Advancements and challenges in Lithium-Sulfur (Li-S) batteries: A path toward the next generation of energy storage
Abstract
Lithium-sulfur (Li-S) batteries have emerged as a promising next-generation energy storage technology, particularly for electric vehicles (EVs) and large-scale energy storage applications. With the potential for significantly higher energy densities, lower material costs, and improved environmental sustainability, Li-S batteries offer several advantages over traditional lithium-ion (Li-ion) batteries. However, challenges such as low cycle life, poor electrical conductivity, and electrolyte instability have hindered their widespread commercial adoption. This review explores the key benefits of Li-S batteries, including their high theoretical energy density, cost-effectiveness, and environmental friendliness, as well as the technical hurdles that need to be addressed for their practical use. Recent advancements in materials and technology, such as nanostructured sulfur cathodes, polysulfide immobilization, and solid-state electrolytes, are discussed as potential solutions to these challenges. The article concludes by highlighting the future outlook of Li-S batteries, focusing on ongoing research efforts and the potential for Li-S technology to revolutionize energy storage in the coming years.
References
1. Gao Y, Pan Z, Sun J, et al. High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters. 2022; 14(1). doi: 10.1007/s40820-022-00844-2
2. Xu J, Cai X, Cai S, et al. High‐Energy Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications. Energy & Environmental Materials. 2023; 6(5). doi: 10.1002/eem2.12450
3. Feng Y, Wang G, Ju J, et al. Towards high energy density Li–S batteries with high sulfur loading: From key issues to advanced strategies. Energy Storage Materials. 2020; 32: 320-355. doi: 10.1016/j.ensm.2020.06.043
4. Raza H, Bai S, Cheng J, et al. Li-S Batteries: Challenges, Achievements and Opportunities. Electrochemical Energy Reviews. 2023; 6(1). doi: 10.1007/s41918-023-00188-4
5. Ryu J, Song W, Lee S, et al. A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials. 2019; 30(2). doi: 10.1002/adfm.201902499
6. Yang Z, Huang H, Lin F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Advanced Energy Materials. 2022; 12(26). doi: 10.1002/aenm.202200383
7. Yang C, Li P, Yu J, et al. Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy. 2020; 201: 117718. doi: 10.1016/j.energy.2020.117718
8. Zhou G, Chen H, & Cui Y. Formulating energy density for designing practical lithium–sulfur batteries. Nature Energy. 2022; 7: 312–319. doi: 10.1038/s41560-022-01001-0
9. Zhong M, Guan J, Sun J, et al. A Cost- and Energy Density-Competitive Lithium-Sulfur Battery. Energy Storage Materials. 2021; 41: 588-598. doi: 10.1016/j.ensm.2021.06.037
10. Liang Z, Shen J, Xu X, et al. Advances in the Development of Single‐Atom Catalysts for High‐Energy‐Density Lithium–Sulfur Batteries. Advanced Materials. 2022; 34(30). doi: 10.1002/adma.202200102
11. Wu X, Ji G, Wang J, et al. Toward Sustainable All Solid‐State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Advanced Materials. 2023; 35(51). doi: 10.1002/adma.202301540
12. Fang R, Zhao S, Sun Z, et al. More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials. 2017; 29(48). doi: 10.1002/adma.201606823
13. Zhao C, Amine K, Xu GL. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium–Sulfur Batteries. Accounts of Chemical Research. 2023; 56(19): 2700-2712. doi: 10.1021/acs.accounts.3c00400
14. Liu Y, Liu S, Li G, et al. Strategy of Enhancing the Volumetric Energy Density for Lithium–Sulfur Batteries. Advanced Materials. 2020; 33(8). doi: 10.1002/adma.202003955
15. Li S, Wang K, Zhang G, et al. Fast Charging Anode Materials for Lithium‐Ion Batteries: Current Status and Perspectives. Advanced Functional Materials. 2022; 32(23). doi: 10.1002/adfm.202200796
16. Wang Y, Lai W, Chou S, et al. Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries. Advanced Materials. 2020; 32(18). doi: 10.1002/adma.201903952
17. Huang Y, Lin L, Zhang C, et al. Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li–S Batteries. Advanced Science. 2022; 9(12): 2106004. doi: 10.1002/advs.202106004
18. Pan H, Cheng Z, He P, Zhou H. A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy Fuels. 2020; 34(10): 11942–11961. doi: 10.1021/acs.energyfuels.0c02647
19. Geng H, Peng Y, Qu L, et al. Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials. 2020; 10(10). doi: 10.1002/aenm.201903030
20. Huang L, Li J, Liu B, et al. Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials. 2020; 30(22): 1910375. doi: 10.1002/adfm.201910375
21. Chen L, Yu H, Li W, et al. Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A. 2020; 8(21): 10709-10735. doi: 10.1039/d0ta03028g
22. Pan H, Cheng Z, Zhou Z, et al. Boosting Lean Electrolyte Lithium–Sulfur Battery Performance with Transition Metals: A Comprehensive Review. Nano-Micro Letters. 2023; 15(1). doi: 10.1007/s40820-023-01137-y
23. Liang Y, Liu H, Wang G, et al. Challenges, interface engineering, and processing strategies toward practical sulfide‐based all‐solid‐state lithium batteries. InfoMat. 2022; 4(5). doi: 10.1002/inf2.12292
24. Eng AYS, Kumar V, Zhang Y, et al. Room‐Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials. 2021; 11(14). doi: 10.1002/aenm.202003493
25. Du L, Wu R, Wu Z, et al. Research progress of all-solid-state lithium–sulfur batteries with sulfide solid electrolytes: materials, interfaces, challenges, and prospects. Materials Chemistry Frontiers. 2023; 7(22): 5760-5785. doi: 10.1039/D3QM00607G
26. Bandyopadhyay S, Nandan B. A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries. Materials Today Energy. 2022; 31: 101201. doi: 10.1016/j.mtener.2022.101201
27. Nanda S, Manthiram A. Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling. Energy & Environmental Science. 2020; 13(8): 2501-2514. doi: 10.1039/d0ee01074j
28. Wen G, Rehman S, Tranter TG, et al. Insights into Multiphase Reactions during Self-Discharge of Li-S Batteries. Chemistry of Materials. 2020; 32(11): 4518-4526. doi: 10.1021/acs.chemmater.0c00235
29. de Vasconcelos LS, Xu R, Xu Z, et al. Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews. 2022; 122(15): 13043-13107. doi: 10.1021/acs.chemrev.2c00002
30. Shaibani M, Mirshekarloo MS, Singh R, et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Science Advances. 2020; 6(1). doi: 10.1126/sciadv.aay2757
31. Tiwari S, Yadav V, Poonia AK, et al. Exploring advances in sulfur composite cathodes for lithium-sulfur batteries: A comprehensive review. Journal of Energy Storage. 2024; 94: 112347. doi: 10.1016/j.est.2024.112347
32. Han J, Li H, Kong D, et al. Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters. 2020; 5(6): 1986-1995. doi: 10.1021/acsenergylett.0c00851
33. Tan J, Matz J, Dong P, et al. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Materials. 2021; 42: 645-678. doi: 10.1016/J.ENSM.2021.08.012
34. Sang P, Chen Q, Wang DY, et al. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chemical Reviews. 2023; 123(4): 1262-1326. doi: 10.1021/acs.chemrev.2c00739
35. Suzanowicz A, Mei C, Mandal B. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries. 2022; 8(5): 45. doi: 10.3390/batteries8050045
36. Yan R, Ma T, Cheng M, et al. Metal–Organic‐Framework‐Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials. 2021; 33(27). doi: 10.1002/adma.202008784
37. Cheng M, Yan R, Yang Z, et al. Polysulfide Catalytic Materials for Fast‐Kinetic Metal–Sulfur Batteries: Principles and Active Centers. Advanced Science. 2021; 9(2). doi: 10.1002/advs.202102217
38. Zheng ZJ, Ye H, Guo ZP. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy & Environmental Science. 2021; 14(4): 1835-1853. doi: 10.1039/d0ee03181j
39. Wu J, Liu S, Han F, et al. Lithium/Sulfide All‐Solid‐State Batteries using Sulfide Electrolytes. Advanced Materials. 2020; 33(6). doi: 10.1002/adma.202000751
40. Wang C, Liang J, Zhao Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science. 2021; 14(5): 2577-2619. doi: 10.1039/d1ee00551k
41. Kim KJ, Balaish M, Wadaguchi M, et al. Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Advanced Energy Materials. 2020; 11(1). doi: 10.1002/aenm.202002689
42. Yang L, Li H, Li Q, et al. Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research. 2020; 59(48): 20979-21000. doi: 10.1021/acs.iecr.0c04960
43. Yang L, Li Q, Wang Y, et al. A review of cathode materials in lithium-sulfur batteries. Ionics. 2020; 26: 5299–5318. doi: 10.1007/s11581-020-03767-3
44. Zhang Q, Huang Q, Hao S, et al. Polymers in Lithium–Sulfur Batteries. Advanced Science. 2021; 9(2). doi: 10.1002/advs.202103798
45. Zhang M, Chen W, Xue L, et al. Adsorption-Catalysis Design in the Lithium-Sulfur Battery. Advanced Energy Materials. 2020; 10(2): 1903008. doi: 10.1002/aenm.201903008
46. Zeng L, Zhu J, Chu PK, et al. Catalytic Effects of Electrodes and Electrolytes in Metal–Sulfur Batteries: Progress and Prospective. Advanced Materials. 2022; 34(49): 2204636. doi: 10.1002/adma.202204636
47. Jeoun Y, Kim MS, Lee SH, et al. Lean-electrolyte lithium-sulfur batteries: Recent advances in the design of cell components. Chemical Engineering Journal. 2022; 450: 138209. doi: 10.1016/j.cej.2022.138209
48. Yang T, Xia J, Piao Z, et al. Graphene-Based Materials for Flexible Lithium–Sulfur Batteries. ACS Nano. 2021; 15(9): 13901–13923. doi: 10.1021/acsnano.1c03183
49. Xiao Q, Yang J, Wang X, et al. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. Carbon Energy. 2021; 3(2): 271-302. doi: 10.1002/cey2.96
50. Zhang Z, Kong L, Liu S, et al. A High‐Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium–Sulfur Battery. Advanced Energy Materials. 2017; 7(11). doi: 10.1002/aenm.201602543
51. Li Z, Huang Y, Yuan L, et al. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon. 2015; 92: 41-63. doi: 10.1016/j.carbon.2015.03.008
52. Park JH, Choi WY, Yang J, et al. Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery. Carbon. 2021; 172: 624-636. doi: 10.1016/j.carbon.2020.10.078
53. Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews. 2023; 481: 215055. doi: 10.1016/j.ccr.2023.215055
54. Liu J, Zhou Y, Yan T, et al. Perspectives of High-Performance Li–S Battery Electrolytes. Advanced Functional Materials. 2023: 34(4): 2309625. doi: 10.1002/adfm.202309625
55. Zhao M, Li BQ, Peng HJ, et al. Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie International Edition. 2020; 59(31): 12636-12652. doi: 10.1002/anie.201909339
56. Li S, Zhang W, Zheng J, et al. Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid-State Electrolytes. Advanced Energy Materials. 2021; 11(2): 2000779. doi: 10.1002/aenm.202000779
57. Dorai A, Kawamura J, & Omata T. Visualization of polysulfide dissolution in lithium-sulfur batteries using in-situ NMR microimaging. Electrochemistry Communications. 2022; 141: 107360. doi: 10.1016/j.elecom.2022.107360
58. Lin Y, Huang S, Zhong L, et al. Organic liquid electrolytes in Li-S batteries: actualities and perspectives. Energy Storage Materials. 2021; 34: 128-147. doi: 10.1016/J.ENSM.2020.09.009
59. Chen S, Zhang M, Zou P, et al. Historical development and novel concepts on electrolytes for aqueous rechargeable batteri es. Energy & Environmental Science. 2022; 15(5): 1805-1839. doi: 10.1039/D2EE00004K
60. Baloch M, Vizintin A, Chellappan RK, et al. Application of Gel Polymer Electrolytes Based on Ionic Liquids in Lithium-Sulfur Batteries. Journal of The Electrochemical Society. 2016; 163(10): A2390-A2398. doi: 10.1149/2.1151610jes
61. Jin J, Wen Z, Liang X, et al. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics. 2012; 225: 604-607. doi: 10.1016/j.ssi.2012.03.012
62. Ding B, Wang J, Fan Z, et al. Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Materials Today. 2020; 40: 114-131. doi: 10.1016/j.mattod.2020.05.020
63. Wu F, Zhang K, Liu Y, et al. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials. 2020; 33: 26-54. doi: 10.1016/j.ensm.2020.08.002
64. Tan DHS, Wu EA, Nguyen H, et al. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Letters. 2019; 4(10): 2418-2427. doi: 10.1021/acsenergylett.9b01693
65. Wang J, Wang H, Jia S, et al. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries. Journal of Energy Storage. 2023; 72: 108372. doi: 10.1016/j.est.2023.108372
66. Suriyakumar S, Stephan AM. Mitigation of Polysulfide Shuttling by Interlayer/Permselective Separators in Lithium–Sulfur Batteries. ACS Applied Energy Materials. 2020; 3(9): 8095-8129. doi: 10.1021/acsaem.0c01354
67. Sun J, Zhang K, Fu Y, et al. Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Research. 2022; 16(3): 3814-3822. doi: 10.1007/s12274-022-4361-z
68. Kim S, Kwon YM, Cho KY, et al. Metal iodides (LiI, MgI2, AlI3, TiI4, and SnI4) potentiality as electrolyte additives for Li−S batteries. Electrochimica Acta. 2021; 391: 138927. doi: 10.1016/j.electacta.2021.138927
69. Lian J, Guo W, Fu Y. Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li–S Batteries. Journal of the American Chemical Society. 2021; 143(29): 11063-11071. doi: 10.1021/jacs.1c04222
70. Han Z, Li S, Wu Y, et al. Challenges and key parameters in exploring the cyclability limitation of practical lithium–sulfur batteries. Journal of Materials Chemistry A. 2021; 9(43): 24215-24240. doi: 10.1039/d1ta06499a
71. Li J, Niu Z, Guo C, et al. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry. 2021; 54: 434-451. doi: 10.1016/j.jechem.2020.06.009
72. Zhou L, Danilov DL, Eichel R, et al. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials. 2020; 11(15). doi: 10.1002/aenm.202001304
73. Gong X, Song Y, Zhao N, et al. Mofs hybridized carbon matrix as multi-functional cathodic interlayer for lithium-sulfur batteries. Coordination Chemistry Reviews. 2024; 512: 215877. doi: 10.1016/j.ccr.2024.215877
74. Wang F, Han Y, Feng X, et al. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. International Journal of Molecular Sciences. 2023; 24(8): 7291. doi: 10.3390/ijms24087291
75. Kwon Y, Choi YS, Wang Q, et al. Clarifying the Role of Ordered Mesoporous Carbon on a Separator for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials. 2023; 6(19): 9975-9984. doi: 10.1021/acsaem.3c01523
76. Cai G, Yan P, Zhang L, et al. Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews. 2021; 121(20): 12278-12326. doi: 10.1021/acs.chemrev.1c00243
77. Kang X, Di Bernardo I, Yang H, et al. Metal–organic framework microdomains in 3D conductive host as polysulfide inhibitor for fast, long-cycle Li–S batteries. Applied Surface Science. 2021; 535: 147680. doi: 10.1016/j.apsusc.2020.147680
78. Duan Y, Bai X, Yu T, et al. Research progress and prospect in typical sulfide solid-state electrolytes. Journal of Energy Storage. 2022; 55: 105382. doi: 10.1016/j.est.2022.105382
79. Wang JC, Zhao LL, Zhang N, et al. Interfacial stability between sulfide solid electrolytes and lithium anodes: Challenges, strategies and perspectives. Nano Energy. 2024; 123: 109361. doi: 10.1016/j.nanoen.2024.109361
80. Jaumaux P, Wu J, Shanmukaraj D, et al. Non‐Flammable Liquid and Quasi‐Solid Electrolytes toward Highly‐Safe Alkali Metal‐Based Batteries. Advanced Functional Materials. 2020; 31(10). doi: 10.1002/adfm.202008644
81. Wang H, Sheng L, Yasin G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Materials. 2020; 33: 188-215. doi: 10.1016/j.ensm.2020.08.014
82. Liu G, Sun Q, Li Q, et al. Electrolyte Issues in Lithium–Sulfur Batteries: Development, Prospect, and Challenges. Energy & Fuels. 2021; 35(13): 10405-10427. doi: 10.1021/acs.energyfuels.1c00990
83. Hong X, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. Journal of Energy Chemistry. 2020; 42: 144-168. doi: 10.1016/j.jechem.2019.07.001
84. Zhang T, Ma C, Wang R, et al. Electrocatalysts composed of amorphous red phosphorous nanosheets coupled with carboxylic group carbon nanotubes for Li-S batteries. Journal of Energy Storage. 2024; 77: 109916. doi: 10.1016/j.est.2023.109916
85. Zhao F, Xue J, Shao W, et al. Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies. Journal of Energy Chemistry. 2023; 80: 625-657. doi: 10.1016/j.jechem.2023.02.009
86. Zhang J, Dong Z, Wang X, et al. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries. Journal of Power Sources. 2014; 270: 1-8. doi: 10.1016/j.jpowsour.2014.07.089
87. Wei P, Fan M, Chen H, et al. High-capacity graphene/sulfur/polyaniline ternary composite cathodes with stable cycling performance. Electrochimica Acta. 2015; 174: 963-969. doi: 10.1016/j.electacta.2015.06.052
88. Tomer VK, Malik R, Tjong J, et al. Recent advances in plant-derived porous carbon for lithium–sulfur batteries. Journal of Energy Storage. 2024; 99: 113186. doi: 10.1016/j.est.2024.113186
89. Bora M, Bhattacharjya D, Saikia BK, et al. Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy & Fuels. 2021; 35(22): 18285-18307. doi: 10.1021/acs.energyfuels.1c02518
90. Haruna A, Dönmez KB, Hooshmand S, et al. armony of nanosystems: Graphitic carbon nitride/carbon nanomaterial hybrid architectures for energy storage in supercapacitors and batteries. Carbon. 2024; 226: 119177. doi: 10.1016/j.carbon.2024.119177
91. Khodabakhshi S, Fulvio PF, Andreoli E. Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon. 2020; 162: 604-649. doi: 10.1016/j.carbon.2020.02.058
92. Hong X, Liu Y, Li Y, et al. Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithium-Sulfur Batteries. Polymers. 2020; 12(2): 331. doi: 10.3390/polym12020331
93. Goyal M, Singh K, Bhatnagar N. Conductive polymers: A multipurpose material for protecting coating. Progress in Organic Coatings. 2024; 187: 108083. doi: 10.1016/j.porgcoat.2023.108083
94. Zheng J, Gu M, Chen H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. Journal of Materials Chemistry A. 2013; 1(29): 8464. doi: 10.1039/c3ta11553d
95. Pal U, Girard GMA, O’Dell LA, et al. Improved Li-Ion Transport by DME Chelation in a Novel Ionic Liquid-Based Hybrid Electrolyte for Li–S Battery Application. The Journal of Physical Chemistry C. 2018; 122(26): 14373-14382. doi: 10.1021/acs.jpcc.8b03909
96. Qian J, Jin B, Li Y, et al. Research progress on gel polymer electrolytes for lithium-sulfur batteries. Journal of Energy Chemistry. 2021; 56: 420-437. doi: 10.1016/j.jechem.2020.08.026
97. Yang Q, Deng N, Chen J, et al. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chemical Engineering Journal. 2021; 413: 127427. doi: 10.1016/j.cej.2020.127427
98. Hwang JY, Park H, Kim H, et al. Advanced Cathodes for Practical Lithium–Sulfur Batteries. Accounts of Materials Research. 2025; 6(2): 245–258. doi: 10.1021/accountsmr.4c00368
99. Shi C, Yu M. Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials. 2023; 57: 429-459. doi: 10.1016/j.ensm.2023.02.031
100. Gao G, Yang X, Bi J, et al. Advanced engineering strategies for Li2S cathodes in lithium–sulfur batteries. Journal of Materials Chemistry A. 2023; 11(48): 26318-26339. doi: 10.1039/d3ta06057h
101. Zhou G, Xu L, Hu G, et al. Nanowires for Electrochemical Energy Storage. Chemical Reviews. 2019; 119(20): 11042-11109. doi: 10.1021/acs.chemrev.9b00326
102. Liu K, Zhao H, Ye D, et al. Recent progress in organic Polymers-Composited sulfur materials as cathodes for Lithium-Sulfur battery. Chemical Engineering Journal. 2021; 417: 129309. doi: 10.1016/j.cej.2021.129309
103. Chen X, Zhao C, Yang K, et al. Conducting Polymers Meet Lithium–Sulfur Batteries: Progress, Challenges, and Perspectives. Energy & Environmental Materials. 2023; 6(5). doi: 10.1002/eem2.12483
104. Shi QX, Yang CY, Pei HJ, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. Chemical Engineering Journal. 2021; 404: 127044. doi: 10.1016/j.cej.2020.127044
105. Huang JQ, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Materials. 2015; 1: 127-145. doi: 10.1016/j.ensm.2015.09.008
106. McCreary C, An Y, Kim SU, et al. A Perspective on Li/S Battery Design: Modeling and Development Approaches. Batteries. 2021; 7(4): 82. doi: 10.3390/batteries7040082
107. Ritter TG, Pappu S, Shahbazian-Yassar R. High-Entropy Materials for Lithium Batteries. Batteries. 2024; 10(3): 96. doi: 10.3390/batteries10030096
108. Deng W, Phung J, Li G, et al. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy. 2021; 82: 105761. doi: 10.1016/j.nanoen.2021.105761
109. Liu X, Fan K, Huang X, et al. Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chemical Engineering Journal. 2024; 490: 151625. doi: 10.1016/j.cej.2024.151625

Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.