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Abstract: Physical education plays an essential role in the growth of students’ overall health, 

fitness, and well-being. Wearable biosensors revolutionize physical performance monitoring 

by providing real-time data on physiological parameters, providing valuable insights into 

students’ fitness and flexibility during physical activities. The research aims to develop an 

approach for assessing students’ athletic adaptation and physical fitness using biosensors. 

Traditional monitoring systems have complexity in managing the huge volumes of data 

collected from several sensors because of noise and ambiguity. These research difficulties are 

addressed with the help of a deep learning (DL) based assessment model, which monitors 

students’ fitness using biosensor data. This research proposed a novel dynamic Bumblebee 

mating refined deep neural networks (DBBM-RDNN) to forecast student physical fitness and 

sports adaptability levels using biosensors. The biosensor dataset provides different data types 

that capture various aspects of physical activity and fitness. The data was preprocessed using 

low-pass filters to remove noise from the achieved data. Principal Component Analysis (PCA) 

is developed to extract the features from preprocessed data. DBBM is utilized to optimize the 

features in sensor data and RDNN to classify or predict fitness and adaptability levels in 

students based on data from sensors in real time. In a comparative analysis, the research 

assessed various performance metrics, such as accuracy (98.05%), precision (90.9%), recall 

(90.1%), F1-score (88.55%), MAE (1.915) and RMSE (2.505). Experimental results indicate 

the proposed model achieved superior performance in predicting student physical fitness 

compared to other conventional algorithms. The research highlights the integration of 

biosensor technology with DL, which provides an accurate and dependable system for tracking 

students’ physical performance. 

Keywords: physical education; physical fitness; sports adaptability; teaching plans; biosensors; 

dynamic bumble bee mating refined deep neural networks (DBBM-RDNN) 

1. Introduction 

Sports activities have a greater impact on individuals’ quality of life, although it 

might be difficult to determine the causes of injuries. Real-time information on players’ 

blood pressure, running distance, electrocardiogram (ECG), and lactic acid buildup 

levels can be obtained through live broadcasts, enabling more equitable sanctions. The 

biosensors, which are tiny, thin, and wirelessly transmit data, can be placed like tattoos 

and band-aids and perform a wider range of precise tasks. The possibilities of these 

biosensors in martial arts sports systems as they can offer more precise and accurate 

data [1]. Teenagers’ physical fitness is receiving more and more attention, from a life 

cycle perspective, adolescence is a critical time for physical and health development. 

The physical health of teenagers does not the future of the country and the contentment 

of their families. Teenagers’ physical fitness should be a major focus for researchers 
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in the fields of education, psychology, and healthcare to provide them with a healthier 

and more promising future [2]. Smart sensors are becoming more common in daily 

life, especially in sports. These gadgets offer mobile, ubiquitous, and remote health 

monitoring services. They can be multifunctional devices or specialized medical 

equipment, such as pulse oximeters for stress levels or smart watches for heart rate 

monitoring [3]. Sports performance, early illness detection, individualized medical 

care, and health monitoring have been transformed by wearable biosensors. They are 

perfect for athletes, providing continuous, real-time tracking procedures. However, 

extensive analyses cannot be performed with existing wearable devices; they can only 

measure one biomarker at a time. A thorough knowledge of human health requires 

wearable sensors that continually measure a variety of chemical states [4]. It is 

preferred in contemporary professional sports for athletes’ levels of physical effort to 

be regularly measured. Athletes’ physical fitness increases and their ability to perform 

well in sports activities is aided by the efficient allocation of physical effort during 

various training phases. A thorough assessment of an athlete’s fitness level is essential 

for effectively communicating diagnoses both before and during exercise [5]. With the 

quick advancement of wearable technology, biosensors, and Internet of Things (IoT) 

technologies, mobile health monitoring has advanced significantly, making wearable 

technology can be used to check health. A wide range of smart wearable devices, 

including smart accessories, smart eyewear, and smart wristbands, have gained 

popularity in recent years [6]. Figure 1 represents the students’ physical fitness and 

sports adaptability using biosensors. 

 

Figure 1. Students’ physical fitness and sports adaptability using biosensors. 

Accelerometers are frequently employed in public health assessments of physical 

activity because they offer accurate data on energy expenditure and duration of various 

exercise situations. Activity detection using certain algorithms makes it possible to 

evaluate the risk of overweight and sedentary lifestyles in both youngsters and the 

elderly [7]. Each sensor’s data collection could possess distinct properties when 

tracking a target utilizing measurement data from several sensors. These consist of 

each sensor’s data collecting moment, place, data expression form, frequency, and 

degree of confidence, as well as each sensor’s position in the data fusion process [8]. 

Regular exercise enhances students’ physical and mental well-being and maximizes 
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their academic output. Due to their lack of enthusiasm, hectic schedules, and ignorance 

of particular exercises, the majority of students struggle to manage their normal 

exercise routines. Wearable sensor technology is created to provide unique chances to 

enhance their physical activity [9]. The sensitive components’ composition and design 

determine the biosensors’ capacity for selective recognition. The following essential 

elements are crucial for the body’s selective recognition of particular substances: 

interaction between antigen and antibody: Antibodies are often employed as sensitive 

components in immuno sensors because of their ability to selectively identify and fix 

to antigens. Biosensors can identify certain infections or biomarkers due to the 

specificity of this interaction [10]. Flexible wearables, which can be defined by their 

capacity to analyze data in real-time, their advanced architecture, flexibility, mobility, 

and remote functionality, have garnered increasing attention, particularly in the sports 

domain. Originally developed for medical health monitoring, their use has spread to 

the world of sports, which are essential in helping athletes monitor their fatigue and 

enabling customized training modifications [11]. The use of biomedical and healthcare 

personal devices for sports has advanced quickly in recent years. Examples comprise 

optical sensors for blood pressure, heart rate, stress level, and oximetry, as well as 

mobile sensors for electroencephalogram (EEG)/ECG investigation. Such personal 

gadgets are designed to provide a persistent (real-time), mobile, ubiquitous, and distant 

health monitoring service [12]. 

1.1. Objective of the research 

The goal of this research is to present an approach that evaluates the athletic 

adaptation and physical fitness of students with wearable biosensors. DL techniques 

can be employed to overcome difficulties faced while handling massive sensor data. 

It aims at accurate estimation of fitness levels in real-time by optimizing the DBBM-

RDNN biosensor data. 

1.2. Contribution of the research 

1) Using real-time biosensor data, the research suggests a unique DBBM-RDNN 

model for forecasting students’ physical health and sports adaptation. 

2) This research introduces a sophisticated preprocessing pipeline using low-pass 

filters and PCA to eliminate noise and extract pertinent characteristics from the 

highly informative biosensor data. 

3) The proposed method ensures accurate fitness predictions because it 

outperformed conventional algorithms in significant parameters, including F1-

score, recall, accuracy, precision, MAE, and RMSE. 

4) Using the integration of biosensor technology and DL, this research offers a 

reliable method for continuous, monitoring pupils’ flexibility and physical 

performance in real time while they participate in sports. 

This research is organized as follows: Comparable studies are examined in 

Section 2, with an emphasis on current methods and their limitations. The technique 

used in this research, including the creation and implementation of the DBBM-RDNN 

model, is explained in Section 3. The model’s application findings with a thorough 
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explanation of their results, are presented in Section 4. The work is concluded in 

Section 5 with a summary of the main conclusions and suggestions for more research. 

2. Related works 

Monitoring oxygen saturation in the blood of female athletes following a test of 

maximal activity was closely linked to determining the second ventilatory threshold, 

commonly referred to as the anaerobic threshold. The ventilatory threshold appearance, 

desaturation time, total test time, and maximal oxygen uptake were all shown to be 

significantly correlated. It challenges stereotypes about women’s participation in 

sports by demonstrating that pulse oximetry is an easy, precise, and non-invasive 

technique for evaluating athletes’ physical conditions while they are exercising [13]. 

They developed a Förster Resonance Energy Transfer (FRET) biosensor, using 

intrinsically disordered protein regions (IDRs), of expressing disordered protein 1 

(SED1), that could monitor intracellular changes due to osmotic stress. AtLEA4-5 was 

employed in the biosensor and showed remarkable sensitivity to macromolecular 

crowding and produced major FRET differences among the forms of life, thus 

providing the potential for IDR as an environmentally responsive molecular 

instrument [14]. To monitor intracellular changes induced by osmotic stress, a FRET 

biosensor, SED1, is based on intrinsic IDRs. The biosensor used the AtLEA4-5 protein, 

which possesses extraordinary sensitivity to macromolecular crowding and profound 

differences in FRET in various life forms, illustrating the potential of IDR as 

environmentally responsive molecule instruments [15].Through the help of 

biomarkers, wearable technology allowed for monitoring rapid physiological changes 

in an environmentally friendly manner in athletes. It is hard to appreciate the inside 

physiology of an athlete. They investigated how to increase undergraduates’ physical 

fitness through the use of intelligent technology in physical education (PE). Using a 

senseless exercise behaviors monitoring (EBM) technology on an intelligent PE 

platform, an adjustable fitness enhancement model (AFEM) was developed [16]. The 

model suggests that in an EBM environment, high-frequency aerobic exercise more 

strongly enhanced endurance qualities whereas low-frequency anaerobic activity more 

substantially boosted strength characteristics. The AFEM model further explored the 

possibilities of intelligent technology in individualized physical education by 

optimizing the impact of exercise and modifying control factors to suit users’ demands. 

Nano-conjugated materials can monitor the sport’s status, enhance the equipment’s 

quality and increase the training’s impact. The findings show that accurate data is 

crucial for athlete performance and safety [17]. The sports scientists used point-of-

care testing (POCT) devices as analytical instruments to analyze rapidly at the site. It 

can be possible to follow health, performance, recovery, and doping control among 

athletes. Using these systems, trainers were able to track nutrition, prevent injuries, 

enhance training, and impose doping control rules. The research gave an integrative 

perspective on designing POCT platforms for various applications [18]. A developed 

glassy carbon electrode hybrid concentrated graphene oxide-metal organic framework 

electrochemical biosensor rGO-MOFs/GCE for the recognition of synthetic 

testosterone (TST) in athletes was recently reported. The sensor was a potential tool 

in TST detection; its linear range and detection limit were comparable to that of other 
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electrochemical sensors. Interferents in food samples and physiologic fluids did not 

affect the selectivity of the sensor, and hence, was consistent. The synergetic 

characteristics of rGO and MOF enhanced its performance, which therefore justified 

its utilization for purposes in biological standards[19]. These sensors were vital for 

long-term medical treatment and sports health, as well as for monitoring physiological 

signals and supplying energy for biosensor equipment [20]. Emerging research areas 

that allow for sensitive, non-invasive detection of a variety of analyses include 

wearable biosensors. Real-time physiological signal, biochemical, and personal 

parameter monitoring was possible with these devices. They were employed in 

biomedical societies and research disciplines to evaluate accurate medical diagnoses. 

Students’ physical fitness was examined with the use of sophisticated technologies. A 

developed using a smart PE platform and senseless technology [21]. High-frequency 

aerobic exercise more strongly increased endurance traits in an EBM environment, 

while low-frequency anaerobic activity more substantially developed strength 

attributes. By optimizing the impact of exercise and tailoring control variables to users’ 

requirements, the AFEM model expanded on the possibilities of intelligent technology 

in individualized physical education. By utilizing optical topological sensor 

technology and sophisticated mobile network protocol, the system enhances data 

transmission speed, accuracy, and latency. The testing findings demonstrate the 

quickly evolving IoT and its dependability in real-world applications [22]. Disease 

identification, tracking, and bodily reaction monitoring were made possible by 

biosensors, which are transforming research and healthcare. They provided affordable, 

effective medical equipment that makes prompt intervention and care possible. With 

an emphasis on cardiovascular disorders, it examines the developments in biosensor 

technology and their possible uses in healthcare, emphasizing the possibility of novel 

treatments and individualized approaches [23]. They introduced a quaternion 

algorithm-based motion attitude identification system for physical education. Chips 

and electronic modules are used in the system to increase the precision of azimuth data 

gathering. Data fusion is achieved by combining gyroscope and accelerometer data 

with Kalman filtering. The quaternion used to calculate joint angles is continuously 

updated by the system [24]. The model’s accuracy within error was confirmed by 

experiments with various loads. Instructors can utilize the terminal system to precisely 

gauge students’ movements, guaranteeing successful instruction at colleges and 

institutions. 

3. Methodology 

Using biosensor data, the suggested technique incorporates a DBBM-RDNN 

model to evaluate and maximize students’ physical fitness and adaptability. Based on 

biosensor inputs, including movement and heart rate, it predicts fitness levels using an 

RDNN. By choosing the fit students for additional development and maximizing 

fitness measurements through data processing, the DBBM algorithm dynamically 

modifies training schedules. This method makes it possible to create individualized, 

flexible physical education programs based on each student’s development. Figure 2 

demonstrates the suggested technique flow below. 



Molecular & Cellular Biomechanics 2025, 22(2), 988.  

6 

 

Figure 2. Proposed methodology flow. 

3.1. Data collection 

The information obtained from the open-source Kaggle 

website:https://www.kaggle.com/datasets/diegosilvadefrana/fisical-activity-dataset. 

There is a rising need to comprehend user behaviors and the connections between 

activities as wearable technology, including smartwatches, cellphones, wristbands, 

and more widely used. It used the PAMAP2 physical activity monitoring dataset to 

address this, which initially included data from 18 distinct physical activities (e.g., 

walking, cycling, soccer, etc.), carried out by 9 people wearing a heart rate monitor 

and three inertial measurement units. The included information from biosensors, such 

as blood oxygen saturation and heart rate, to improve comprehension of patterns of 

physical activity and users’ physiological reactions. An examination of user behavior 

and activity performance would be more thorough as a result. 

3.2. Using low-pass filters in adapted physical education plans to improve 

biosensor accuracy in assessing sports adaptability and physical fitness 

By executing a weighted average across an area of the same size as the filter, a 

low-pass filter efficiently eliminates high-frequency information while keeping low-

frequency information networks’ self-attention mechanism calculates weighted sums 

of input characteristics, where the weights (also known as attention score) represent 

the relative importance of various features according to their temporal or geographical 

context. For instance, in Equation (1), the filter kernel 𝐼(𝑦) computes the output of a 

filter 𝑒(𝑤)  as a weighted sum of pixels  𝑊𝑥𝑦 , where 𝑥 𝑎𝑛𝑑 𝑦  stand for pixel 

coordinates, and the filter weights fulfill 𝑊𝑥𝑦 = 1 𝑎𝑛𝑑 𝑊𝑥𝑦 ≥ 0: 

𝑒(𝑤) = ℱ(𝐼(𝑦)) = ∑ 𝑊𝑥𝑦𝐼(𝑦)𝑦 (1) (1) 

The attention weights are calculated using query  𝑅(𝐹), key  𝐿(𝐹), and value 

𝑈(𝐹) matrices in the case of the self-attention mechanism, as illustrated in Equation 

(2). The attention scores are normalized using a softmax function: 

𝑌 = 𝑆 × 𝑉 = 𝑠𝑜𝑓𝑡 max
𝑅(𝐹)𝒦(𝐹)𝑆

√𝑐𝑘

 (2) 
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In this case, matrices generated from the input data 𝐹  which in this research 

corresponds to the biosensor data obtained from students during physical activity are 

represented by 𝑅(𝐹), 𝐿(𝐹)𝑎𝑛𝑑 𝑈(𝐹). To ensure that the weighted values (or features) 

are spread evenly among the various input data points, the rows in the attention score 

matrix 𝑆 are normalized to add up to 1, function. It tracks the modification of biosensor 

data with the assistance of a self-attention-based model according to the performance 

of a student in a set of physical exercises. It decreases the noise content while keeping 

high features of attention to consider when formative adaptation and fitness in physical 

activity. The adaptive low-pass filter can assist in monitoring students’ physical 

activity, adaptive low-pass filtering, improve the handling of unpredictable data 

coming from numerous biosensors, and also make certain exact assessments of the 

performances. 

3.3. Principal component analysis (PCA)for feature extraction 

When investigating the effect of data analysis on the evaluation of students’ 

physical fitness, PCA is a helpful technique for lowering dimensionality. PCA reduces 

a high-dimensional dataset of students’ fitness to a set of variables that symbolize the 

most important differences in the data are linearly uncorrelated. Assuming that each 

feature has a variance of one and a mean of zero, the first step is to stabilize the data 

matrix 𝑌. This step is essential to make characteristics similar it standardizes the scales 

of the qualities in Equation (3): 

𝑌𝑠𝑡𝑎𝑛𝑑 =
𝑌 − 𝑚𝑒𝑎𝑛 (𝑌)

𝑠𝑡𝑑 (𝑌)
 (3) 

Determine the standardized data’s covariance matrix or  𝐴 . The pairwise 

covariance of characteristics is captured by the covariance matrix, which also offers 

information on the correlations and fluctuations between them, shown in Equation (4): 

𝑊 =
1

𝑜 − 1
𝑍𝑠𝑡𝑎𝑛𝑑

𝐴 𝑌𝑠𝑡𝑎𝑛𝑑 (4) 

The variable 𝑜 denotes the dataset’s total number of observations. It is necessary 

to determine the eigenvalues and eigenvectors 𝑊 of the covariance matrix to examine 

the impact of data analysis in finding important determinants of students’ physical 

fitness across different groups. As illustrated by Equation (5), the eigenvalues display 

the amount of variance along these dimensions, whereas the primary components, or 

eigenvectors, depict the directions of greater variation. The findings of this research 

highlight significant elements that can significantly improve learning outcomes for 

various student demographics. 

𝑊𝑏 = 𝜆𝑏 (5) 

The eigenvalues represented by 𝜆 in this case correspond to the eigenvector 𝑏. 

Based on the eigenvalues, determine the  𝑆  main components most effectively 

represent the variance in the data. According to the Kaiser Index, components with 

eigenvalues larger than one are frequently kept in Equation (6): 

𝑇𝑜𝑝 𝑆 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑏1, 𝑏2, … . , 𝑏𝑆 (6) 
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The original data (𝑌) should be shown over the updated coordinate system created 

by the chosen main elements. At this stage, the data’s most important features are 

retained while its dimensionality is decreased, as seen in Equation (7): 

𝑌𝑃𝐶𝐴 = 𝑌𝑠𝑡𝑎𝑛𝑑𝑉𝑆 (7) 

The matrix corresponding to the initial 𝑆 eigenvectors is called 𝑈𝑇 . The basic 

components can be used to rebuild the data so that it resembles the original dataset. 

This facilitates the comprehension of the modified data and the execution of the 

analysis in Equations (8) and (9): 

𝐸 = 𝑉𝑆
𝐴 (8) 

𝑈 = 𝑚𝑒𝑎𝑛 (𝑌) + 𝑉𝑆𝑒 (9) 

The data might be utilized to identify significant factors influencing student 

performance and improve outcomes for various groups, the research employs the 

dimensionality reduction technique. It reduces the impacts on students’ physical 

fitness by increasing the accuracy and efficiency of the DL algorithms applied in 

predictive maintenance systems. With PCA, important features are highlighted, 

resulting in more specific interventions to help a variety of student populations. 

3.4. Dynamic bumble bee mating refined deep neural networks (DBBM-

RDNN) for forecasting physical activity and fitness 

The DBBM-RDNN method is applied to predict physical activity and fitness. To 

improve the prediction accuracy, the DBBM-RDNN model dynamically tunes its 

parameters based on biosensor data. The model improves the fitness assessment by 

adaptive learning through the dynamic optimization powers of the DBBM algorithm 

along with the efficiency of RDNNs. This approach is a better tool for individualized 

physical education planning and the enhancement of general fitness training results. It 

gives an exact prediction of students’ physical performance and adaptation. DBBM-

RDNN is far superior compared to conventional techniques due to its ability to catch 

minute details in fitness performance.  

3.4.1. Refined deep neural networks (RDNN) 

With a specific focus on multi-layer Perceptrons (MLP) with ReLU activations, 

provide an RDNN architecture-based approach for assessing students’ physical fitness 

and sports adaptation using biosensor data. The objective is to estimate an unknown 

function 𝑒∗(𝑤)that quantifies the correlation between biosensor measurements 𝑊 ∈

ℝ𝑐 and the result 𝑍, which is the student’s degree of physical fitness and adaptability. 

An RDNN-based model is used for needs to minimize the predicted per-observation 

loss function, which is how the estimate is accomplished. The biosensor supplies data 

inputs (such as mobility, heart rate, and acceleration sensors) as covariates 𝑊, and the 

output 𝑍 represents adaptation measures like endurance, flexibility, and coordination 

or physical fitness scores. The issue might be stated as follows in Equation (10): 

𝑒∗ = 𝑎𝑟𝑔
𝑚𝑖𝑛

𝑒
𝔼[𝑘(𝑒, 𝑌)] (10) 
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where 𝑘(𝑒, 𝑌)the per-observation loss is function and 𝑌 = (𝑍, 𝑊) is the combined 

vector of observed fitness and biosensor data. Finding the function 𝑒∗(𝑤)  that 

minimizes the expectation of the loss function 𝑘(𝑒, 𝑌), which quantifies the difference 

between expected and actual fitness values is the aim. To ensure that the RDNN model 

converges increasingly, assume that the loss function 𝑘(𝑒, 𝑌) is continuous in 𝑒 and 

fulfills a curvature condition around the optimum function 𝑓∗. In particular, subject 

𝑘(𝑒, 𝑌) to the following constraints in Equation (11): 

|𝑘(𝑒, 𝑦) − 𝑘(ℎ, 𝑦)| ≤ 𝐷𝑘|𝑒(𝑤) − ℎ(𝑤)| (11) 

And for the performance of generalization in Equation (12): 

𝑑1𝔼[(𝑒 − 𝑒∗)2] ≤ 𝔼[𝑘(𝑒, 𝑌) − 𝑘(𝑒∗, 𝑌)] ≤ 𝑑2𝔼[(𝑒 − 𝑒∗)2] (12) 

where the limited constants 𝐷𝑘, 𝑑1, 𝑎𝑛𝑑 𝑑2 that bounded away from zero and solved 

with acceptable computing bounds. It is common practice to estimate physical fitness 

using the least squares loss function, where the goal function 𝑒∗(𝑤)indicates the 

predicted fitness level given sensor data 𝑤. This is equivalent to the goal function and 

loss listed below in Equation (13): 

𝑒∗(𝑤) ≔ 𝔼[𝑍|𝑊 = 𝑤],   𝑘(𝑒, 𝑦) =
1

2
(𝑧 − 𝑒(𝑤))2 (13) 

where 𝑊  is the sensor data and 𝑍  is the degree of physical fitness. A logistic 

regression model can be utilized in more intricate applications, including forecasting 

students’ athletic adaptability when the result 𝑍 is binary in Equation (14): 

𝑒∗(𝑤) ≔ 𝑙𝑜𝑔 (
𝔼[𝑍|𝑊 = 𝑤]

1 − 𝔼[𝑍|𝑊 = 𝑤]
) , 𝑘(𝑒, 𝑦) = −𝑧𝑒(𝑤) + log (1 + 𝑓𝑒(𝑤)) (14) 

where 𝑒∗(𝑤) is the log odds of the chance that a student is highly athletically adaptive, 

and 𝑘(𝑒, 𝑦) is the log-likelihood loss. This is a feed-forward neural network using 

several layers with ReLU activation to model the relationship of sensor inputs with 

fitness outcomes, and it uses gradient-based optimization techniques for the 

minimization of loss functions for efficient convergence. The depth and complexity of 

networks affect the convergence of the model; it also facilitates fast and accurate 

prediction forecasts for tailored exercise planning. 

3.4.2. Dynamic bumble bee mating (DBBM) 

Combinational neighborhood topology bumble bee mating optimization is based 

on the core of DBBM. Students’ athletic flexibility and fitness are improved via 

biosensor data usage that manages and monitors performance metrics in physical 

action. The computer selects by randomness a colony of bumble bees and then uses 

the fitness profile of the bees to determine biosensor data. Bumble bees are generated 

in three different varieties: workers, drones, and queens. New queens signify 

significant gains in fitness, drones demand attention, and workers indicate 

intermediate advancement. This individualized training improves fitness levels. The 

following Equations (15) and (16) are part of the selection criteria: 

𝐾1 = (𝑣𝑏𝑜𝑢𝑛𝑑 − 𝑘𝑏𝑜𝑢𝑛𝑑) × (𝑥1 −
𝑥1

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑠) + 𝑘𝑏𝑜𝑢𝑛𝑑 (15) 
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𝐾1 = (𝑣𝑏𝑜𝑢𝑛𝑑 − 𝑘𝑏𝑜𝑢𝑛𝑑) × (𝑥2 −
𝑥2

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑠) + 𝑘𝑏𝑜𝑢𝑛𝑑 (16) 

where 𝑡  is the current iteration (showing how physical training is 

progressing), 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations or training sessions, and 

the upper and lower boundaries of the fitness parameters (such as heart rate and 

strength levels) are denoted by 𝑣 𝑏𝑜𝑢𝑛𝑑 and 𝑘 𝑏𝑜𝑢𝑛𝑑, To guarantee that 𝑥2 > 𝑥1, 

𝑥1 𝑎𝑛𝑑 𝑥2 regulate the range of values for the fitness criteria. This research refines 

students’ fitness levels through breeding and mutation using a variable neighborhood 

search algorithm in response to real-time biosensor data. To ensure student fitness, 

only the fit students make it through, and their biosensor data is used to optimize plans. 

Based on real-time data from biosensors, the DBBM algorithm improves fitness 

characteristics such as physical endurance, joint mobility, and heart rate. Training 

sessions, iterations, the number of students, and fitness metrics like  𝑣𝑏𝑜𝑢𝑛𝑑 , and 

𝑘𝑏𝑜𝑢𝑛𝑑 are among the variables it modifies. These variables change in real-time as 

students’ fitness levels increase. The algorithm ensures the fitness profile parameters 

match changing student demands by updating parameters like 𝑥1 and 𝑥2 when no 

progress is seen over successive rounds. To promote variety, the algorithm also 

modifies the student body, adding new ones. The following are the Equations (17)–

(21) for parameter updates: 

𝑥1 = 𝑥1𝑜𝑝𝑡 +
𝑥1 − 𝑥1𝑜𝑝𝑡

𝑥1𝑜𝑝𝑡
 (17) 

𝑥2 = 𝑥2𝑜𝑝𝑡 +
𝑥2 − 𝑥2𝑜𝑝𝑡

𝑥2𝑜𝑝𝑡
 (18) 

𝑣𝑏𝑜𝑢𝑛𝑑 = 𝑉𝐵 +
𝑣𝑏𝑜𝑢𝑛𝑑 − 𝑉𝐵

𝑉𝐵
 (19) 

𝑘𝑏𝑜𝑢𝑛𝑑 = 𝐾𝐵 +
𝑘𝑏𝑜𝑢𝑛𝑑 − 𝐾𝐵

𝐾𝐵
 (20) 

𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ𝐼𝑡𝑒𝑟 = 𝐿𝑆 +
𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ𝐼𝑡𝑒𝑟 − 𝐿𝑆

𝐿𝑆
 (21) 

where,  𝑥1𝑜𝑝𝑡 ,  𝑥2𝑜𝑝𝑡 ,  𝑉𝐵 ,  𝐾𝐵 , and 𝐿𝑆  represent the ideal values for the fitness 

parameters and local search iterations, respectively. The algorithm’s progress is used 

to dynamically modify the number of students (bumble bees) in Equation (22): 

𝐵𝑒𝑒𝑠 = 𝑀𝐵 +
𝐵𝑒𝑒𝑠 − 𝑀𝐵

𝑀𝐵
 (22) 

where 𝑀𝐵  stands for the current student population’s best fitness value. Using 

biosensors, the DBBM algorithm optimizes students’ athletic adaptability and fitness 

to provide a customized physical education program. Each student’s physical 

education program is customized to their current level of fitness due to the dynamic 

modification of training regimens based on real-time biosensor data, which encourages 

continual progress without the need for manual intervention. The algorithm’s primary 

innovation is its capacity to maximize fitness metrics throughout workouts, providing 
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a highly customized flexible method of physical education. Algorithm 1 depicts the 

hybrid DBBM-RDNN algorithm below. 

Algorithm 1 DBBM-RDNN 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝐷𝑁𝑁 𝑀𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑅𝐷𝑁𝑁()  
𝑇𝑟𝑎𝑖𝑛 𝑅𝐷𝑁𝑁 𝑤𝑖𝑡ℎ 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎  

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖𝑛 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎:  
𝑊 =  𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎 

𝑍_𝑡𝑟𝑢𝑒 =  𝑠𝑡𝑢𝑑𝑒𝑛𝑡. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑢𝑠𝑖𝑛𝑔 𝑅𝐷𝑁𝑁  
𝑍_𝑝𝑟𝑒𝑑 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑊) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
1: 𝑙𝑜𝑠𝑠 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑙𝑜𝑠𝑠(𝑍_𝑝𝑟𝑒𝑑, 𝑍_𝑡𝑟𝑢𝑒) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝐷𝑁𝑁 𝑚𝑜𝑑𝑒𝑙 
𝑢𝑝𝑑𝑎𝑡𝑒_𝑅𝐷𝑁𝑁_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑙𝑜𝑠𝑠) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐷𝐵𝐵𝑀 𝑓𝑜𝑟 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝐷𝐵𝐵𝑀_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() 

𝑆𝑡𝑎𝑟𝑡 𝐷𝐵𝐵𝑀 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(100):   

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑒 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛:   
3: 𝑊 =  𝑏𝑒𝑒. 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎   
4: 𝑍_𝑝𝑟𝑒𝑑 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑊)   

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑅𝐷𝑁𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑍_𝑝𝑟𝑒𝑑, 𝑏𝑒𝑒) 

  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 & 𝑈𝑝𝑑𝑎𝑡𝑒 
𝐼𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:   

𝑠𝑒𝑙𝑒𝑐𝑡_𝑎𝑠_𝑞𝑢𝑒𝑒𝑛(𝑏𝑒𝑒)   
  𝑒𝑙𝑠𝑒:  𝐼𝑓 𝑎 𝑏𝑒𝑒 𝑖𝑠 𝑢𝑛𝑓𝑖𝑡 

𝑚𝑢𝑡𝑎𝑡𝑒_𝑏𝑒𝑒(𝑏𝑒𝑒)   
𝑈𝑝𝑑𝑎𝑡𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 

𝑢𝑝𝑑𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠() 
𝑆𝑡𝑜𝑝 𝑖𝑓 𝑎𝑙𝑙 𝑏𝑒𝑒𝑠 ℎ𝑎𝑣𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

5:  if 𝑎𝑙𝑙_𝑏𝑒𝑒𝑠_𝑜𝑝𝑡𝑖𝑚𝑎𝑙(): 

 𝐵𝑟𝑒𝑎𝑘 
𝑅𝑒𝑡𝑢𝑟𝑛 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝐴𝑙𝑙 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

To estimate student fitness using biosensor data, the combined DBBM-RDNN 

strategy begins with training an RDNN model. DBBM optimization then selects the 

fittest as “queen”, improves the unfit through mutations, and evaluates students (bees) 

to fine-tune fitness levels. The method is repeated once every student reaches optimal 

fitness, returning to the ideal fitness levels after dynamically updating the fitness 

bounds. 

4. Experimental results 

4.1. System configuration 

Python 3.8 was used in the implementation of the NGLSTM system for physical 

fitness assessment. For best results, it needed 16 GB of RAM and used TensorFlow 

2.4 for DL. The system included specially created gate functions to increase the 

prediction accuracy of fitness test results. 
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4.2. Performance evaluation 

The accuracy, precision, recall, F1-score, MAE, and RMSE values of this 

research’s comparison to the traditional ResNetCNN-BILSTM (Residual Network 

Convolutional Neural Network with Bidirectional Long Short-Term Memory) [25] 

and RP + CNN (Recurrence Plot + convolutional neural network) [26] shed light on 

how well the suggested model DBBM-RDNN recognizes various physical activities. 

4.3. Accuracy and loss 

The term accuracy and loss describes the decline in forecast accuracy brought on 

by elements such as model limits, data noise, or inaccurate sensors. It affects the 

validity of fitness tests based on biosensors in individualized physical education. By 

using biosensors, the research to assess students’ athletic adaptation and physical 

fitness. To evaluate performance and guarantee the correctness of biosensor data, it 

integrates measures for accuracy and loss. By incorporating this data into a lesson plan, 

the research seeks to improve comprehension of students’ physical capabilities. They 

increase students’ flexibility in physical education exercises and improve teaching 

methods. Figure 3 depicts the accuracy and loss below.  

 

Figure 3.Outcome of:(a) Accuracy;(b) Loss. 

4.4. Accuracy 

The capacity to regulate a movement’s direction or intensity is known as physical 

fitness accuracy. The capacity of a model or algorithm to correctly forecast outcomes 

or results is known as prediction accuracy. It is commonly used to evaluate the ability 

of suggested methods and is generally regarded as the main advantage of using a 

hybrid design. The use of biosensors to gather data in real-time during physical 

education exercises, to assess students’ athletic adaptability and physical fitness. 

Creating a lesson plan that incorporates biosensor technology to evaluate and enhance 

student performance is the goal. Through data analysis, teachers can customize 

physical education programs to meet the requirements of each student, improving 

fitness results overall. The investigates the relationship between fitness, technology, 

and individualized instruction in physical education. Table 1 and Figure 4 illustrate 

the accuracy comparing findings.  
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Table 1. Comparison outcomes of accuracy. 

Methods Accuracy (%) 

ResNetCNN-BILSTM [25] 91.5 

RP+CNN [26] 96.89 

DBBM-RDNN [Proposed] 98.05 

 

Figure 4. Comparison result of accuracy. 

The accuracy of the RP+CNN approach was greater at 96.89% than that of the 

ResNetCNN-BILSTM technique, which was 91.5%. The suggested DBBM-RDNN 

approach performed better than both, with the greatest accuracy of 98.05%.  

4.5. Precision 

A fitness and medical strategy known as precision, exercise tailors workout plans 

to each person’s unique traits and reactions. It’s predicated on the notion that 

biological variables and genetic alterations cause individuals to react to exercise in 

various ways. To improve physical education teaching methods, the research 

investigates the use of biosensors to assess students’ athletic adaptability and physical 

fitness. It attempts to create customized exercise regimens for improved student results 

by using precision health data. That employ real-time biosensor feedback to enhance 

sports performance and flexibility. 

4.6. Recall 

One technique for evaluating physical activity is physical activity recall, which 

involves asking participants to recollect their physical activity over a predetermined 

amount of time. The percentage of pertinent items that were recovered out of those 

that should have been retrieved is known as recall. The percentage of real positive 

cases that are detected out of all genuine positives constitutes a recall. Recall would 

assess how well the biosensor system identifies students with high levels of physical 

fitness or sports adaptation for this research, reducing false negatives and missed 

detections of fit or adaptable students. 

4.7. F1-Score 

The F1 score is calculated using the physical activity accuracy and recall 

harmonic means. Consequently, it symmetrically provides recall and accuracy in a 
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single measure. One of accuracy or recall is valued higher than the other in the general 

score, which adds extra weight. The F1-score offers a fair assessment of model 

performance as it is the harmonic mean of accuracy and recall. Because it combines 

the sensitivity to detect all pertinent cases with the capacity to accurately evaluate 

students’ health and adaptability, it is especially helpful in situations when there is an 

unequal distribution of classes. Table 2 and Figure 5 depict the comparison outcomes 

of the recall, precision, and F1-score.  

Table 2. Comparison outcomes of recall, precision & F1-score. 

Methods Recall (%) Precision (%) F1-Score (%) 

ResNetCNN-BILSTM [25] 89.5 89.7 - 

RP+CNN [26] - - 86.76 

DBBM-RDNN [Proposed] 90.1 90.9 88.55 

 

Figure 5. Comparison result of:(a) recall, precision; (b) F1-score. 

The ResNetCNN-BILSTM model obtains a precision of 89.7% and a recall of 

89.5%. The RP+CNN model reports an F1-score of 86.76%, however, the DBBM-

RDNN The algorithm's F1-score of 88.55% indicates improved performance, recall of 

90.1%, and precision of 90.0%.  

4.8. MAE 

The mean absolute error (MAE) is the average absolute difference between the 

sports adaptation or physical fitness assessments that biosensors provide and the actual 

results. Prediction accuracy is measured; a lower MAE denotes more accurate 

assessments of students’ performance. MAE calculates the average magnitude of 

errors between anticipated and observed values to assess students’ athletic adaptation 

and physical fitness. With a lower MAE signifying superior performance in fitness 

evaluations, it offers insight into the overall accuracy of the biosensor-based system 

and aids in evaluating the dependability of predictions in physical assessments. 

4.9. RMSE 

The Root mean square error (RMSE) statistic is commonly used to evaluate the 

difference between predicted and actual values in data-driven models. RMSE can be 

used to evaluate how well biosensor-based forecasts of students’ athletic ability and 
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physical fitness work out. The difference between expected and observed values is 

quantified by RMSE, which assigns greater weight to higher mistakes. Lower RMSE 

values indicate a better degree of precision and accuracy in evaluating students’ sports 

adaptation and fitness levels, which is helpful in physical fitness evaluations as it helps 

determine the extent of inaccuracy in biosensor data predictions. The findings from 

the comparison of the MAE and RMSE are shown in Table 3 and Figure 6. 

Table 3. Comparison outcomes of MAE & RMSE. 

Methods MAE RMSE 

ResNetCNN-BILSTM [25] 2.012 3.019 

DBBM-RDNN [Proposed] 1.915 2.505 

 

Figure 6. Comparison results of MAE & RMSE. 

The ResNetCNN-BILSTM model obtained an RMSE of 3.019 and an MAE of 

2.012. Comparatively, the suggested DBBM-RDNN model performed better, with an 

RMSE of 2.505 and MAE of 1.915. 

4.10. Discussion 

The ResNetCNN-BILSTM [25] model might have difficulties in managing a 

wide variety of biosensor data that could decrease its accuracy of prediction and 

individual fitness levels, and thus hinder real-time applications in customized physical 

education programs with big datasets. The main disadvantage of the ResNetCNN-

BILSTM model in physical education is that it is computationally complex, thus 

limiting real-time application in large classrooms. Furthermore, biosensors can be an 

issue because their calibration or placement can be incorrect, causing accuracy 

problems. Because RP+CNN [26] relies on high-quality sensor data, is prone to 

possible noise or errors, and cannot generalize to different groups of students with 

different fitness levels and sports adaptation, the model has limitations in specific 

procedures in physical education. Potential shortcomings in the RP+CNN model 

adopted by this research include its sensitivity to quality sensor data, which not always 

be available in realistic environments. Furthermore, due to the complexity of this 

model, it can fail to scale up and generalize with very diversified student populations. 

The model DBBM-RDNN bypasses all these constraints because it uses an advanced 

optimization procedure that reduces the effects of noisy or inaccurate biosensor data. 
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It is more reliable for individualized physical education programs due to its dynamic 

adaptability, which improves the accuracy of forecasts. These challenges in the 

proposed DBBM-RDNN model can be overcome by employing model pruning and 

parameter reduction to optimize computational efficiency for real-time applicability 

in large classrooms. Other techniques include adaptive calibration to biosensors that 

minimize errors within data collection. Finally, techniques such as transfer learning 

and domain adaptation improve the scalability of the model and generalizability across 

diverse student populations. The suggested DBBM-RDNN model performs better than 

the ResNetCNN-BILSTM and RP+CNN models because of its improved capacity to 

collect temporal and spatial information using a more effective DL architecture. This 

enables a deeper integration of dynamic and static data representations, which 

improves performance in complicated operations. 

5. Conclusion 

Through the use of physical education, the research seeks to enhance students’ 

well-being, fitness, and health. Wearable biosensors’ real-time physiological 

parameter data was used to track physical performance and provide insight into fitness 

and flexibility during exercise. The research issues related to noise and ambiguity of 

conventional monitoring methods are addressed through an assessment approach 

based on DL that tracks students’ fitness using biosensor data. This research proposed 

using biosensors to predict unique DBBM-RDNN for the levels of the student’s 

physical fitness as well as sports adaptation. The data formats included many facets of 

fitness and different physical activity in the biosensor dataset. Low-pass filters were 

applied in preprocessing to remove noise from the acquired data. The properties of the 

preprocessed data were extracted using PCA. Based on real-time sensor data, DBBM 

was used to optimize the features in sensor data, and RDNN was used to categorize or 

forecast students’ levels of fitness and adaptability. The comparative analysis is used 

to assess several performance indicators, including F1 score (88.55%), recall (90.1%), 

accuracy (98.05%), precision (90.9%), RMSE (2.505), and MAE (1.915). The 

suggested approach outperformed other traditional algorithms in predicting students’ 

physical fitness, according to experimental data. This research emphasized how DL 

combined with biosensor technology offers a reliable and accurate to monitor students’ 

physical performance.  

Limitation and future scope 

The quality and precision of the biosensor data are limitations because 

measurement mistakes and sensor noise might compromise prediction accuracy. 

Furthermore, it could be difficult for the model to generalize to different student 

groups with different physical circumstances. To improve prediction accuracy, future 

studies might investigate the combination of multi-modal data fusion and more 

sophisticated sensor technologies. The customized exercise regimens might be 

enhanced by adding real-time adaptive learning algorithms and broadening the dataset 

to encompass a greater range of physical activities. 
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