Optimization and bioapplication of deep learning algorithm in the prediction of mechanical properties of metal matrix composites

  • Tingting Zhang Jiangsu Higher Vocational College Engineering Research Center of Green Energy and Low Carbon Materials, Zhenjiang College, Zhenjiang 212000, China; Changchai Company Limited, Changzhou 213002, China; School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
  • Manxi Sun Jiangsu Higher Vocational College Engineering Research Center of Green Energy and Low Carbon Materials, Zhenjiang College, Zhenjiang 212000, China
  • Jiayi Sun Jiangsu Higher Vocational College Engineering Research Center of Green Energy and Low Carbon Materials, Zhenjiang College, Zhenjiang 212000, China
  • Yi Xu Changchai Company Limited, Changzhou 213002, China
  • Yonghong Fu School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
  • Yulei Feng Zhejiang Provincial Innovation Center of Laser Intelligent Equipment Technology, Wenzhou 325000, China
Keywords: deep learning; bioapplication; metal matrix composites; mechanical properties prediction; convolutional neural network; recurrent neural network; k-fold cross-validation
Article ID: 1324

Abstract

This study addresses the optimization and bioapplications of a deep learning algorithm for predicting the mechanical properties of metal matrix composites (MMCs), a critical task for efficient material design. And it is also beneficial for deploring more bioapplications of MMCs. Leveraging a comprehensive experimental dataset from multiple research institutions, we employ a Convolutional Neural Network (CNN) for feature extraction and the Recurrent Neural Network (RNN) for sequence analysis. The dataset encompasses mechanical properties such as tensile strength, elastic modulus, and yield strength for diverse MMCs with varying compositions and processing conditions. The research methodology involves rigorous data preprocessing, feature selection, model development, and performance evaluation using metrics like R2 score, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), precision, and recall. Addressing the challenge of model robustness and generalizability, we utilize k-fold cross-validation for training and validation. Optimal hyperparameter settings are identified to enhance predictive accuracy. Our results reveal high predictive performance, with R2 scores ranging from 0.89 to 0.92 for different mechanical properties, thereby demonstrating the model’s efficacy in facilitating material design and optimization processes for MMCs.

References

1. Kamocka M, Zglinicki M, Mania RJ. Multi-method approach for FML mechanical properties prediction. Composites Part B: Engineering. 2016; 91: 135-143. doi: 10.1016/j.compositesb.2016.01.014

2. Șerdean FM, Merie VV, Pustan MS, et al. Mechanical properties prediction for titanium nitride thin films. ACTA technica napocensis. 2017; 60(4).

3. Lakshmikanthan A, Angadi S, Malik V, et al. Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials. 2022; 15(17): 6111. doi: 10.3390/ma15176111

4. Kareem A, Qudeiri JA, Abdudeen A, et al. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting. Materials. 2021; 14(1): 175. doi: 10.3390/ma14010175

5. Bhoi NK, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review. Journal of Composite Materials. 2019; 54(6): 813-833. doi: 10.1177/0021998319865307

6. Malaki M, Fadaei Tehrani A, Niroumand B, et al. Wettability in Metal Matrix Composites. Metals. 2021; 11(7): 1034. doi: 10.3390/met11071034

7. Mertens AI, Kolisnychenko S. Metal Matrix Composites. Trans Tech Publications Ltd; 2023.

8. Mussatto A, Ahad IU, Mousavian RT, et al. Advanced production routes for metal matrix composites. Engineering Reports. 2020; 3(5). doi: 10.1002/eng2.12330

9. Tang S, Ummethala R, Suryanarayana C, et al. Additive Manufacturing of Aluminum‐Based Metal Matrix Composites—A Review. Advanced Engineering Materials. 2021; 23(7). doi: 10.1002/adem.202100053

10. Zhang C, Li Y, Jiang B, et al. Mechanical properties prediction of composite laminate with FEA and machine learning coupled method. Composite Structures. 2022; 299: 116086. doi: 10.1016/j.compstruct.2022.116086

11. Sun J, Liu S, Ma Z, et al. Mechanical properties prediction of lightweight coal gangue shotcrete. Journal of Building Engineering. 2023; 80: 108088. doi: 10.1016/j.jobe.2023.108088

12. Chong BW, Othman R, Putra Jaya R, et al. Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials. 2021; 14(8): 1866. doi: 10.3390/ma14081866

13. Janowski G, Frącz W, Bąk Ł. The Mechanical Properties Prediction of Poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) Biocomposites on a Chosen Example. Materials. 2022; 15(21): 7531. doi: 10.3390/ma15217531

14. Xu ZW, Liu XM, Zhang K. Mechanical Properties Prediction for Hot Rolled Alloy Steel Using Convolutional Neural Network. IEEE Access. 2019; 7: 47068-47078. doi: 10.1109/access.2019.2909586

15. Biswas S, Monroe C, Prucha T. Use of Published Experimental Results to Validate Approaches to Gray and Ductile Iron Mechanical Properties Prediction. International Journal of Metalcasting. 2017; 11(4): 656-674. doi: 10.1007/s40962-016-0126-3

16. Zhang A, Lu H, Zhang D. Research on the mechanical properties prediction of carbon/epoxy composite laminates with different void contents. Polymer Composites. 2014; 37(1): 14-20. doi: 10.1002/pc.23149

17. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22): 2402. doi: 10.1001/jama.2016.17216

18. Placido D, Yuan B, Hjaltelin JX, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine. 2023; 29(5): 1113-1122. doi: 10.1038/s41591-023-02332-5

19. Thieme AH, Zheng Y, Machiraju G, et al. A deep-learning algorithm to classify skin lesions from mpox virus infection. Nature Medicine. 2023; 29(3): 738-747. doi: 10.1038/s41591-023-02225-7

20. Guo Q, Li M, Wang C, et al. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv; 2020.

21. Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics. 2018; 375: 1339-1364. doi: 10.1016/j.jcp.2018.08.029

22. Hinton GE, Osindero S, Teh YW. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. 2006; 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527

23. Kang M, Cho I, Park J, et al. High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm. ACS Sensors. 2022; 7(2): 430-440. doi: 10.1021/acssensors.1c01204

24. Susilo B, Sari RF. Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information. 2020; 11(5): 279. doi: 10.3390/info11050279

25. Wang S, Kang B, Ma J, et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European Radiology. 2021; 31(8): 6096-6104. doi: 10.1007/s00330-021-07715-1

26. Singh B, Kumar I, Saxena KK, et al. A future prospects and current scenario of aluminium metal matrix composites characteristics. Alexandria Engineering Journal. 2023; 76: 1-17. doi: 10.1016/j.aej.2023.06.028

27. Chen D, Li J, Sun K, et al. Graphene-reinforced metal matrix composites: fabrication, properties, and challenges. The International Journal of Advanced Manufacturing Technology. 2023; 125(7-8): 2925-2965. doi: 10.1007/s00170-023-10886-4

Published
2025-01-24
How to Cite
Zhang, T., Sun, M., Sun, J., Xu, Y., Fu, Y., & Feng, Y. (2025). Optimization and bioapplication of deep learning algorithm in the prediction of mechanical properties of metal matrix composites. Molecular & Cellular Biomechanics, 22(2), 1324. https://doi.org/10.62617/mcb1324
Section
Article