Global trends of bone marrow mesenchymal stem cells in tissue engineering: A bibliometric analysis
Abstract
Bone marrow mesenchymal stem cells (BMSCs) tissue engineering has been an emerging field of research in recent years. Given the increasing global interest, we utilized a bibliometric analysis and visualization of studies on BMSCs in the field of tissue engineering published from 2004 to 2023 to explore research progress and identify future research directions. Data was collected from the Web of Science Core Collection (WoSCC), and in-depth analysis was conducted using various bibliometric tools, including CiteSpace, VOSviewer, and R-Bibliometrix. Our study revealed the historical development and evolution of active topics in BMSCs in terms of temporal dynamics, covering 2967 publications, 65 countries, 2454 academic institutions, and 605 journals, with significant growth observed over the last 20 years. China and the United States dominate the global research landscape. Shanghai Jiao Tong University is one of the most significant contributors to the field. In terms of co-citation analysis, Biomaterials was identified as a key journal. Our analysis also revealed current trends such as extracellular vesicles, exosomes, 3D printing, hydrogels, and nanomaterials. These findings provide a clear perspective for future research on the tissue engineering of BMSCs. This study fills a gap in the field of bibliometrics, enabling researchers to identify popular research areas and providing a comprehensive perspective and broad outlook on this emerging field of research.
References
1. Vacanti JP, Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999; 354: S32–S34. doi: 10.1016/s0140-6736(99)90247-7
2. Raghav PK, Mann Z, Ahlawat S, et al. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. European Journal of Pharmacology. 2022; 918: 174657. doi: 10.1016/j.ejphar.2021.174657
3. Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: Major challenges. Journal of Cellular Biochemistry. 2008; 105(6): 1352–1360. doi: 10.1002/jcb.21957
4. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315–317. doi: 10.1080/14653240600855905
5. Phinney DG, Prockop DJ. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007; 25(11): 2896–2902. doi: 10.1634/stemcells.2007-0637
6. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Journal of Cellular Biochemistry. 1994; 56(3): 283–294. doi: 10.1002/jcb.240560303
7. Jiang N, Tian X, Wang Q, et al. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Reviews and Reports. 2024; 20: 455–483. doi: 10.1007/s12015-023-10658-3
8. Pan P, Wang J, Wang X, et al. Physically cross-linked chitosan gel with tunable mechanics and biodegradability for tissue engineering scaffold. International Journal of Biological Macromolecules. 2024; 257: 128682. doi: 10.1016/j.ijbiomac.2023.128682
9. Fang W, Yang M, Jin Y, et al. Injectable Decellularized Extracellular Matrix-Based Bio-Ink with Excellent Biocompatibility for Scarless Urethra Repair. Gels. 2023; 9(11). doi: 10.3390/gels9110913
10. Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, et al. Recent advances in modified poly (lactic acid) as tissue engineering materials. Journal of Biological Engineering. 2023; 17(21). doi: 10.1186/s13036-023-00338-8
11. Gong JS, Zhu GQ, Zhang Y, et al. Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells. Materials Today Bio. 2023; 23: 100854. doi: 10.1016/j.mtbio.2023.100854
12. Hossain MA, Lim S, Bhilare KD, et al. Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model. Journal of Veterinary Science Editorial Office. 2023; 24(6): e83. doi: 10.4142/jvs.23128
13. Ji W, Han F, Feng X, et al. Cocktail-like gradient gelatin/hyaluronic acid bioimplant for enhancing tendon-bone healing in fatty-infiltrated rotator cuff injury models. International Journal of Biological Macromolecules. 2023; 244: 125421. doi: 10.1016/j.ijbiomac.2023.125421
14. Wang J, Sun H, Guo R, et al. Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis. Experimental Neurology. 2023; 363: 114374. doi: 10.1016/j.expneurol.2023.114374
15. Yudintceva NM, Nashchekina YA, Blinova MI, et al. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells. International Journal of Nanomedicine. 2016; 11: 4521–4533. doi: 10.2147/ijn.S111656
16. Zhou M, Hui J, Gao L, et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate acute rejection injury after liver transplantation by carrying miR-22-3p and inducing M2 polarization of Kupffer cells. The Journal of Gene Medicine. 2023; 25: e3497. doi: 10.1002/jgm.3497
17. Le Blanc K, Pittenger MF. Mesenchymal stem cells: Progress toward promise. Cytotherapy. 2005; 7(1): 36–45. doi: 10.1080/14653240510018118
18. Yang Y, Qiu B, Zhou Z, et al. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells. Ann Transplant. 2023; 28: e940365. doi: 10.12659/aot.940365
19. Wang X, Zou C, Hou C, et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7-mediated YAP1 protein stability and the Wnt/β-catenin pathway. Biochemical Pharmacology. 2023; 217: 115829. doi: 10.1016/j.bcp.2023.115829
20. Pan S, Yin Z, Shi C, et al. Multifunctional Injectable Hydrogel Microparticles Loaded with miR-29a Abundant BMSCs Derived Exosomes Enhanced Bone Regeneration by Regulating Osteogenesis and Angiogenesis. Small. 2024; 20(16): e2306721. doi: 10.1002/smll.202306721
21. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering. 2011; 2: 403–430. doi: 10.1146/annurev-chembioeng-061010-114257
22. Hou N, Xu X, Lv D, et al. Tissue-engineered esophagus: Recellular esophageal extracellular matrix based on perfusion-decellularized technique and mesenchymal stem cells. Biomedical Materials. 2021; 16. doi: 10.1088/1748-605X/ac1d3d
23. Li CL, Liao WB, Yang SX, et al. Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix. Transplantation Proceedings. 2013; 45(9): 3402–3407. doi: 10.1016/j.transproceed.2013.07.055
24. Adas G, Kemik O, Eryasar B, et al. Treatment of ischemic colonic anastomoses with systemic transplanted bone marrow derived mesenchymal stem cells. European review for medical and pharmacological sciences. 2013; 17(17): 2275–2285.
25. Chen F, Gong Y, Jiang N, et al. Transplantation of bFGF-transfected bone mesenchymal stem cells on collagen scaffolds promotes the regeneration of injured rat endometrium. American journal of translational research. 2022; 14(9): 6712–6725.
26. Raisig LM. Statistical bibliography in the health sciences. Bulletin of the Medical Library Association. 1962; 50(3): 450–461.
27. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84: 523–538. doi: 10.1007/s11192-009-0146-3
28. Wu H, Cheng K, Guo Q, et al. Mapping Knowledge Structure and Themes Trends of Osteoporosis in Rheumatoid Arthritis: A Bibliometric Analysis. Frontiers in medicine. 2021; 8: 787228. doi: 10.3389/fmed.2021.787228
29. Zhao J, Li M. Worldwide trends in prediabetes from 1985 to 2022: A bibliometric analysis using bibliometrix R-tool. Frontiers in public health. 2023; 11: 1072521. doi: 10.3389/fpubh.2023.1072521
30. Synnestvedt MB, Chen C, Holmes JH. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc. 2005; 2005: 724–728.
31. Bakkalbasi N, Bauer K, Glover J, et al. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomedical Digital Libraries. 2006; 3: 7. doi: 10.1186/1742-5581-3-7
32. Ding X, Yang Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. In: Proceedings of the 5th International Conference on Economics, Management, Law and Education (EMLE 2019); 11–12 October 2019; Krasnodar, Russia.
33. Niu HQ, Yang Y, Wang BB, et al. A global bibliometric and visualized analysis in the status and trends of corneal tissue engineering research from 1991 to 2021. Journal of Tissue Engineering. 2022; 13. doi: 10.1177/20417314221138188
34. Li TH, Li ZM, Qin XH, et al. Global Analyses and Latest Research Hot Spots of Adipose-Derived Stem Cells in Fat Grafting: A Bibliometric and Visualized Review. Aesthetic Plastic Surgery. 2023; 47: 1192–1204. doi: 10.1007/s00266-022-03201-1
35. Liang YD, Li Y, Zhao J, et al. Study of acupuncture for low back pain in recent 20 years: A bibliometric analysis via CiteSpace. Journal of Pain Research. 2017; 10: 951–964. doi: 10.2147/jpr.S132808
36. Liu A, Yuan C, Xu L, et al. Scientific mapping of hotspots and trends of post and core research based on the Web of Science: A bibliometric analysis. Heliyon. 2023; 10(1): e23786. dio: 10.1016/j.heliyon.2023.e23786
37. Lange S, Soták M, Hagberg CE, et al. Students at a crossroad: A cross-sectional survey gauging the impact of COVID-19 on medical and biomedical graduates in the United States and Sweden. Biochemistry and Molecular Biology Education. 2023; 51(5): 508–519. doi: 10.1002/bmb.21761
38. Riccaboni M, Verginer L. The impact of the COVID-19 pandemic on scientific research in the life sciences. PLoS One. 2022; 17(2): e0263001. doi: 10.1371/journal.pone.0263001
39. Muric G, Lerman K, Ferrara E. Gender Disparity in the Authorship of Biomedical Research Publications During the COVID-19 Pandemic: Retrospective Observational Study. Journal of Medical Internet Research. 2021; 23(4): e25379. doi: 10.2196/25379
40. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry. 2006; 98(5): 1076–1084. doi: 10.1002/jcb.20886
41. Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews Nephrology. 2018; 14: 493–507. doi: 10.1038/s41581-018-0023-5
42. Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal. 2007; 21: 3197–3207. doi: 10.1096/fj.06-6558com
43. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Molecular Therapy. 2012; 20(1): 14–20. doi: 10.1038/mt.2011.211
44. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research. 2004; 94: 678–685. doi: 10.1161/01.Res.0000118601.37875.Ac
45. Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018; 22(6): 824–833. doi: 10.1016/j.stem.2018.05.004
46. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 2018; 7(1): 1535750. doi: 10.1080/20013078.2018.1535750
47. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology. 2013; 200(4): 373–383. doi: 10.1083/jcb.201211138
48. Li Q, Gong S, Yao W, et al. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Delivery. 2021; 28(1): 884–893. doi: 10.1080/10717544.2021.1912210
49. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367. doi: 10.1126/science.aau6977
50. Zhang L, Ouyang P, He G, et al. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. Journal of Cellular and Molecular Medicine. 2021; 25(4): 2148–2162. doi: 10.1111/jcmm.16192
51. Lai RC, Yeo RWY, Tan KH, et al. Exosomes for drug delivery—A novel application for the mesenchymal stem cell. Biotechnology Advances. 2013; 31(5): 543–551. doi: 10.1016/j.biotechadv.2012.08.008
52. EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery. 2013; 12: 347–357. doi: 10.1038/nrd3978
53. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2018; 22(3): 1428–1442. doi: 10.1111/jcmm.13492
54. Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017; 35(4): 851–858. doi: 10.1002/stem.2575
55. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles. 2015; 4(1): 27066. doi: 10.3402/jev.v4.27066
56. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology. 2018; 19: 213–228. doi: 10.1038/nrm.2017.125
57. Li X, Zheng Y, Hou L, et al. Exosomes derived from maxillary BMSCs enhanced the osteogenesis in iliac BMSCs. Oral Diseases. 2020; 26(1): 131–144. doi: 10.1111/odi.13202
58. Afsartala Z, Hadjighassem M, Shirian S, et al. Advances in Management of Spinal Cord Injury Using Stem Cell-derived Extracellular Vesicles: A Review Study. Basic and Clinical Neuroscience. 2023; 14(4): 443–451. doi: 10.32598/bcn.2022.3430.2
59. Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers. 2021; 13(11): 1852. doi: 10.3390/polym13111852
60. Alarcin E, Bal-Öztürk A, Avci H, et al. Current Strategies for the Regeneration of Skeletal Muscle Tissue. International Journal of Molecular Sciences. 2021; 22(11): 5929. doi: 10.3390/ijms22115929
61. Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: An overview. Biomaterials Science. 2018; 6: 915–946. doi: 10.1039/c7bm00765e
62. Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromolecular Bioscience. 2010; 10(6): 563–579. doi: 10.1002/mabi.200900402
63. Sharma R, Malviya R, Singh S, et al. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels. 2023; 9(5): 430. doi: 10.3390/gels9050430
64. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nature Reviews Materials. 2016; 1. doi: 10.1038/natrevmats.2016.71
65. Kong Y, Duan J, Liu F, et al. Regulation of stem cell fate using nanostructure-mediated physical signals. Chemical Society Reviews. 2021; 50: 12828–12872. doi: 10.1039/d1cs00572c
66. Qiu J, Li J, Wang S, et al. TiO2 Nanorod Array Constructed Nanotopography for Regulation of Mesenchymal Stem Cells Fate and the Realization of Location-Committed Stem Cell Differentiation. Small. 2016; 12(13): 1770–1778. doi: 10.1002/smll.201503946
67. Sistanipour E, Meshkini A, Oveisi H. Catechin-conjugated mesoporous hydroxyapatite nanoparticle: A novel nano-antioxidant with enhanced osteogenic property. Colloids and Surfaces B: Biointerfaces. 2018; 169: 329–339. doi: 10.1016/j.colsurfb.2018.05.046
68. Qiu J, Li D, Mou X, et al. Effects of Graphene Quantum Dots on the Self-Renewal and Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials. 2016; 5(6): 702–710. doi: 10.1002/adhm.201500770
69. Barlian A, Vanya K. Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: Potency and future perspective. Future Science OA. 2021; 8(1). doi: 10.2144/fsoa-2021-0097
70. Xiao Y, Yang S, Sun Y, et al. Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature. International Journal of Nanomedicine. 2024; 19: 12743–12768. doi: 10.2147/ijn.S492020
71. Cong X, Zhang Z, Li H, et al. Nanocarriers for targeted drug delivery in the vascular system: Focus on endothelium. Journal of Nanobiotechnology. 2024; 22: 620. doi: 10.1186/s12951-024-02892-9
72. Blum AP, Kammeyer JK, Rush AM, et al. Stimuli-responsive nanomaterials for biomedical applications. Journal of the American Chemical Society. 2015; 137(6): 2140–2154. doi: 10.1021/ja510147n
73. Huang Y, Guo X, Wu Y, et al. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduction and Targeted Therapy. 2024; 9: 34. doi: 10.1038/s41392-024-01745-z
74. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014; 32: 773–785. doi: 10.1038/nbt.2958
75. Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues. Biotechnology Advances. 2016; 34(4): 422–434. doi: 10.1016/j.biotechadv.2015.12.011
76. Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews. 2021; 174: 504–534. doi: 10.1016/j.addr.2021.05.007
77. Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced Drug Delivery Reviews. 2018; 132: 235–251. doi: 10.1016/j.addr.2018.06.011
78. Zelinka A, Roelofs AJ, Kandel RA, et al. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage. 2022; 30(12): 1547–1560. doi: 10.1016/j.joca.2022.07.012
79. Yang X, Liu P, Zhang Y, et al. Bioprinting-Enabled Biomaterials: A Cutting-Edge Strategy for Future Osteoarthritis Therapy. International Journal of Nanomedicine. 2023; 18: 6213–6232. doi: 10.2147/ijn.S432468
80. Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, et al. Progress in 3D Bioprinting Technology for Osteochondral Regeneration. Pharmaceutics. 2022; 14(8): 1578. doi: 10.3390/pharmaceutics14081578
81. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes & Diseases. 2017; 4(4): 185–195. doi: 10.1016/j.gendis.2017.10.002
82. Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73: 254–271. doi: 10.1016/j.biomaterials.2015.08.045
83. Ma J, Wang Y, Liu J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Advances. 2018; 8: 21712–21727. doi: 10.1039/c8ra03022g
84. Sun J, Yao K, An J, et al. Machine learning and 3D bioprinting. International Journal of Bioprinting. 2023; 9(4): 717. doi: 10.18063/ijb.717
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.