Pre- or co-activation of leg muscles is associated with risk of non-contact knee injury during a single-leg landing in badminton
Abstract
Objectives: The present study evaluated if lower limb muscle pre- and co-activation was associated with the biomechanics of knee joint control during backward step single-leg landings following a badminton overhead stroke. Methods: Three-dimensional biomechanics data of the knee joint and electromyographic data of lower limb muscles were collected from 34 badminton players. Linear regression analysis of gluteus maximus, quadriceps, hamstrings, gastrocnemius pre-and muscle co-activation in relation to peak knee flexion angle, knee valgus angle and moment, peak extension moment, and tibial anterior shear force in participants 100 ms before initial touchdown were analyzed. Results: Increased quadriceps pre-activation predicts increased knee valgus angle (R2 = 0.48, P < 0.001). Greater Lateral Hamstring/Quadriceps co-contraction predicts increased peak knee extension moment (R2 = 0.39, P < 0.001). Greater lateral gastrocnemius/quadriceps co-contraction predicts an increased peak knee valgus moment (R2 = 0.20, P = 0.0073). No EMG pre-activity parameters were predictors (P > 0.05) for knee flexion angle and anterior tibial shear force. Conclusion: These findings suggested that pre-activation of the quadriceps or co-contraction ratio of the lateral hamstrings to the quadriceps or lateral gastrocnemius to the quadriceps would be positively associated with the risk of non-contact anterior cruciate ligament (ACL) injuries during a single-leg landing following a badminton backward step overhead stroke.
References
1. Phomsoupha M, Laffaye G. The Science of Badminton: Game Characteristics, Anthropometry, Physiology, Visual Fitness and Biomechanics. Sports Medicine. 2014; 45(4): 473-495. doi: 10.1007/s40279-014-0287-2
2. Shariff AH, George J, Ramlan AA. Musculoskeletal injuries among Malaysian badminton players. Singapore Medical Journal. 2009; 50(11): 1095-1097.
3. Krøner K, Schmidt SA, Nielsen AB, et al. Badminton injuries. British Journal of Sports Medicine. 1990; 24(3): 169-172. doi: 10.1136/bjsm.24.3.169
4. Stojanovic MD, Ostojic SM. Preventing ACL Injuries in Team-Sport Athletes: A Systematic Review of Training Interventions. Research in Sports Medicine. 2012; 20(3-4): 223-238. doi: 10.1080/15438627.2012.680988
5. Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of Anterior Cruciate Ligament Injury in Basketball. The American Journal of Sports Medicine. 2007; 35(3): 359-367. doi: 10.1177/0363546506293899
6. Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. British Journal of Sports Medicine. 2005; 39(3): 127-131. doi: 10.1136/bjsm.2004.010900
7. Boden BP, Dean GS, Feagin JA, et al. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics. 2000; 23(6): 573-578. doi: 10.3928/0147-7447-20000601-15
8. Kimura Y, Ishibashi Y, Tsuda E, et al. Mechanisms for anterior cruciate ligament injuries in badminton. British Journal of Sports Medicine. 2010; 44(15): 1124-1127. doi: 10.1136/bjsm.2010.074153
9. Wilczyński B, Zorena K, Ślęzak D. Dynamic Knee Valgus in Single-Leg Movement Tasks. Potentially Modifiable Factors and Exercise Training Options. A Literature Review. International Journal of Environmental Research and Public Health. 2020; 17(21): 8208. doi: 10.3390/ijerph17218208
10. Tseng HJ, Lo HL, Lin YC, et al. Analyze the Differential Rates of Anterior Cruciate Ligament Injuries Between Men and Women by Biomechanical Study of Single-Leg Landing in Badminton. Indian Journal of Orthopaedics. 2021; 55(S2): 409-417. doi: 10.1007/s43465-021-00421-6
11. Lloyd DG. Rationale for Training Programs to Reduce Anterior Cruciate Ligament Injuries in Australian Football. Journal of Orthopaedic & Sports Physical Therapy. 2001; 31(11): 645-654. doi: 10.2519/jospt.2001.31.11.645
12. Nasseri A, Lloyd DG, Bryant AL, et al. Mechanism of Anterior Cruciate Ligament Loading during Dynamic Motor Tasks. Medicine & Science in Sports & Exercise. 2021; 53(6): 1235-1244. doi: 10.1249/mss.0000000000002589
13. Ellenberger L, Casutt S, Fröhlich S, et al. Thigh muscle activation patterns and dynamic knee valgus at peak ground reaction force during drop jump landings: Reliability, youth competitive alpine skiing-specific reference values and relation to knee overuse complaints. Journal of Science and Medicine in Sport. 2021; 24(12): 1230-1234. doi: 10.1016/j.jsams.2021.06.006
14. Shimokochi Y, Shultz SJ. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. Journal of Athletic Training. 2008; 43(4): 396-408. doi: 10.4085/1062-6050-43.4.396
15. Konow N, Roberts TJ. Prepared for landing: A simple activation strategy scales muscle force to landing height. Journal of Biomechanics. 2024; 165: 112022. doi: 10.1016/j.jbiomech.2024.112022
16. Moritz CT, Greene SM, Farley CT. Neuromuscular changes for hopping on a range of damped surfaces. Journal of Applied Physiology. 2004; 96(5): 1996-2004. doi: 10.1152/japplphysiol.00983.2003
17. Gillis GB, Akella T, Gunaratne R. Do toads have a jump on how far they hop? Pre-landing activity timing and intensity in forelimb muscles of hoppingBufo marinus. Biology Letters. 2010; 6(4): 486-489. doi: 10.1098/rsbl.2009.1005
18. Hu Z, Kim Y, Dong T, et al. Correlation between gluteus muscle activity and dynamic control of the knee joint in a single-leg landing task in badminton. International Journal of Performance Analysis in Sport. 2023; 23(6): 429-440. doi: 10.1080/24748668.2023.2249760
19. Hobara H, Inoue K, Muraoka T, et al. Leg stiffness adjustment for a range of hopping frequencies in humans. Journal of Biomechanics. 2010; 43(3): 506-511. doi: 10.1016/j.jbiomech.2009.09.040
20. Palmieri-Smith RM, Wojtys EM, Ashton-Miller JA. Association between preparatory muscle activation and peak valgus knee angle. Journal of Electromyography and Kinesiology. 2008; 18(6): 973-979. doi: 10.1016/j.jelekin.2007.03.007
21. Hu Z, Zhang Y, Dong T, et al. Gender Differences in Neuromuscular Control during the Preparation Phase of Single-Leg Landing Task in Badminton. Journal of Clinical Medicine. 2023; 12(9): 3296. doi: 10.3390/jcm12093296
22. Zhang Y, Hu Z, Li B, et al. Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton. Bioengineering. 2023; 10(6): 631. doi: 10.3390/bioengineering10060631
23. Brown TN, McLean SG, Palmieri-Smith RM. Associations between lower limb muscle activation strategies and resultant multi-planar knee kinetics during single leg landings. Journal of Science and Medicine in Sport. 2014; 17(4): 408-413. doi: 10.1016/j.jsams.2013.05.010
24. Hu Z, Kim Y, Zhang Y, et al. Correlation of Lower Limb Muscle Activity with Knee Joint Kinematics and Kinetics during Badminton Landing Tasks. International Journal of Environmental Research and Public Health. 2022; 19(24): 16587. doi: 10.3390/ijerph192416587
25. Besier TF, Lloyd DG, Ackland TR. Muscle Activation Strategies at the Knee during Running and Cutting Maneuvers. Medicine & Science in Sports & Exercise. 2003; 35(1): 119-127. doi: 10.1097/00005768-200301000-00019
26. Isaac DL, Beard DJ, Price AJ, et al. In-vivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. The Knee. 2005; 12(1): 25-31. doi: 10.1016/j.knee.2004.01.002
27. Serpell BG, Scarvell JM, Pickering MR, et al. Medial and lateral hamstrings and quadriceps co-activation affects knee joint kinematics and ACL elongation: a pilot study. BMC Musculoskeletal Disorders. 2015; 16(1). doi: 10.1186/s12891-015-0804-y
28. Kimura Y, Ishibashi Y, Tsuda E, et al. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton. British Journal of Sports Medicine. 2011; 46(3): 207-213. doi: 10.1136/bjsm.2010.080861
29. Phillips DA, Buckalew BR, Keough B, et al. Preparing to Land: Hamstring Preactivation Is Higher in Females and Is Inhibited by Fatigue. Journal of Applied Biomechanics. 2023; 39(6): 370-376. doi: 10.1123/jab.2022-0287
30. de Britto MA, Carpes FP, Koutras G, et al. Quadriceps and hamstrings prelanding myoelectric activity during landing from different heights among male and female athletes. Journal of Electromyography and Kinesiology. 2014; 24(4): 508-512. doi: 10.1016/j.jelekin.2014.04.009
31. Ford KR, Myer GD, Schmitt LC, et al. Preferential Quadriceps Activation in Female Athletes With Incremental Increases in Landing Intensity. Journal of Applied Biomechanics. 2011; 27(3): 215-222. doi: 10.1123/jab.27.3.215
32. Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine. Journal of Biomechanics. 2002; 35(4): 543-548. doi: 10.1016/S0021-9290(01)00222-6
33. Bell AL, Pedersen DR, Brand RA. A Comparison of the Accuracy of Several Hip Center Location Prediction Methods. Journal of Biomechanics. 1990; 23(6): 617-621. doi: 10.1016/0021-9290(90)90054-7
34. Rudolph KS, Axe MJ, Buchanan TS, et al. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2001; 9(2): 62-71. doi: 10.1007/s001670000166
35. Quatman CE, Kiapour AM, Demetropoulos CK, et al. Preferential Loading of the ACL Compared With the MCL During Landing. The American Journal of Sports Medicine. 2013; 42(1): 177-186. doi: 10.1177/0363546513506558
36. Fukuda Y, Woo SLY, Loh JC, et al. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2003; 21(6): 1107–1112. doi: 10.1016/S0736-0266(03)00084-6
37. Lloyd DG, & Buchanan TS. Strategies of muscular support of varus and valgus isometric loads at the human knee. Journal of biomechanics. 2001; 34(10): 1257–1267. doi: 10.1016/s0021-9290(01)00095-1
38. De Bleecker C, Vermeulen S, De Blaiser C, et al. Relationship Between Jump-Landing Kinematics and Lower Extremity Overuse Injuries in Physically Active Populations: A Systematic Review and Meta-Analysis. Sports Medicine. 2020; 50(8): 1515-1532. doi: 10.1007/s40279-020-01296-7
39. Chappell JD, Creighton RA, Giuliani C, et al. Kinematics and Electromyography of Landing Preparation in Vertical Stop-Jump. The American Journal of Sports Medicine. 2007; 35(2): 235-241. doi: 10.1177/0363546506294077
40. Heinert BL, Collins T, Tehan C, et al. Effect of Hamstring-to-quadriceps Ratio on Knee Forces in Females During Landing. International Journal of Sports Medicine. 2020; 42(03): 264-269. doi: 10.1055/a-1128-6995
41. Markolf KL, O’Neill G, Jackson SR, et al. Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments. The American Journal of Sports Medicine. 2004; 32(5): 1144-1149. doi: 10.1177/0363546503262198
42. Li G, DeFrate LE, Zayontz S, et al. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. Journal of Orthopaedic Research. 2004; 22(4): 801-806. doi: 10.1016/j.orthres.2003.11.011
43. Mengarelli A, Gentili A, Strazza A, et al. Co-activation patterns of gastrocnemius and quadriceps femoris in controlling the knee joint during walking. Journal of Electromyography and Kinesiology. 2018; 42: 117-122. doi: 10.1016/j.jelekin.2018.07.003
44. Hung MH, Chang CY, Lin KC, et al. The Applications of Landing Strategies in Badminton Footwork Training on a Backhand Side Lateral Jump Smash. Journal of Human Kinetics. 2020; 73(1): 19-31. doi: 10.2478/hukin-2020-0002
45. Lopes TJA, Simic M, Myer GD, et al. The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis. The American Journal of Sports Medicine. 2017; 46(6): 1492-1499. doi: 10.1177/0363546517716930
46. Fonseca M, Gasparutto X, Leboeuf F, et al. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model—A sensitivity study. Masani K, ed. PLOS ONE. 2020; 15(4): e0232064. doi: 10.1371/journal.pone.0232064
47. Boden BP, Sheehan FT. Mechanism of non‐contact ACL injury: OREF Clinical Research Award 2021. Journal of Orthopaedic Research. 2022; 40(3): 531-540. doi: 10.1002/jor.25257
48. Sahabuddin FNA, Jamaludin NI, Amir NH, et al. The effects of hip- and ankle-focused exercise intervention on dynamic knee valgus: a systematic review. PeerJ. 2021; 9: e11731. doi: 10.7717/peerj.11731
Copyright (c) 2025 Yanjia Xu, Hyun-Min Choi, Zhe Hu, Sukwon Kim, Ting Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.