119-6

13. Eryomenko VN, Klimov VV, Denisov AA. “Skin Window” in Atopic Diseases. Immunology Letters. 1997; 154–155.

14. Follin P, Dahlgren C. A skin chamber technique as a human model for studies of aseptic inflammatory reactions. Methods in Molecular Biology. 2007; 412: 333–346. doi: 10.1007/978-1-59745-467-4_22

15. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019; 74: 2293–2311. doi: 10.1111/all.13851

16. Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int. J. Mol. Sci. 2024; 25(2): 1042. doi: 10.3390/ijms25021042

17. Kibalina IV, Tsybikov NN, Fefelova EV. Phenotypes of lymphocytes in exudate in atopic dermatitis. Kazan Med. J. 2022; 103(3): 357–363. doi: 10.17816/KMJ2022-357

18. Kibalina IV, Tsybikov NN, Fefelova EV. Dynamics of the chemokine ENA-78/CXCL5 levels in blood serum and skin exudate in patients with atopic dermatitis. Medical Immunology. 2022; 24(2): 401–406. doi: 10.15789/1563-0625-DOT-2461

19. Karolinska Institutet. Skin Window Technique. Hudfönsterteknik. Available online: https://mesh.kib.ki.se/term/D012884/skin-window-technique (accessed on 2 January 2025).

20. The University of Chicago. Skin Window Technique. Available online: https://profiles.uchicago.edu/profiles/display/17953 (accessed on 2 January 2025).

21. University of Massachusetts Chan Medical School. Skin Window Technique. Available online: https://profiles.umassmed.edu/display/107592 (accessed on 2 January 2025).

22. Ou Z, Duh TS, Rommelfanger NJ, et al. Achieving optical transparency in live animals with absorbing molecules. Science. 2024; 385(6713). doi: 10.1126/science.adm6869

23. He H, Fasoula NA, Karlas A, et al. Opening a window to skin biomarkers for diabetes stage with optoacoustic mesoscopy. Light. Sci. Appl. 2023; 12(231). doi: 10.1038/s41377-023-01275-3

24. Patel G, Saltoun C. Skin testing in allergy. Allergy and Asthma Proceedings. 2019; 40(6): 366–368.

25. Mansouri M, Rafiee E, Darougar S, et al. Is the atopy patch test reliable in the evaluation of food allergy-related atopic dermatitis? Int. Arch. Allergy Immunol. 2018; 175(1–2): 85–90. doi: 10.1159/000485126

26. Klimov VV. Textbook of Allergen Tolerance. Springer; 2022. 326p.

27. Knudgaard MH, Andreasen TH, Ravnborg N, et al. Rhinitis prevalence and association with atopic dermatitis: A systematic review and meta-analysis. Ann. Allergy Asthma Immunol. 2021; 127(1): 49–56. doi: 10.1016/j.anai.2021.02.026

28. Banzon T, Leung DYM, Schneider LC. Food allergy and atopic dermatitis. Journal of Food Allergy. 2020; 2(1): 35–38. doi: 10.2500/jfa.2020.2.200018

29. Thyssen JP, Halling AS, Schmid-Grendelmeier P, et al. Comorbidities of atopic dermatitis-what does the evidence say? Journal of Allergy Clin Immunol. 2023; 151(5): 1155–1162. doi: 10.1016/j.jaci.2022.12.002

30. Coyle PK. Introduction to neuroimmunology. In: Rizvi SA, Cahil JF, Coyle PK (editors) Clinical Neuroimmunology. Humana Press. 2019. pp. 3–15.

31. Lara-Reyna S, Caseley EA, Topping J, et al. Inflammasome activation: From molecular mechanisms to autoinflammation. Clin. Transl. Immunol. 2022; e1404. doi: 10.1002/cti2.1404

32. Fania L, Moretta G, Antone, F, et al. Multiple Roles for Cytokines in Atopic Dermatitis: From Pathogenic Mediators to Endotype-Specific Biomarkers to Therapeutic Targets. Int. J. Mol. Sci. 2022; 23(5): 2684. doi: 10.3390/ijms23052684

33. Zagreshenko DS, Klimov VV, Denisov AA, et al. Skin window cytokines in atopic dermatitis (Russian). Bull. Sib. Med. 2009; 8(3): 32–46. doi: 10.20538/1682-0363-2009-3-32-36

34. Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front in Medicine. 2024; 11: 1342176. doi: 10.3389/fmed.2024.1342176

35. Wounds International. Wound exudate: Effective assessment and management. Wounds International; 2019. p. 33.

36. Gardner S. Managing High Exudate Wounds: A How-to Guide. Available online: https://uk.advancismedical.com/blogs/research-and-updates/managing-high-exudate-wounds-a-how-to-guide (accessed on 2 January 2025).

37. Wang Z, Qi F, Luo H, et al. Inflammatory Microenvironment of Skin Wounds. Front in Immunology. 2022; 13: 789274. doi: 10.3389/fimmu.2022.789274.

38. Burian EA, Enevold C, Karlsmark T, Ågren MS. A simplified method for monitoring cytokines in wound fluid. Wound Repair Regen. 2023; 31(1): 47–55. doi: 10.1111/wrr.13053

39. Yang X, Ma Y, Chen X, et al. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sciences. 2023; 328: 121867. doi: 10.1016/j.lfs.2023.121867

40. Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed. J. 2023; 46(5): 100624. doi: 10.1016/j.bj.2023.100624

41. Bouwstra JA, Nadaban A, Bras W, et al. The skin barrier: An extraordinary interface with an exceptional lipid organization. Progr. Lip. Res. 2023; 92(2023): 101252. doi: 10.1016/ j.plipres.2023.101252

42. Cetinarslan T, Kumper L, Folster-Holst R. The immunological and structural epidermal barrier dysfunction and skin microbiome in atopic dermatitis-an update. Front Mol. Biosci. 2023; 10: 1159404. doi: 10.3389/fmolb.2023.1159404

43. Fluhr JW, Moore DJ, Lane ME, et al. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J. Eur. Acad. Dermatol. Venerol. 2024; 38(5): 812–820. doi: 10.1111/jdv.19745.

44. Ono S, Egawa G, Kabashima K. Regulation of blood vascular permeability in the skin. Inflamm. Regen. 2017; 37: 11. doi: 10.1186/s41232-017-0042-9

45. Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev. 2019; 99(3): 1467–1525. doi: 10.1152/physrev.00037.2018

46. Tokura Y, Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022; 71(1): 14–24. doi: 10.1016/j.alit.2021.07.003

47. Lefevre-Utile A, Saichi M, Olah P, et al. Transcriptome-based identification of novel endotypes in adult atopic dermatitis. Allergy. 2022; 77(5): 1486–1498. doi: 10.1111/all.15150

48. Ständer S. Atopic dermatitis. The New England Journal of Medicine. 2021; 384: 1136–1143. doi: 10.1056/NEJMra2023911

49. Del Rosso J, Zeichner J, Alexis A, et al. Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner. J. Clin. Aesthetic. Dermatol. 2016; 9(4): S2–S8.

50. Banks TA, Gada SM. Filaggrin mutations as an archetype for understanding the pathophysiology of atopic dermatitis. J. Am. Acad. Dermatol. Letters. 2014; 71 (3): 592–593. doi: 10.1016/j.jaad.2014.04.075

51. Gupta J, Margolis DJ. Filaggrin gene mutations with special reference to atopic dermatitis. Curr Treat Options Allergy. 2020; 7(3): 403–413. doi: 10.1007/s40521-020-00271-x

52. Woo S, Gandhi S, Ghincea A, Saber T, Lee CJ, Ryu C. Targeting the NLRP3 inflammasome and associated cytokines in scleroderma associated interstitial lung disease. Front Cell. Dev. Biol. 2023; 11: 1254904. doi: 10.3389/fcell.2023.1254904.

53. Verma D, Shora ZF, Gunnthorunn S, et al. Enhanced inflammasome activity in patients with psoriasis promotes systemic inflammation. J. Invest. Dermatol. 2021; 141(3): 586–595. doi: 10.1016/j.jid.2020.07.012

54. Luo Q, Zeng J, Li W, et al. Silencing of miR155 suppresses inflammatory responses in psoriasis through inflammasome NLRP3 regulation. Int. J. Mol. Med. 2018; 42: 1086–1095. doi: 10.3892/ijmm.2018.3677

55. Su F, Xia Y, Huang M, et al. Expression of NLPR3 in psoriasis is associated with enhancement of interleukin-1b and caspase-1. Med. Sci. Monit. 2018; 24: 7909–7913. doi: 10.12659/MSM.911347

56. Tsuji G, Hashimoto-Hachiya A, Yen VH, et al. Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: implications for preventing the development of psoriasis. Cell Death Discovery. 2020; 6: 11. doi: 10.1038/s41420-020-0245-8

57. Zuberbier T, Lattiff AHA, Abuzakouk M, et al. The international EAACI/GA2LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy. 2022; 77: 734–766. doi: 10.1111/all.15090

58. Hon KL, Leung AKC, Ng WGG, Loo SK. Chronic Urticaria: An Overview of Treatment and Recent Patents. Recent Pat Inflamm Allergy Drug Discov. 2019; 13(1): 27–37. doi: 10.2174/1872213X13666190328164931

59. Radonjic-Hoesli S, Hofmeier KS, Micaletto S, et al. Urticaria and angioedema: An Update on classification and pathogenesis. Clinic. Rev. Allerg. Immunol. 2018; 54(1): 88–101. doi: 10.1007/s12016-017-8628-1

60. Darlenski R, Kozyrskyj AL, Fluhr JW, Caraballo L. Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: Unmet needs and open questions. J. Allerg.y Clin. Immunol. 2021; 148: 1387–1393. doi: 10.1016/j.jaci.2021.10.002

61. Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int. J. Mol. Sci. 2017; 18(10): 2131. doi: 10.3390/ijms18102131

62. Chen Y, Lyga J. Brain-Skin Connection: Stress, Inflammation and Skin Aging. Inflammation & Allergy-Drug Targets. 2014; 13(3): 177–190. doi: 10.2174/1871528113666140522104422

63. Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol. 2019; 10: 683. doi: 10.3389/ fendo.2019.00683

64. Lisak RP, Benjamins JA. Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci. 2017; 7(8): 104. doi: 10.3390/brainsci7080104

65. Lee JH, Cho DH, Park HJ. IL-18 and Cutaneous Inflammatory Diseases. Int. J. Mol. Sci. 2015; 16(12): 29357–29369. doi: 10.3390/ijms161226172

66. Chovatiya R, Silverberg JI. DESCRIBE-AD: A Novel Classification Framework for Atopic Dermatitis. J. Am. Acad. Dermatol. 2022; 87(3): 541–550. doi: 10.1016/j.jaad.2021.10.058

67. Yan BX, Chen XY, Ye LR, et al. Cutaneous and Systemic Psoriasis: Classifications and Classification for the Distinction. Front Med (Lausanne). 2021; 8: 649408. doi: 10.3389/fmed.2021.649408

68. Zagreshenko DS, Klimov VV. Method of determining adrenocorticotropic hormone in exudate “skin window”. Russian Patent No. 2,798,903, 28 June 2023.

69. Nirenjen S, Narayanan J, Tamilanban T, et al. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front in Immunology. 2023; 14: 1216321. doi: 10.3389/fimmu.2023.1216321

70. Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Repair Reg. 2008; 16: 585–601. doi: 10.1111/j.1524-475X.2008.00410.x

71. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Rep Reg. 2020; 8(1): 13–25. https://doi.org/10.1046/j.1524-475x.2000.00013.x.

72. Wang X, Li Y, Wu L, et al. Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed &Pharmacother. 2021; 137: 111065. doi: 10.1016/j.biopha.2020.111065

73. Marek-Jozefowicz L, Czajkowski R, Borkowska A, et al. The Brain–Skin Axis in Psoriasis -Psychological, Psychiatric, Hormonal, and Dermatological Aspects. Int. J. Mol. Sci. 2022; 23(2): 669. doi: 10.3390/ijms23020669

74. Tomaszewska K, Słodka A, Tarkowski B, Zalewska-Janowska A. Neuro-Immuno-Psychological Aspects of Chronic Urticaria. J. Clin. Med. 2023; 12(9): 3134. doi: 10.3390/jcm12093134

75. Murakami K, Tanaka Y, Murakami M. The gateway reflex: breaking through the blood barriers. Int. Immunol. 2021; 33(12): 743–748. doi: 10.1093/intimm/dxab064

76. Niculet E, Chioncel V, Elisei AM, et al. Multifactorial expression of IL-6 with update on COVID-19 and the therapeutic strategies of its blockade (Review). Exp. Ther. Med. 2021; 21(3): 263. doi: 10.3892/etm.2021.9693

77. Tham EH, Leung DYM. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic march. Allergy Asthma Immunol Researchs. 2019; 11(1): 4–15. doi: 10.4168/aair.2019.11.1.4

78. Bantz SK, Zhu Z, Zheng T. The Atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 2014; 5 (2): 1–8. doi: 10.4172/2155-9899.1000202

79. Wen HC, Czarnowicki T, Noda S, et al. Serum from Asian patients with atopic dermatitis is characterized by TH2/TH22 activation, which is highly correlated with nonlesional skin measures. J. Allergy. Clin. Immunol. 2018; 142: 324–328. doi: 10.1016/j.jaci.2018.02.047

Published
2025-03-12
How to Cite
Zagreshenko, D., Klimov, V., Urazova, O., Isaev, P., Musina, M., Denisov, A., Klimov, A., Kukharev, Y., & Kovalenko, N. (2025). A common pathogenic chain link of immune-mediated skin diseases in local disorders of immune-endocrine regulation. Molecular & Cellular Biomechanics, 22(4), 1349. https://doi.org/10.62617/mcb1349
Section
Article