Study on cellular behavior and molecular mechanism of periodontal tissue in vitro
Abstract
Periodontal regeneration is the ultimate goal of periodontal therapy. In the study of constructing periodontal tissue in vitro, attempts are made to simulate the regeneration process of periodontal tissue. The research and clinical application of periodontal ligament stem cells have made many breakthroughs, but they still face many challenges. To achieve true periodontal tissue regeneration, in-depth research on its molecular mechanism and signaling pathway is still needed. Combined with the research progress in recent years, this paper discusses the challenges and possible solutions faced in the process of periodontal tissue regeneration.
References
1. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nature Reviews Disease Primers. 2017; 3(1). doi: 10.1038/nrdp.2017.38
2. Tsai S, Ding Y, Shih M, et al. Systematic review and sequential network meta‐analysis on the efficacy of periodontal regenerative therapies. Journal of Clinical Periodontology. 2020; 47(9): 1108-1120. doi: 10.1111/jcpe.13338
3. Liu Y, Guo L, Li X, et al. Challenges and Tissue Engineering Strategies of Periodontal-Guided Tissue Regeneration. Tissue Engineering Part C: Methods. 2022; 28(8): 405-419. doi: 10.1089/ten.tec.2022.0106
4. Huang GTJ, Gronthos S, Shi S. Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. Journal of Dental Research. 2009; 88(9): 792-806. doi: 10.1177/0022034509340867
5. Zhu W, Liang M. Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells International. 2015; 2015: 1-11. doi: 10.1155/2015/972313
6. Fu QY, Lan XM, Xu RW, et al. Effects of different signaling pathways on osteogenic differentiation of periodontal ligament stem cells. Chinese Journal of Tissue Engineering Research. 2023; 27(24): 3910-3919.
7. Li M, Lv J, Yang Y, et al. Advances of Hydrogel Therapy in Periodontal Regeneration—A Materials Perspective Review. Gels. 2022; 8(10): 624. doi: 10.3390/gels8100624
8. Ejaz I, Ghafoor S. Wnt Signaling Pathway in Oral Lesions. Journal of the Pakistan Medical Association. 2019; (0): 1. doi: 10.5455/jpma.5890
9. Nuñez J, Vignoletti F, Caffesse RG, et al. Cellular therapy in periodontal regeneration. Periodontology 2000. 2019; 79(1): 107-116. doi: 10.1111/prd.12250
10. Mari R, KR, Valiathan M, et al. Accelerating the Orthodontic Treatment Using Periodontally Accelerated Osteogenic Orthodontics (PAOO): A Periodontic-Orthodontic Interrelationship. Cureus. 2024; 16(6): e62216. doi: 10.7759/cureus.62216
11. Eldeeb D, Ikeda Y, Hojo H, et al. Unraveling the hidden complexity: Exploring dental tissues through single-cell transcriptional profiling. Regenerative Therapy. 2024; 27: 218-229. doi: 10.1016/j.reth.2024.03.023
12. Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus. 2024; 16(2): e54115. doi: 10.7759/cureus.54115
13. Chen Y, Wang H, Ni Q, et al. B-Cell–Derived TGF-β1 Inhibits Osteogenesis and Contributes to Bone Loss in Periodontitis. Journal of Dental Research. 2023; 102(7): 767-776. doi: 10.1177/00220345231161005
14. Yang H, Fan Z. The effects and mechanisms of extracellular matrix proteins on congenital tooth malformation. Biomedical Translators. 2023; 4(3): 47-56. doi: 10.12287/j.issn.2096-8965.20230308
15. Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Advanced Drug Delivery Reviews. 2016; 97: 4-27. doi: 10.1016/j.addr.2015.11.001
16. Keser E, Naini FB. Accelerated orthodontic tooth movement: surgical techniques and the regional acceleratory phenomenon. Maxillofacial Plastic and Reconstructive Surgery. 2022; 44(1). doi: 10.1186/s40902-021-00331-5
17. Jia D. Clinical study on the effect of lingual retainers and press film retainers on periodontal tissues [Master’s thesis]. Xinjiang Medical University; 2016.
18. Ceylan M, Schoenmaker T, Hogervorst J, et al. Osteogenic Differentiation of Human Gingival Fibroblasts Inhibits Osteoclast Formation. Cells. 2024; 13(13): 1090. doi: 10.3390/cells13131090
19. Bao J, Yang Y, Xia M, et al. Wnt signaling: An attractive target for periodontitis treatment. Biomedicine & Pharmacotherapy. 2021; 133: 110935. doi: 10.1016/j.biopha.2020.110935
20. Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response. Cell. 2014; 158(1): 157-170. doi: 10.1016/j.cell.2014.06.013
21. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research. 2002; 12(1): 9-18. doi: 10.1038/sj.cr.7290105
22. Solinas G, Becattini B. PI3K and AKT at the Interface of Signaling and Metabolism. Current Topics in Microbiology and Immunology. 2022; 436: 311-336. doi: 10.1007/978-3-031-06566-8_13
23. Yin C. PI3k/Akt signaling pathway plays a role in periodic tensile stress-mediated apoptosis of periodontal ligament fibroblasts [Master’s thesis]. Qingdao University; 2012.
24. Yang P, Song A. The Effect of TNF-w/NF-kB Signaling Pathway on the Development and Regeneration of Periodontal Disease and Its Intervention. Journal of Stomatology. 1003-9872(2019)01-0001-05.
25. Brown DD. Gene Expression in Eukaryotes. Science. 1981; 211(4483): 667-674. doi: 10.1126/science.6256857
26. Luo W, Zhao L, Yang L, et al. Advances in the Mechanism Study of Signal Transduction and Transcriptional Activation Factor 3 in Tooth Development. Chinese Journal of Stomatology Research. [J/OL]. Chinese Journal of Stomatological Research (Electronic Edition). 2024; 18(6).
27. Gayon J. From Mendel to epigenetics: History of genetics. Comptes Rendus Biologies. 2016; 339(7-8): 225-230. doi: 10.1016/j.crvi.2016.05.009
28. Li Y. Modern epigenetics methods in biological research. Methods. 2021; 187: 104-113. doi: 10.1016/j.ymeth.2020.06.022
29. Yuan W, Ferreira L de AQ, Yu B, et al. Dental-derived stem cells in tissue engineering: the role of biomaterials and host response. Regenerative Biomaterials. 2023; 11. doi: 10.1093/rb/rbad100
30. Palkowitz AL, Tuna T, Bishti S, et al. Biofunctionalization of Dental Abutment Surfaces by Crosslinked ECM Proteins Strongly Enhances Adhesion and Proliferation of Gingival Fibroblasts. Advanced Healthcare Materials. 2021; 10(10). doi: 10.1002/adhm.202100132
31. Murphy JM, Rodriguez YAR, Jeong K, et al. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment. Experimental & Molecular Medicine. 2020; 52(6): 877-886. doi: 10.1038/s12276-020-0447-4
32. Sato T, Anada T, Hamai R, et al. Culture of hybrid spheroids composed of calcium phosphate materials and mesenchymal stem cells on an oxygen-permeable culture device to predict in vivo bone forming capability. Acta Biomaterialia. 2019; 88: 477-490. doi: 10.1016/j.actbio.2019.03.001
33. Miceli V, Pampalone M, Vella S, et al. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells International. 2019; 2019: 1-16. doi: 10.1155/2019/7486279
34. Kim J, Adachi T. Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-92607-z
35. Jauković A, Abadjieva D, Trivanović D, et al. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Reviews and Reports. 2020; 16(5): 853-875. doi: 10.1007/s12015-020-10006-9
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.