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Abstract: Artistic creation is a means of expressing human emotions. To intuitively capture 

the emotions conveyed by the artist in their works, we propose an improved CNN-based 

emotion detection method that incorporates biomechanical elements. Recognizing that 

emotions are accompanied by physiological and biomechanical responses such as heart rate 

variations, facial muscle activity, and speech tone fluctuations, we collect and integrate multi-

sensor data, including heart rate, facial expression, and verbal expression. This information is 

processed through a multi-sensor signals fusion method based on an enhanced Convolutional 

Neural Networks (CNN), which allows for the extraction of rich and accurate emotional feature 

representations from the creator’s biomechanical signals. In particular, the facial muscle 

movements and subtle variations in speech tone, which are integral to understanding emotional 

states, are effectively captured and analyzed. Furthermore, we introduce a Conditioning 

Diffusion Model for Emotion Prediction, where emotional features, informed by 

biomechanical responses, serve as semantic conditions to boost the accuracy of emotion 

detection. This approach enables precise identification of the artist’s emotions by considering 

the intricate interplay of physiological and biomechanical signals. Experimental results 

demonstrate that our proposed method achieves an mAP score of 85.36%, an MSE score of 

0.73%, and a runtime of 87 milliseconds, providing technical support for predicting the 

emotions of creators based on their biomechanical responses. 

Keywords: artistic creation; biofeedback analysis; emotion detection; CNN 

1. Introduction 

Since ancient times, artistic creation has been a key way to express human 

emotions. With the changes of The Times and the progress of society, the expression 

of emotions and ideas in artistic creation has attracted more and more attention from 

the public and has become more and more integrated with aesthetic emotions. The 

emotional state of artists in creation is full of appeal, which reflects their aesthetic 

perspective on the creation object. This kind of creative emotion, which is different 

from everyday emotion, is rooted in life experience and presents typical characteristics 

after refining. With the help of modern technologies such as artificial intelligence and 

big data, real-time monitoring and analysis of artists’ emotions [1,2] can provide 

precise guidance for creation. At the same time, in-depth exploration of emotions in 

art creation [3] can help artists integrate emotions more skillfully into their works, 

thereby improving the artistic charm of their works. 

At present, the research of emotion detection faces multiple technical challenges. 

The first problem is the subjectivity of emotion, which leads to different people’s 

emotional judgments of the same text, speech or image, and then leads to inconsistent 

labels and semantic ambiguity [4,5]. Secondly, the complexity and diversity of 

emotions increase the difficulty of detection because the boundaries between different 
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emotions are fuzzy, such as pleasure and happiness, and there are also differences in 

the degree within the same emotion type, such as the subtle difference between 

happiness and excitement [6]. Moreover, single-modal data cannot fully capture 

emotional information, and it is necessary to integrate multi-modal features such as 

vision, speech, and text [7]. However, there are semantic differences between different 

modalities, which increases the difficulty of integration [8,9]. Finally, the emotion 

prediction results need to be interpretable to enhance users’ understanding of the 

reliability and confidence of the model. However, current machine-learning 

techniques have limitations in explaining the decision-making process of emotion 

detection [10]. 

To solve the above problems, many emotion detection models have been 

proposed.  

Tzirakis et al. [11] utilized ResNet to individually achieve audio and visual 

features. Then, the features were connected for fusion and input into a two-layer 

LSTM to predict valence and arousal. In addition, attentions are applied to emotion 

recognition (ER) based on visual and auditory fusion. Zhao et al. [12] proposed an 

attention to achieve emotional regions from visual and auditory modalities, 

respectively. Hao et al. [13] suggested an integrated vision-audio ER framework, 

which uses an SVM and the convolutional neural network (CNN) with deep-learned 

visual and audio features to generate four sub-models and then fuses the results of 

these sub-models to predict emotions, achieving decision-level fusion. Li et al. [14] 

suggested the parallel structure for the speech ER network, which augments the global 

acoustic features with local spectral details of the whole speech to achieve accurate 

detection and recognition of human voice emotion. Li et al. [15] suggested the multi-

modal method based on the graph and attention to achieve the interplay of information 

across different modalities for emotion detection in conversation. Wei et al. [16] 

constructed a dataset to analyze the emotion using EEG and physiological signals. 

They monitored the EEG, surrounding physiological data, and positive facial videos 

of 32 subjects while watching 40 one-minute music video samples and used the 

subjects’ evaluations after watching the videos as labels. The researchers used the 

bionic grey wolf algorithm to identify the emotional valence and arousal. To study the 

emotional features expressed by the joint visual channel of the face and body, Wei et 

al. [17] established a bimodal database containing facial and body gestures, designed 

an algorithm and a bimodal classifier to simultaneously analyze the kinematic features 

of both, and realized the accurate detection and recognition of six types of emotions. 

Han et al. [18] proposed a fuzzy logic-based multimodal fusion network that operates 

in a multi-feature space and is specifically designed for emotion recognition in 

bimodal tasks involving facial expressions and orchestra conducting gestures. 

Although the current models for emotion detection in artistic creation have 

achieved remarkable results, they still face many challenges, such as the difficulty of 

representing emotional features in artistic works, and the effective fusion and 

reasoning of multimodal features. Given the limitations of traditional emotion 

recognition methods, particularly those that solely rely on facial expression or speech 

analysis, which are susceptible to interference from subjects’ subjective factors, 

leading to inaccurate and unreliable emotion assessment results, we have decided to 

adopt a comprehensive approach that integrates biomechanical analysis [19,20] for 
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assessing individuals’ emotional states. This integrated emotion detection technique, 

which leverages biomechanical analysis, focuses on precisely determining emotional 

states by analyzing physiological signals (such as heart rate variability) generated 

during emotional changes. These physiological signal changes are spontaneously 

regulated by the autonomic nervous system, free from the influence of individuals’ 

subjective consciousness, thereby providing a more objective and authentic basis for 

emotion assessment [21]. Furthermore, this method boasts non-invasiveness and high 

accuracy. Therefore, we propose an art-creation emotion detection method based on 

improved CNN. This method combines the advanced technology of deep learning with 

the in-depth understanding of art theory, aiming to capture and analyze the complex 

emotions in art creation more accurately. Our model first utilizes the powerful feature 

extraction ability of CNN to extract low-level feature representations from different 

modal information of artworks (such as images, text, audio, etc.). These features not 

only include basic visual elements, text words or audio waveforms, but also cover 

deeper semantic and emotional cues. Subsequently, we design a multi-modal fusion 

module, which adopts the visual diffusion mechanism to dynamically adjust the 

importance of different modal features to achieve effective information integration. 

Through this mechanism, the model can focus on the modal information that is most 

critical for emotion expression, while suppressing the interference of noise and 

secondary information, thereby improving the accuracy and robustness of emotion 

detection. 

2. Related works 

In art creation, many achievements of emotion detection and recognition based 

on machine learning have been born. 

In single-modal emotion analysis, Jelodar et al. [22] utilized the LSTM method 

to classify the emotions of COVID-19 texts on social media, which is significant to 

understand the attitude and research of social issues. Zhang et al. [23] leveraged part-

of-speech rules to discern various product attributes, grounded in fine-grained 

sentiment analysis and the Kano model, which avoids omissions caused by multi-word 

over-segmentation and the gap caused by sentiment analysis [24] and need 

identification. Lou et al. [25] retrieve sentiment information and syntactic information 

of sentences from external commonsense knowledge, construct a sentiment graph and 

dependency graph for each sentence, and then propose a sentiment dependency graph 

convolutional network framework, which has excellent results in the sarcasm detection. 

Hassan et al. [26] trained a deep visual sentiment analysis model to analyze opinions 

on natural disasters and images on social platforms. Yadav et al. [27] suggested a novel 

network with multi-scale features for sentiment classification, which combines 

different levels of deep representation to classify the sentiment of images. 

For multimodal emotion analysis, Alfreihat et al. [28] proposed a text-image 

neighborhood binary classifier based on text features. Experiments show that it has 

better performance than using only text for sentiment classification. Khan et al. [29] 

suggested a two-stream framework, which applied the Transformer to translate images, 

then utilized a non-autoregressive text generation approach with the single channel to 

extract text features, and then used the translated form to construct auxiliary sentences 
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to provide multimodal information for the language model. This model combines 

visual information and linguistic information to improve the accuracy. Zhu et al. [30] 

suggested a new network to relate the emotional image regions to texts [31] and 

achieved excellent results. Liang et al. [32] determined the interactions between image 

and text by detecting regions in images and designed a cross-modal GCN to 

understand the coordination relationship between modalities in detection. 

3. Artistic emotion detection method based on improved CNN 

Aiming at the complexity of emotion feature representation and the challenge of 

effective fusion of multimodal features, we design an artistic creation emotion 

detection scheme based on improved CNN. This scheme optimizes the fusion process 

of multi-sensor signal features through the CNN framework and constructs a 

correlation model between multi-modal emotional factors, which includes the 

following two parts: First, the improved CNN is used to realize the efficient fusion of 

multi-sensor signal features; secondly, the diffusion model is used to construct the 

emotional factor model to enhance the ability to capture and analyze emotional 

features. 

Firstly, we design a multi-sensor signal fusion method based on improved CNN, 

which can efficiently fuse the signal features from different sensors. By simulating the 

propagation process of information in the sensor network, the model can capture the 

potential connections and mutual influence between signals to generate more rich and 

accurate emotional feature representations. This fusion strategy not only improves the 

dimension and depth of emotional features but can also enhance the model to 

understand complex emotions. 

Then, to establish the relationship between multimodal emotional factors, we 

introduce the diffusion model. This model can automatically adjust its structure and 

parameters according to the dynamic changes of emotional features to accurately 

capture the complex associations between emotional factors. By constructing the 

graph structure between emotional factors, we obtain the comprehensive analysis of 

emotional states. This adaptivity enables our model to better adapt to the diversity and 

uncertainty of emotional states in the process of artistic creation. 

3.1. Multi-sensor signals fusion method based on improved CNN 

In the process of artistic creation, the author’s emotion is the key point that affects 

his or her results. We use a variety of sensors to collect features that can reflect the 

creator’s emotions, such as heart rate (ECG), electromyography (EMG), facial 

expression (FE), kinematic data (KD), language expression (LE), and pressure data 

(PD). At the same time, we propose a multi-sensor signal feature fusion method based 

on improved CNN (MSF).  

For the extraction of cardiac rhythm signals, we used the way of ECG acquisition. 

The ECG waveform is composed of key components such as the P wave, QRS 

complex, and T wave, which collectively record the electrical activity of the heart over 

a while. A typical periodic ECG signal waveform is shown in Figure 1. To accurately 

identify the key location of the ECG signal and determine the duration of the P wave, 

QRS complex, and T wave, we used the modified wavelet transform method. The core 
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of this method lies in the design of a special wavelet filter. The coefficients of the high-

pass filter are set as (3/4, 1/2, 1/2, 3/4), while the coefficients of the low-pass filter are 

set as (−1/4, 3/4, 3/4, −1/4). Among them, the continuous wavelet transform is the core 

of the filter, and its formula is 

𝜒(𝑢, 𝑣) = ∫ 𝑥(𝑡)𝜓(𝑡 − 𝑣𝑢)𝑑𝑡 (1) 

where 𝜒 denotes the wavelet coefficient and x is the original signal, namely ECG; 𝜓 

refers to the wavelet basis function, we use the Haar function; u is the scale parameter 

and v is the translation parameter. Then, we look for the extreme points by checking 

the detail coefficients at each scale and comparing them to 0. These extremal points 

provide us with clues to the location of key ECG features. Based on these extreme 

points, we set appropriate thresholds to accurately identify and locate P waves, QRS 

complexes, and T waves. After successfully locating these waveforms, we further 

extracted five key feature vectors. These feature vectors include PR interval, ST 

interval, P wave, T wave and R wave. 

 
Figure 1. ECG waveform diagram. 

To capture facial emotional expressions, we use conventional camera devices to 

directly capture image information. Based on this image data, we develop an 

optimized multi-scale convolutional network architecture for processing facial images, 

whose specific structure is shown in Figure 2. The processing flow first involves 

designing a diverse grid partition to decompose the image into grid features containing 

information at different scales. Then, these grid features are integrated and deeply 

fused by applying 7 × 7, 3 × 3, and 1 × 1 kernels to achieve the emotional features 

from the creator’s face. The convolution is calculated by Equation (2): 

𝑂(𝑥, 𝑦) = ∑ ∑ 𝐼

𝑗−1

𝑛=0

𝑖−1

𝑚=0

(𝑥 + 𝑚 −
𝑖 − 1

2
, 𝑦 + 𝑛 −

𝑗 − 1

2
) ⋅ 𝐾(𝑚, 𝑛) (2) 

where O (x, y) denotes the corresponding output pixel, I (,) denotes the pixel value at 

the corresponding position of the input image, K (m, n) refers to the value of the kernel 

K, i and j denote the size of the convolution kernel. We can not only capture detailed 

information through the multi-scale convolutional network architecture, which is 

suitable for extracting small-scale or fine-grained emotional features, but also high-

level features that are rich in semantic information, aiding in the recognition of large-
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scale or holistic features. Furthermore, this architecture can extract contextual 

information surrounding the features, and the incorporation of contextual information 

provides clues for feature recognition in complex emotional scenarios. 

 

Figure 2. Improved multi-scale convolutional network. 

Considering the temporal nature of EMG signals, linguistic content, kinematic 

data, and pressure data, we integrate CNN with Transformers, as illustrated in Figure 

3. To extract multi-level semantic information from these data, we employ 

convolutional layers with kernel sizes of 3, 5, and 7 to separately capture the features 

of the four types of data. These extracted features are then concatenated along the 

feature channel dimension. To fully comprehend the semantic relationships within the 

context, we further utilize an LSTM network to extract semantic features, yielding an 

initial representation that encapsulates the entire linguistic expression. To enable the 

model to focus on critical regions of the speech features, we apply an attention 

mechanism to further process the features, guiding the model to attend to important 

semantic content. This allows the model to capture muscle contraction levels in the 

arms and fingers, track movement patterns of wrist and finger joints, and measure 

contact pressure between creative tools and media. 

 

Figure 3. Feature extraction network for language expression content. 



Molecular & Cellular Biomechanics 2025, 22(4), 989.  

7 

3.2. Conditioning diffusion model for emotion prediction 

To fully leverage the benefits of ECG, facial expression, and language expression 

features in the emotion prediction task of creators, a conditioning diffusion model for 

emotion prediction (CDM) is proposed, and the framework is in Figure 4. This method 

effectively integrates the information of these three modalities through an innovative 

fusion strategy, with the goal of enhancing the precision and dependability of emotion 

prediction. 

 

Figure 4. Emotion prediction method based on a diffusion model. 

According to ECG, facial expression and language expression, we regard them 

as three independent additional semantic conditions, and build an emotion prediction 

model based on them. This model can effectively predict the emotional state of the 

creator by relying on the learned emotional feature patterns. As for the diffusion model, 

its core formula elaborates how to generate new data samples by gradually adding 

noise during the forward diffusion process. The formula is as follows: 

𝑥𝑡 = √𝑎𝑡 ∙ 𝑥𝑡−1 + √1 − 𝑎𝑡 ∙ 𝜖𝑡 (3) 

where the new data sample generated at step t of xt, at refers to a gradually decreasing 

parameter in the range [0, 1], controlling the degree of noise added. xt − 1 denotes the 

data sample at step t − 1, which is the data sample from the previous step. 𝜖𝑡 denotes 

standard Gaussian noise, which follows the standard normal distribution. 

Our emotion prediction model learns the complex relationship between the given 

three features and the emotional state of the creator by analyzing them. These features 

may include text content, speech features, social media behaviors, etc., which each 

carry different semantic information and together constitute a comprehensive 

description of the creator’s emotion. Through the training process, the model learns to 

extract key emotional feature patterns from the input features, which can reflect the 

emotional state of the creator in different contexts. Once the model is trained, it can 

receive new feature inputs and predict the current or future emotional state of the 

creator. This predictive ability is of great significance for understanding the 

psychological state of creators, optimizing user experience, and providing 

personalized services. 
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4. Experiment and analysis 

4.1. Dataset and implementation settings 

We used a multimodal emotion dataset (https://zenodo.org/records/13717256, doi: 

10.5281/zenodo.13717256 and https://zenodo.org/records/10584026, doi: 

10.5281/zenodo.10584026) of the art emotion prediction model for testing. The 

dataset comprises paired painting-audio sets categorized according to five distinct 

emotions: anger, sadness, neutrality, fun, and happiness. Additionally, it includes over 

23,500 sentence utterance videos sourced from more than 1000 YouTube speakers. 

These sentences are randomly selected from topics and monologue videos. 

During the training phase, we utilized a Ryzen 9700x processor coupled with four 

Nvidia RTX 4090 GPUs to boost computational efficiency. To speed up the process, 

we chose Pytorch as our framework and carefully adjusted its configurations to align 

precisely with the parameters detailed in Table 1. We undertake the following 

preprocessing procedures for multimodal data: We tackle missing data by employing 

techniques like imputation, deletion of affected records, or prediction of missing 

values. To balance the sample sizes across different categories in the dataset, we 

employ resampling methods. Furthermore, we augment data diversity and 

generalization capacity by creating visual data samples via techniques such as rotation, 

flipping, scaling, and cropping. Additionally, we apply filters and other methods to 

purify the data, removing noise from both language and ECG signals. 

Table 1. Detail settings. 

Parameters value 

Learning rate 2 × 10−4 

Epoch 40 

Dropout 0.75 

Layer number 12 

To thoroughly assess the predictive performance, we have selected the mean 

square error (MSE), mean average precision (mAP), precision (P), recall (R), and F-

measure as evaluation metrics for each model. The corresponding formulas are 

outlined below:  

𝑃 =
𝑁𝑢𝑚(𝑔𝑡⋂𝑝𝑟)

𝑁𝑢𝑚(𝑝𝑟)
 (4) 

𝑅 =
𝑁𝑢𝑚(𝑔𝑡⋂𝑝𝑟)

𝑁𝑢𝑚(𝑔𝑡)
 (5) 

𝐹 =
2 × (𝑃 × 𝑅)

𝑃 + 𝑅
 (6) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑔𝑡 − �̂�𝑝𝑟)2

𝑛

𝑖=1

 (7) 
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𝑚𝐴𝑃 =
1

𝑁
× ∑ 𝑃𝑛 × 𝑅𝑛 (8) 

where Num(.) is used for the quantity, gt refers to the ground truth, pr denotes the 

prediction results, and N is the total number of samples. Besides, we also apply costing 

time and visualization to evaluate the method while comparing it with others. 

4.2. Ablation experiments 

Firstly, we delve into the impact of MSF (and CDM) on sentiment prediction 

model performance. By executing meticulously planned ablation experiments, we 

thoroughly assess the performance of each module, utilizing the ResNet101 

architecture as our benchmark model. The experimental results are clearly presented 

in Table 2. The data reveals that the MSF method alone can elevate the F-score by 

2.41%, while the CDM method independently achieves a more substantial F-score 

increase of 4.37% compared to the baseline. Notably, when MSF and CDM are 

combined, the emotion prediction model undergoes further enhancement, with the 

mAP reaching 85.36% and the MSE dropping to 0.73%, fully showcasing the robust 

potential of their collaborative efforts. The MSF method significantly bolsters the 

model’s capacity to capture intricate emotional information by effectively 

amalgamating signal features from diverse sensors. This approach leverages the 

complementary strengths of different sensors in capturing emotion-related signals, 

thereby mitigating the information bias or noise potentially introduced by a single 

sensor. By integrating MSF, the model gains a more comprehensive understanding of 

the intrinsic attributes of emotional data. On the other hand, the CDM method further 

optimizes the model for sentiment prediction tasks by incorporating the conditional 

diffusion mechanism. This method taps into the latent distribution characteristics of 

sentiment data and captures nuanced changes in sentiment by mimicking the diffusion 

process. This mechanism allows for precise delineation of boundaries between 

different emotional states, demonstrating heightened sensitivity and accuracy in 

predictions. The complementarity between MSF and CDM is fully harnessed. MSF 

furnishes the model with comprehensive and abundant emotional information, while 

CDM further refines the classification and recognition of emotions on this foundation. 

This synergy not only elevates the model’s overall performance but also renders it 

more adaptable and precise in navigating complex emotional scenarios. 

Table 2. Ablation experiments for FEF and ALF. 

MSF CDM P (%) R (%) F (%) mAP (%) MSE (%) 

  81.32 75.68 78.24 80.94 2.64 

√  82.65 78.48 80.65 83.87 1.41 

 √ 83.26 79.12 82.61 84.59 1.22 

√ √ 85.53 81.02 83.24 85.36 0.73 

Then, based on fixed CDM, we further explored the influence of the features of 

ECG, FE and LE (including electromyography, kinematic data, language expression 

and pressure data during entire experiments) on the performance of the model. 

Through comparative analysis, as shown in Figure 5 and Table 2, it can be observed 
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that either feature alone can enhance the mode. This finding indicates that each feature 

contains unique information that positively contributes to model performance. At the 

same time, when we try to mix the three features of ECG, FE and LE, the model is 

further significantly improved. This improvement is not only reflected in the 

improvement of accuracy, but also in the recognition and processing ability of the 

model for complex situations. This result strongly proves the performance of feature 

fusion and the significant synergistic effect of ECG, FE and LE features in improving 

the performance of the model. We can conclude that rationally using and fusing 

multiple features such as ECG, FE and LE is an effective solution to improve the 

model. 

 

Figure 5. The ablation of ECG, FE and LE while applying CDM. 

When exploring the relationship between creators’ emotional states and their 

biomechanical features, the two distinct mood states of positive and negative emotions 

have become the focus of our research. Through detailed analysis, we found that ECG, 

EMG, pressure data, and motion data exhibit different features under these two 

emotional states. When creators are in a positive emotional state, their biomechanical 

features demonstrate remarkable stability and coordination. Firstly, in terms of heart 

rate variability, a positive emotion results in a stable and regular heart rate, indicating 

that the creator’s heart function remains stable under pleasant or exciting emotions, 

providing adequate blood supply and oxygen to the body and ensuring the 

physiological foundation during the creative process. Simultaneously, positive 

emotions lead to smoother and more rhythmic muscle contractions. Further analysis 

of EMG signals clearly shows that muscle activation patterns are more orderly under 

positive emotions. Additionally, the analysis of kinematic and pressure features also 

reveals the positive impact of positive emotions on the stability of creators’ movements. 



Molecular & Cellular Biomechanics 2025, 22(4), 989.  

11 

In a positive emotional state, parameters such as hand movement speed, acceleration, 

and tremor frequency exhibit stability and regularity, and a stable level of pressure 

control is maintained. In contrast to positive emotions, negative emotions have a 

significant negative impact on creators’ biomechanical features. In a negative 

emotional state, creators often experience increased heart rate variability; muscle 

tension increases, and contraction patterns become more disrupted. The analysis of 

kinematic and pressure features similarly reveals the destructive effect of negative 

emotions on the stability of creators’ movements. 

4.3. Compare other methods 

We perform an in-depth and comprehensive performance evaluation of the newly 

proposed emotion prediction model, aiming to confirm its effectiveness and superior 

performance in real-world application scenarios. To this end, we carefully selected the 

methods form Zhang et al., [33], Nie et al., [34], Sharma et al., [35], Gupta [36], Kumar 

et al., [37], and Joseph et al., [38] as the comparison benchmarks, which are extremely 

representative and cutting-edge research results in this field. Table 3 compares 

experiments for our method. 

Table 3. Ablation experiments for ECG, FE and LE. 

ECG FE LE CDM P (%) R (%) F (%) 

   √ 83.26 79.12 82.61 

√   √ 84.36 80.31 82.88 

 √  √ 83.26 80.53 82.69 

  √ √ 83.11 79.54 81.75 

√ √  √ 84.65 80.19 82.64 

√  √ √ 84.79 80.03 82.97 

 √ √ √ 84.23 81.02 82.19 

√ √ √ √ 85.53 81.02 83.24 

Based on the results presented in Table 4 and Figure 6, our sentiment prediction 

model excels across all evaluation metrics. Specifically, the model achieves an MSE 

as low as 0.73%, an mAP as high as 85.36%, a P-score of 85.53%, an R-score of 

81.02%, and an F1-score of 83.24%. Compared to the selected baseline models, our 

method demonstrates significant superiority in performance. Even when compared to 

other competitive methods in the field, our method maintains a lead in accuracy and 

recall rates by at least 1.41% and 0.57%, respectively. Our method boasts an MSE that 

is 0.16% lower than that of Paper [38], an mAP that is 2.71% higher than that of Paper 

[37], and an mAP that is 1.47% higher than that of Paper [36]. These data fully 

demonstrate the high efficiency and advanced nature of our sentiment prediction 

model in practical applications. 
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Table 4. Comparison with others in terms of mAP and MSE for ECG, FE and LE. 

Methods mAP (%) MSE (%) 

Baseline 80.94 2.64 

Paper [33] 83.21 1.26 

Paper [34] 84.10 1.54 

Paper [35] 82.35 0.88 

Paper [36] 83.89 0.97 

Paper [37] 82.65 1.21 

Paper [38] 84.68 0.89 

Ours 85.36 0.73 

 

Figure 6. Comparison results in terms of P, R and F. 

ECG, FE and LE features each play an indispensable role in explaining the 

excellent performance of our emotion prediction model. ECG features reflect the 

physiological response of emotions by capturing subtle changes in cardiac activity. 

These features can not only help the model understand the physiological stress 

response in emotional states but also provide immediate feedback on emotional 

changes. In our model, ECG features play a key role in improving the low value of the 

MSE metric, which means that the model has higher accuracy in predicting emotions. 

FE features provide rich emotional cues to the model by capturing and analyzing the 

movement changes of facial muscles. These features not only cover basic emotional 

expressions (e.g., happiness, sadness, anger, etc.) but also capture more subtle 

emotional changes (e.g., surprise, contempt, etc.). In our model, FE features are 
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beneficial to improving mAP and P scores. LE features reveal the linguistic features 

of emotional expressions by analyzing lexical, grammatical, and semantic information 

in texts. These features can not only help the model understand the emotional tendency 

in the text but also capture the emotional color and context information behind the text. 

Through deep analysis of text data, the model can accurately identify and understand 

the emotional information in language expressions, thereby improving the coverage 

and comprehensive performance of emotion prediction. 

4.4. Application testing 

Firstly, to comprehensively measure the efficiency and practicality of our method 

in the emotion prediction task, we use a confusion matrix, a visual tool, to show the 

specific results of each emotion detection. The confusion matrix is the visualization 

tool in the performance evaluation of supervised learning algorithms. As shown in 

Figure 7, through the confusion matrix, we can conclude that the prediction accuracy 

of our method is over 82% on each emotion class. 

 

Figure 7. Our method’s emotion prediction confusion matrix. 

Further analyzing the details of the confusion matrix, we find that for “neutral” 

emotion, our method shows extremely high recognition ability, with an accuracy of 

more than 90%. In the prediction of the “sadness” emotion, although the accuracy is 

slightly lower than that of the “happy” emotion, it still maintains at 84.68%, which 

reflects the strong recognition sensitivity of the model to negative emotion. For the 

more intense emotions like anger, the prediction accuracy of the model is 82.36%, 

indicating that although the model faces certain challenges in distinguishing these 

emotions, it can still maintain high accuracy. We also observe some specific error 

patterns in the confusion matrix, such as misclassifying “funny” as “happy” or “sad” 

as “neutral.” These errors suggest that future model optimization can further enhance 

the ability to learn and distinguish these confusing emotional features. Emotion is 

essentially a continuous variation of features, and its complexity and diversity are 
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difficult to fully capture through simple discretization. When using convolutional 

neural networks (CNNs) for emotion recognition, the tendency of CNNs to discretize 

continuous data may fail to adequately reflect the subtle changes and diversity of 

emotions, thereby increasing the error rate in emotion recognition. Additionally, in 

multi-sensor emotion recognition tasks, the amount of information provided by 

different modalities is often uneven, and the noise levels within each modality also 

vary. This imbalance in information and the presence of noise challenge the fusion of 

multi-sensor signals. During the fusion process, the risk of information loss or 

misdirection increases, further affecting the accuracy of emotion recognition. More 

importantly, when CNNs handle multi-sensor signal fusion, their inherent feature 

extraction capabilities may not be sufficient to account for multi-dimensional feature 

information. The expression of emotions often involves multiple aspects of features, 

such as changes in facial expressions, tone of voice, speaking speed, and physiological 

signal variations. If CNNs cannot effectively capture and integrate this 

multidimensional feature information, the accuracy of emotion recognition will be 

compromised, potentially leading to incorrect recognition results. Therefore, to 

improve the accuracy of emotion recognition, we need to explore more advanced 

algorithms and technologies to better handle continuous emotion features while 

effectively fusing multi-modal information and considering multi-dimensional feature 

extraction. By doing so, we can more accurately understand and recognize emotions, 

providing stronger support for the application of artificial intelligence in the field of 

affective computing. 

Then, we test the emotional changes of an artist during a complete creative 

process and highlight the proposed method through a sequential comparison of 

different methods. The sample is a pessimistic artwork, which takes a total of two 

hours to create. We recorded the mood every 10 min and used our method to predict 

the mood. The results are shown in Figure 8, where we used 1 to 5 to represent five 

different emotions: anger, sadness, neutrality, fun, and happiness. We can conclude 

that our method is the closest to the true value of the sample. 

 
Figure 8. Comparison of emotions from a pessimistic art creator. 

Finally, we evaluated the execution time of our approach, the results of which are 

shown in Figure 9. Through observation, it can be found that our method is in the 

middle level of all tested methods in terms of time consumption. However, given its 

actual performance in prediction performance, such time consumption is completely 

acceptable. 
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Figure 9. Comparison of cost time of our method and others. 

4.5. Discuss 

After experimental verification, we tested the multi-sensor signal fusion method 

based on improved CNN and combined it with the conditioning diffusion model for 

emotion prediction. The experimental data fully show that our proposed model has 

shown high effectiveness and wide practicability in the creators’ emotion prediction 

task. 

By fusing data from different sensors, such as ECG, facial expressions and 

language expressions, the model can comprehensively and deeply capture the 

emotional changes of creators. The improved CNN structure enables the model to 

efficiently extract the key features in this complex data, and the conditional diffusion 

model further enhances the ability of the model to predict the dynamic changes of 

emotions. 

In the experiments, we use a diverse dataset, including creator samples under 

different emotional states, to ensure the generalization ability of the model. Through 

comparative experiments, we find that compared with traditional emotion prediction 

methods, our model shows significant advantages in prediction accuracy, robustness 

and real-time performance. In particular, when dealing with complex emotional states, 

such as mixed emotions or subtle emotional changes, our model shows higher 

sensitivity and accuracy. In addition, we also evaluate the computational efficiency 

and resource consumption. The results demonstrate that though the model has 

achieved significant performance improvement, its computational complexity and 

resource requirements do not increase significantly, which is significant for the 

practical applications. 

Our proposed multi-sensor signal fusion method based on improved CNN 

combined with the emotion prediction model of the conditional diffusion model not 

only shows high efficiency and practicality in the author’s emotion prediction task but 

also provides strong technical support for the further development of the emotional 

intelligence field. 
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5. Conclusion 

To directly experience the author’s emotion in the process of artistic creation, we 

propose an artistic creation emotion detection method for improved CNN. By 

extracting the information of heart rhythm, facial expression and language expression, 

a multi-sensor signals fusion method based on improved CNN is constructed to fuse 

and obtain the multi-modal emotional feature representation. The multimodal features 

are used as semantic conditions to construct a conditioning diffusion model, which 

enhances emotion detection and realizes the accurate recognition of artistic creation. 

Experiments show that the P-value of 85.53%, the R-value of 81.02 and the F-value 

of 83.24 are obtained by our proposed method, which can realize the emotion 

recognition and analysis of artistic creation. By integrating biomechanical analysis 

methods, this study establishes a mapping relationship between emotional states and 

biomechanical features during the artistic creation process, providing new insights for 

emotion detection research. Future research will explore the biomechanical feature 

differences across various art forms and their influence on emotional expression. 
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