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Abstract: In the monitoring and analysis of physiological and biochemical indicators of 

athletes, traditional data mining (DM) technology cannot extract compelling features and laws 

when processing high-dimensional and complex multivariate data, and the accuracy of the 

analysis results is low. The lack of real-time monitoring of the dynamically changing 

physiological state makes it impossible to detect athletes’ overtraining or fatigue in time, which 

affects the training effect and the health of athletes. This paper constructs an improved 

XGBoost (eXtreme Gradient Boosting) model to clean and normalize the collected 

physiological and biochemical data, remove outliers and fill in missing values, and construct a 

variable set representing the characteristics of different training periods to provide high-quality 

input data for subsequent model analysis. This paper combines the SHAP (SHapley Additive 

exPlanations) method to quantify the importance of each feature, selects the variables that 

contribute most to the recognition of the training state to optimize the model input, reduce the 

model complexity, and improve the computational efficiency. Based on the original XGBoost 

model, the loss function can be adjusted and the adaptive learning rate mechanism can be added 

to enable the model better to capture the dynamic changes of physiological and biochemical 

indicators and improve the prediction accuracy. Combined with the prediction results of the 

improved model, a real-time monitoring system was designed to track the changes in the 

physiological state of athletes during different training periods, and to issue an alarm when 

abnormal trends were detected to assist coaches in adjusting training plans. The experimental 

results show that in the feature evaluation, three key physiological indicators, namely blood 

oxygen saturation, blood lactate concentration, and heart rate, are extracted, which reduces the 

computational complexity of the subsequent model. In the four training stages of the basic 

period, load period, high-intensity period and recovery period, the loss values of the XGBoost 

model were approximately 0.5, 0.42, 0.4 and 0.35 respectively. In the monitoring data of 4 

batches of football players, with 100 players in each batch, the accuracy rate remained above 

0.83 and the response time was below 2 s. The experiment proved the effectiveness of the 

research model in the monitoring and analysis of physiological and biochemical indicators. 

Keywords: data mining technology; football player; physiological and biochemical indicators 

monitoring; extreme gradient boosting; shapley additive explanations; adaptive learning rate 

mechanism; dynamic Monitoring System 

1. Introduction 

The training effect of football players is closely related to health management, 

and physiological and biochemical indicators are important data for measuring the 

status of athletes. Real-time monitoring and accurate analysis of the physiological 

changes of athletes at different training stages [1,2] can effectively avoid sports 

injuries, optimize training effects, and improve competitive level [3]. How to 
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efficiently process and analyze these data has become a core issue in modern sports 

science research. 

In the traditional monitoring of athletes’ physiological and biochemical 

indicators, there are still difficulties to be solved, especially in the accuracy and 

efficiency of high-dimensional, multivariate data processing. Traditional methods rely 

on manual experience or simple statistical analysis in data feature extraction and pattern 

discovery [4,5], and cannot effectively deal with complex data structures [6,7]. The 

physiological responses of athletes at different training stages are highly dynamic and 

changeable. Traditional methods cannot capture these subtle changes in time [8,9], and 

are prone to miss key physiological change signals, resulting in delayed detection of 

problems such as fatigue and overtraining [10]. Due to the high dimensionality of the 

data, it is difficult for traditional methods to select the most representative features 

from a large number of variables [11,12], which causes the model to overfit or have 

information redundancy during training, affecting the accuracy of the prediction 

results [13]. The physiological and biochemical data of athletes are interfered by noise, 

missing values and outliers. Traditional data processing methods are difficult to 

effectively clean up these problems, which in turn affects the reliability of the analysis 

results [14,15]. Traditional analysis methods are difficult to monitor in real time the 

changes in physiological status during different training periods, and cannot adjust the 

training program in time when athletes are overly tired or unwell [16]. Athletes’ 

physical conditions generally change significantly in a short period of time. If these 

changes cannot be captured in time, it is easy to make the training load inappropriate 

or the recovery inadequate, increasing the risk of sports injuries [17,18]. Even though 

some methods use time series-based analysis, they are still difficult to adapt to the 

frequently changing physiological states during training due to the lack of dynamic 

optimization mechanisms [19,20]. When processing athletes’ physiological and 

biochemical data, traditional methods not only have problems with insufficient 

analysis accuracy and poor real-time performance, but also have significant 

deficiencies in dealing with data noise and outliers, and cannot provide efficient 

training monitoring and health management support. These problems have prompted 

the demand for more efficient and accurate analysis methods, which in turn has 

promoted the application research based on DM (Data Mining) technology. 

This paper uses advanced DM technology to improve the monitoring and analysis 

accuracy of physiological and biochemical indicators of football players in different 

training periods, and solves the limitations of traditional methods in data processing, 

feature selection and dynamic change capture by constructing an improved XGBoost 

model. The collected physiological and biochemical data of athletes can be cleaned, 

normalized and processed for outliers to ensure data quality and provide reliable input 

for subsequent model analysis; the SHAP (SHapley Additive exPlanations) method 

can be combined to quantify the contribution of each feature to the prediction results, 

select the most influential features, optimize the model input, and improve the 

accuracy of the prediction. By adjusting the loss function of the XGBoost model and 

introducing an adaptive learning rate mechanism, this paper further enhances the 

adaptability of the model to the dynamic changes of physiological and biochemical 

indicators, allowing the model to reflect the changes in the athletes’ physiological state 

in real time and accurately. A real-time monitoring system can be built, combined with 
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the improved model, to track the changes in the athletes’ physiological state in real 

time during different training periods, detect abnormal trends in time and issue 

warnings, help coaches adjust training plans, and optimize athletes’ training effects 

and health management. The research goal of this paper is not only to improve the 

accuracy and efficiency of data analysis, but also to provide an operational and 

practical technical means for the training monitoring of football players, so as to 

promote the long-term development of athletes and the improvement of their 

competitive performance. 

2. Related work 

Current DM technology is developing rapidly, and many studies have begun to 

focus on how to use machine learning and DM methods to analyze athletes’ 

physiological and biochemical indicators, improve training effects and reduce sports 

injuries. Some studies have applied SVM (Support Vector Machine) and decision tree 

algorithms to classify and regress athletes’ physiological data, attempting to identify 

athletes’ fatigue status and adjust training loads [21,22]. Lei et al. established an athlete 

heart rate measurement model based on support vector machine combined with an 

improved algorithm, and used a multi-channel spectral matrix decomposition 

denoising algorithm to eliminate interference factors, thereby improving the accuracy 

and efficiency of athlete heart rate measurement [23]. Other studies have attempted to 

capture the long-term trend of physiological indicators through time series analysis 

and deep learning methods to provide decision support for training plans [24,25]. Song 

used an optimized convolutional neural network based on a deep learning model, using 

a self-adjusting algorithm and an autoencoding method to enhance convolution to 

ensure successful detection and risk assessment of sports medicine diseases [26]. 

These studies mostly focus on offline analysis and lack real-time monitoring 

capabilities. In actual applications, the physiological state of athletes changes 

dynamically. Traditional methods cannot effectively capture these changes and cannot 

provide real-time feedback. During training, the risk of fatigue or overtraining cannot 

be discovered in time, affecting training results and athlete health. 

In recent years, some studies have proposed improved DM methods to enhance 

the adaptability of the model to dynamic physiological changes. Some studies have 

combined XGBoost’s ensemble learning method to try to capture the changes in 

athletes’ physiological state in real time during training [27,28]. Zhao et al. proposed 

an integrated framework that uses Spark-based big data analysis and the XGBoost 

algorithm. The framework provides powerful sports medical services, including real-

time health monitoring and data-driven insights. It can skillfully manage the large 

amount of sports data generated during training and activities, promote instant health 

assessment, and combine XGBoost algorithm for DM to enhance health prediction and 

recommendation capabilities [29]. Hou and Xue used the spatiotemporal graph 

convolutional network as the main algorithm, introduced the adaptive graph 

convolution module and the residual channel attention module, and combined with 

XGBoost to form the final physical training injury risk assessment model, which 

improved the accuracy of processing physical training injury risks [30]. These 

methods improve the accuracy of the model and reduce unnecessary complexity by 
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effectively extracting and optimizing features of high-dimensional data; however, 

existing models lack real-time data processing capabilities and are still limited when 

faced with problems such as noisy data and missing values. Although these methods 

can improve analysis accuracy to a certain extent, they still have obvious deficiencies 

in real-time monitoring and feedback. 

3. Improve the construction and application of XGBoost model 

3.1. Data preprocessing and feature construction 

3.1.1. Data processing 

In order to ensure the quality of the data, the collected physiological and 

biochemical data are cleaned. The goal of data cleaning is to remove noise data caused 

by sensor errors or interference factors in the acquisition process. Here, outlier 

detection based on the Z-score [31,32] method is used to identify extreme values in 

the data. The Z-score method can effectively identify extreme data that deviates far 

from the mean by calculating the degree of deviation between the data points and the 

mean. It is particularly suitable for outlier detection in high-dimensional data. This 

method can eliminate abnormal data points, reduce interference with model training, 

and improve the accuracy of analysis results. For each variable 𝑥𝑖 , its mean 𝜇  and 

standard deviation 𝜎  are calculated, and then its Z score is calculated using the 

following formula: 

𝑍𝑖 =
𝑥𝑖 − 𝜇

𝜎
 (1) 

When |𝑍𝑖 | > 3 is used, the data point is considered an outlier and is removed. This 

method can effectively remove noise data that is far from the overall distribution and 

ensure the validity of subsequent training data. 

In addition to outlier processing, data normalization is also an essential step. 

Physiological and biochemical indicators of different dimensions need to have the 

same scale. The Min-Max normalization [33,34] method is used to linearly transform 

the value of each feature to the [0, 1] interval. The transformation formula is: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (2) 

min (𝑥) is the minimum value of the feature, max (𝑥) is the maximum value of 

the feature, and 𝑥′ is the normalized representation of the feature. This method can 

eliminate the dimensional differences between different features, so that each feature 

has the same weight during the model training process, and avoid some features 

dominating the model training process due to excessive numerical range. 

During the physiological data collection process of athletes in different training 

periods, data loss may occur. The processing of missing values is an important part of 

data preprocessing. In order to avoid incomplete training data due to missing values, 

the KNN (K-Nearest Neighbor) [35,36] interpolation method is used to fill in the 

missing data points. The KNN method calculates the similarity between the row where 

the missing value is located and other rows, selects the K most similar neighbor values, 

and uses the average value of these neighbors to fill in the missing data points. In this 
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process, for a feature 𝑥𝑗 in the 𝑗th row where the missing value is located, the K most 

similar samples are selected based on the Euclidean distance between other feature 

values and the 𝑗 th row data, and then the filling value is calculated by weighted 

average: 

𝑥𝑖′ =
∑ 𝑤𝑗

𝐾
𝑗=1 × 𝑥𝑗

∑ 𝑤𝑗
𝐾
𝑗=1

 (3) 

𝑤𝑗 is the weight of the 𝑗th neighbor, calculated by the inverse of the Euclidean 

distance. In data processing, the KNN algorithm is used to effectively fill missing 

values and reduce the impact of outliers. The algorithm is based on the distance 

measurement principle and predicts missing data through the weighted average of 

neighboring samples, thereby improving the completeness and accuracy of the data. 

3.1.2. Feature construction 

In physiological and biochemical data, the physiological responses of different 

training periods vary significantly, so it is necessary to construct a feature set that can 

effectively characterize these differences. Common physiological and biochemical 

indicators include cardiovascular system-related indicators such as heart rate, blood 

pressure, blood oxygen saturation and heart rate variability, and metabolic and energy 

system-related indicators such as blood lactate concentration, blood glucose 

concentration, liver function indicators and muscle glycogen reserves. In each training 

cycle, changes in cardiovascular system-related indicators can reflect the intensity and 

fatigue of football players. Metabolic and energy system-related indicators are 

important indicators for evaluating the physical load of football players. Indicators 

related to muscle damage and recovery help evaluate whether the training load is 

appropriate and promptly detect whether football players are at risk of overtraining. 

Endocrine and hormone levels reflect the physical functions of football players. 

These characteristic variables not only include data from a single time point, but 

also introduce dynamic change characteristics during the training period, such as the 

heart rate change rate, the growth rate of lactate concentration, and the fluctuation 

range of muscle damage indicators. After analyzing the time series data, the trend of 

the athlete’s physiological state changing with the training intensity is captured. The 

data of each variable during the training period is processed with time difference, and 

the data change rate 𝛥𝑥(𝑡) at each moment is calculated: 

𝛥𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 1) (4) 

The construction of this feature can capture the dynamic changes in physiological 

data and provide richer input features for subsequent model training. 

Table 1 shows the frequency of collecting physiological and biochemical 

characteristics in different training periods: the frequency of collecting is low during 

the basal period and recovery period, and the frequency of collecting is increased 

during the load period and high-intensity period, focusing mainly on cardiovascular, 

metabolic and muscle damage indicators. 
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Table 1. Data collection frequency. 

Training 

period 

Cardiovascular 

system(time/week) 

Metabolism and energy 

system(time/week) 

Muscle damage and 

recovery(time/week) 

Endocrine and hormonal 

levels(time/week) 

Base period 1 1 1 1 

Load period 3 2–3 2 2 

High intensity 

period 
4 3–4 3 3 

Recovery 

period 
2 1–2 2 1 

The data processing and feature construction process in Figure 1 shows the 

complete process from data collection to feature construction. Data collection enters 

the data cleaning stage, including using Z-score to remove outliers and KNN to handle 

missing values. The cleaned data is normalized to ensure the uniform scale of the 

features. Feature construction introduces dynamic change characteristics during the 

training period, and performs time difference processing on the data of each variable 

during the training period to obtain 𝛥𝑥(𝑡). This series of processes are interconnected 

and jointly ensure the high quality of data, which is particularly suitable for real-time 

monitoring and health management of physiological and biochemical data. 

 

Figure 1. Data processing and feature construction process. 

3.2. Feature importance evaluation and screening 

In order to optimize the input features of the training state recognition model and 

reduce the computational complexity, the SHAP [37,38] method is used here to 

evaluate and screen the importance of features. The SHAP value provides a way to 

quantify the contribution of each feature to the model output. By analyzing the 

contribution of each feature, the features that have a greater impact on the prediction 

of the target variable are identified, and on this basis, they are screened to optimize the 

model input and remove redundant and irrelevant features. 

The core of feature importance assessment is to calculate the marginal 
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contribution of each feature in different feature combinations through SHAP value. 

The SHAP method quantifies the importance of each feature based on SHapley value 

theory. For a specific data point, the SHAP value of its feature represents the 

contribution of the feature to the model prediction result. The calculation formula is: 

𝜙𝑖 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
𝑆⊆𝑁\{𝑖}

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] (5) 

𝑁 is the feature set, 𝑆 is the subset of features, 𝑓(𝑆) is the predicted value output 

after training the model on the feature set 𝑆, and 𝑓(𝑆 ∪ {𝑖}) is the output value after 

adding the features. After calculating the impact of all possible feature subsets on the 

prediction results, the SHAP value can accurately quantify the contribution of the 

features to the model output. 

Based on the SHAP value of each feature, all features can be sorted and the 

features with the greatest contribution can be selected for model training. In this 

process, the average absolute SHAP value of each feature is calculated and sorted to 

obtain the importance ranking of the features. The quantitative indicator of feature 

importance is its average absolute SHAP value: 

SHAPavg(𝑥𝑖) =
1

𝑁
∑|𝜙𝑖

𝑗
|

𝑁

𝑗=1

 (6) 

𝜙𝑖
𝑗
 is the SHAP value of feature 𝑥𝑖 in the 𝑗th sample. By calculating the average 

SHAP value of all features, it can identify the features that contribute more to the 

model prediction. These features are usually strongly associated with the target 

variable, and retaining these features can ensure that the model can still maintain a 

high prediction accuracy in a lower dimension. 

When screening features, in addition to relying on the SHAP value sorting, 

correlation analysis is also required to eliminate redundant features. Highly correlated 

features can introduce collinearity problems, affecting the stability and performance 

of the model. The correlation coefficient between features can be calculated to identify 

highly correlated features and eliminate them, which is a key step in further optimizing 

input features. Feature correlation is measured by the Pearson correlation coefficient, 

which is calculated as follows: 

𝜌(𝑥𝑖, 𝑥𝑗) =
∑ (𝑥𝑖

𝑛 − 𝑥𝑖‾ )𝑁
𝑛=1 (𝑥𝑗

𝑛 − 𝑥𝑗‾ )

√∑ (𝑥𝑖
𝑛 − 𝑥𝑖‾ )

2𝑁
𝑛=1 ∑ (𝑥𝑗

𝑛 − 𝑥𝑗‾ )
2𝑁

𝑛=1

 
(7) 

According to the preset correlation threshold, the redundancy between features is 

determined, and unnecessary features are eliminated to ensure that the model training 

is not disturbed by redundant information. The SHAP method eliminates redundant 

features by quantifying the contribution of features to the model output, while the 

Pearson correlation coefficient measures the linear relationship between features and 

helps identify highly correlated features. When the two are used in combination, SHAP 

helps to screen out important features, and the Pearson correlation coefficient further 

ensures that there is no multicollinearity between features, thereby improving the 

stability and interpretability of the model. 
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3.3. Improved training and optimization of the XGBoost model 

3.3.1. Adjusting the loss function to adapt to the dynamic changes of 

physiological and biochemical indicators 

When predicting physiological and biochemical indicators, the traditional 

XGBoost model uses a fixed loss function, usually a logarithmic loss function. Since 

physiological and biochemical indicators show complex dynamic trends, a simple 

fixed loss function may not be able to accurately capture these changes. In order to 

make the model better adapt to this dynamic change, the loss function of XGBoost is 

improved here. 

Using the weighted loss function, the paper introduces a time weighting 

mechanism based on the traditional loss function to adjust the contribution of different 

time points to model training. At a certain moment, the predicted value of 𝑡 is 𝑦�̂�, and 

the actual value is 𝑦𝑡. In a certain period of time, the accuracy of the prediction has a 

greater impact on the model. The paper uses the introduced time weight 𝑤𝑡 to weight 

it. The new loss function is expressed as: 

𝐿(𝜃) = ∑ 𝑤𝑡

𝑇

𝑡=1

× (𝑦�̂� − 𝑦𝑡)2 (8) 

𝑤𝑡 is the weight of time 𝑡, 𝜃 is the model parameter, and 𝑇 is the total number of 

time steps. The weight 𝑤𝑡 is set according to the dynamic change law of physiological 

and biochemical indicators. For those indicators with drastic changes, the 

corresponding time step can be given a larger weight, while for those indicators with 

gentle changes, the corresponding time step can be given a smaller weight.  

The study also introduces the adaptability of adaptive loss function to 

physiological and biochemical indicators changes; based on the principle of gradient 

lifting tree model, the loss value of the model can be adaptively adjusted according to 

the results of the previous round of training; for samples with large errors in the 

previous iteration, its loss weight in the current iteration is increased. This process can 

be expressed by the following adaptive loss function formula: 

𝐿(𝜃) = ∑ 𝛼𝑡

𝑇

𝑡=1

× (𝑦�̂� − 𝑦𝑡)2 (9) 

In the formula, 𝛼𝑡 is the adaptive adjustment coefficient. As the model training 

progresses, 𝛼𝑡  can automatically increase or decrease according to the error size, 

allowing the model to focus more on samples that were previously misjudged. By 

dynamically adjusting the loss function, the model can more effectively learn the 

changing patterns of physiological and biochemical indicators during the training 

process and improve prediction accuracy. 

3.3.2. Introducing an adaptive learning rate mechanism to improve model 

stability 

In the traditional XGBoost model, the learning rate is a fixed parameter, which is 

generally small to prevent overfitting. A fixed learning rate may cause the training 

process to converge too slowly when facing complex data sets, or fail to adapt to the 

speed of data changes in certain training stages. Based on this situation, the study 
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improved the original XGBoost model and added an adaptive learning rate 

mechanism, allowing the model to dynamically adjust the learning rate according to 

data changes at different training stages. 

In this process, a gradient-based adaptive learning rate strategy is introduced. In 

each tree construction process, the current gradient information is calculated, and the 

learning rate is dynamically adjusted according to the gradient amplitude. Assuming 

that in the 𝑘 round iteration, the current gradient is 𝑔𝑘, the adjustment formula of the 

adaptive learning rate 𝜂𝑘 is: 

𝜂𝑘 =
𝜂0

1 + 𝛽 × |𝑔𝑘|
 (10) 

𝜂0 is the initial learning rate, 𝛽 is the adjustment factor, and |𝑔𝑘| is the absolute 

value of the current gradient. 

The study also introduced a dynamic learning rate adjustment mechanism based 

on training error to further enhance the effect of adaptive learning rate. After each 

round of training, the training error is calculated and the learning rate of the next round 

is adjusted according to the size of the error. The formula is as follows: 

𝜂𝑘 = 𝜂0 × (1 −
𝑒𝑘

max(𝑒)
) (11) 

𝑒𝑘 is the training error of the current round, and max(𝑒) is the maximum error 

during the training process. Using this method, the model can dynamically adjust the 

learning rate according to the changes in the training error, more accurately control the 

update amplitude of each step during the training process, avoid over-adjustment when 

close to convergence, and ensure that the model is gradually refined on the basis of 

global optimization to improve the final prediction accuracy. 

Table 2 shows the parameter settings of the loss function adjustment and adaptive 

learning rate mechanism during the XGBoost model training process. As the training 

progresses, the loss function weight gradually increases, from 0.5 in the early stage to 

2.0 in the dynamic adjustment stage, emphasizing the importance of key features. The 

adaptive learning rate factor 𝛽 also gradually increases with the progress of training, 

from 0.1 to 0.4, ensuring that the model can be flexibly adjusted according to error 

feedback at different training stages, and the initial learning rate remains unchanged 

to ensure the stability of training. The error threshold gradually increased from 0.02 to 

0.15, reflecting the increasing accuracy requirements of the model. The adaptive 

learning rate 𝜂𝑘  was adjusted from 0.045 to 0.052 as the training progressed, 

optimizing the convergence process of the model. 

Table 2. Parameter settings for loss function adjustment and adaptive learning rate mechanism. 

Stage/condition 
Loss function weighting 

parameter (𝒘𝐭) 

Adaptive learning rate 

factor (𝜷) 

Initial learning 

rate (𝜼𝟎) 

Error threshold 

(𝒆𝐤) 

Adaptive learning 

rate (𝜼𝐤) 

Early training 0.5 0.1 0.05 0.02 0.045 

Mid training 1 0.2 0.05 0.05 0.048 

Late training 1.5 0.3 0.05 0.1 0.05 

Dynamic 

adjustment 
2 0.4 0.05 0.15 0.052 
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Figure 2 is the improved XGBoost architecture, which shows the whole process 

from input to prediction results, divided into four main modules: feature selection, tree 

model training, model optimization and prediction. The input data is passed to SHAP 

to quantify the importance of each feature, select key features, and improve the quality 

of model input. The filtered features are used to train multiple decision trees. Each tree 

is optimized through residual iteration, combined with an improvement mechanism, a 

weighted loss function to adjust the weight of rare data, an adaptive learning rate to 

improve training efficiency, and dynamic regularization to prevent overfitting. The 

output of each tree is weighted and summarized as the final prediction result. This 

architecture balances feature extraction, model generalization ability, and prediction 

accuracy to meet the needs of dynamic physiological and biochemical data prediction. 

 

Figure 2. Improved XGBoost architecture diagram. 

3.4. Construction of dynamic monitoring system 

3.4.1. Real-time data processing and analysis based on prediction results 

In order to realize the dynamic monitoring of the physiological state of football 

players, combined with the prediction results of the improved XGBoost model, a real-

time data processing module is designed to analyze the changing trends of 

physiological indicators in different training periods. The module is built based on 

time series data flow, and its core includes three parts: data collection, feature update 

and trend analysis. 
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In data collection, wearable devices are used to obtain athletes’ physiological data 

in real time. These data are sampled at fixed time intervals and transmitted wirelessly 

to the central processing unit. In order to reduce transmission and storage costs, a 

dynamic feature update method based on sliding windows is designed. The sampling 

time window is 𝑇𝑤, and the feature vector update formula at time 𝑡 is: 

X𝑡 =
1

𝑇𝑤
∑ x𝑖

𝑡

𝑖=𝑡−𝑇𝑤+1

 (12) 

X𝑡 is the average eigenvalue in the window, and 𝑥𝑖 is the eigenvalue of 𝑖 at the 

time point. The sliding window method is used to ensure the real-time nature of the 

data, reduce the interference of random fluctuations on the model input, and improve 

the stability of the prediction results. 

In the trend analysis stage, the output of the improved XGBoost model not only 

provides the current prediction value, but also calculates the change rate and abnormal 

trend indicators in combination with the historical prediction value. The current 

prediction value of a physiological indicator is �̂�𝑡 , and the prediction value at the 

previous time point is �̂�𝑡−1, then the change rate is defined as: 

𝑟𝑡 =
�̂�𝑡 − �̂�𝑡−1

�̂�𝑡−1
 (13) 

The study adopts a systematic anomaly detection method to build an adaptive 

alarm threshold based on the change rate of the time series; the mean 𝜇𝑟 and standard 

deviation 𝜎𝑟  of the change rate are calculated using a sliding window, and the 

abnormal alarm conditions are: 

𝑟𝑡 > 𝜇𝑟 + 𝑘 × 𝜎𝑟 (14) 

𝑘  is the adjustment coefficient, which is determined by experimental tuning. 

Through the above method, the system can timely identify abnormal fluctuations of 

physiological indicators during real-time monitoring and provide efficient early 

warning support for coaches. 

3.4.2. Design of real-time alarm and auxiliary decision module 

In the monitoring system, the real-time alarm module is a key part to ensure the 

safety of training. In order to improve the accuracy and response speed of the alarm, 

the study constructed an alarm mechanism based on multi-indicator fusion, which 

combines the abnormal trends of multiple physiological indicators to avoid false 

alarms or missed alarms caused by abnormal single indicators. 

A separate alarm weight 𝜔𝑖  is defined for each monitoring indicator, and the 

weight is determined based on the sensitivity of the indicator to the training state. The 

calculation formula for the comprehensive alarm score 𝑆𝑡 is: 

𝑆𝑡 = ∑ 𝜔𝑖

𝑛

𝑖=1

× 𝕀(𝑟𝑡,𝑖 > 𝜇𝑟,𝑖 + 𝑘 ⋅ 𝜎𝑟,𝑖) (15) 

𝕀 is an indicator function. When the change rate of the 𝑖th indicator exceeds the 

abnormal threshold, the value is 1, otherwise it is 0. According to the comprehensive 

alarm score 𝑆𝑡, the system sets multi-level alarm response rules. 
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After the alarm is triggered, the auxiliary decision module automatically 

generates adjustment plan suggestions. Based on the feature importance analysis of 

the improved XGBoost model, the system is able to identify the key physiological 

indicators that cause abnormalities and provide optimization suggestions in 

combination with the current training stage. When abnormal fluctuations in lactate 

concentration are detected, the system may recommend reducing the duration of high-

intensity training or increasing the rest time between intervals. 

The study also designed a graphical interface to enhance the practicality of the 

system, showing the dynamic curves of athletes’ physiological indicators and alarm 

records in real time. Coaches can intuitively understand the training effect through the 

interface and quickly adjust the training strategy according to the system’s 

suggestions. This graphical visualization method improves the user-friendliness of the 

system and provides data-based decision support for coaches. 

This paper combines real-time data processing and analysis, alarm mechanism 

and auxiliary decision-making module. The dynamic monitoring system can track the 

changes in the athlete’s physiological state in multiple dimensions, providing 

important guarantees for scientific and refined training management. The real-time 

data processing and analysis module provides an accurate abnormal judgment basis 

for the alarm mechanism by monitoring the trend of changes in the athletes’ 

physiological data. After identifying the abnormal trend, the alarm mechanism 

combines with the auxiliary decision-making module to generate personalized 

adjustment suggestions, forming a closed-loop feedback loop to optimize the training 

plan and protect the health of athletes. 

Table 3. System alarm rules and decision table. 

Alert level 
Composite 

score 𝐒𝐭 
Trigger condition Response strategy Decision advice 

Low alert 0.5 ≤ St <1.0 Slight deviations in rate Observe, adjust training intensity. 
Increase rest time, adjust training 

cycle. 

Medium 

alert 
1.0 ≤ St <1.5 Significant deviation in rate 

Reduce training intensity, increase 

recovery time. 

Optimize training plan, reduce high-

intensity training. 

High alert St ≥ 1.5 
Major deviation across 

multiple indicators 

Immediately pause training, conduct 

medical assessment. 

Stop current training, adjust entire 

training plan. 

Table 3 evaluates the athlete’s physiological state through comprehensive scoring 

𝑆𝑡 . Three different alarm levels, low, medium and high, can be set according to 

different ranges of scores, and specific response strategies and auxiliary decision-

making suggestions are provided for each alarm level. Low-level alarms correspond 

to minor abnormalities, which can be solved by adjusting training intensity and rest 

cycles; medium-level alarms involve more significant physiological abnormalities, 

which require reducing training intensity and appropriately extending recovery time. 

Advanced alarms are serious abnormalities in physiological status, and training must 

be suspended immediately and medical evaluation must be performed to protect the 

health of athletes. This numerical alarm mechanism can effectively help coaches 

understand the status of athletes in a timely manner and make corresponding 

adjustments to ensure the scientificity and safety of training. 
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4. Method effect evaluation 

4.1. Feature importance evaluation 

Figure 3 shows the feature importance ranking calculated based on the SHAP 

value, reflecting the contribution of each physiological and biochemical indicators to 

the prediction results of the training state recognition model. Each horizontal bar 

represents the SHAP value of a feature. The higher the SHAP value, the greater the 

impact of the feature on the model prediction. Features include heart rate, blood 

oxygen saturation, blood lactate concentration, etc. These physiological indicators 

usually have a higher weight in athlete training monitoring, so their SHAP values are 

larger. The SHAP values of indicators such as liver function, blood pressure, and 

creatine kinase are low, reflecting the relatively low importance of these features in 

the current model. Through such a visualization, the key indicators with the most 

predictive power in the training state evaluation can be intuitively identified, helping 

researchers to optimize feature selection, reduce redundant features, and improve the 

computational efficiency and prediction accuracy of the model. Figure 3 clearly shows 

the contribution of different features in the model, providing a strong basis for further 

feature screening and model optimization. 

 

Figure 3. SHAP value ranking diagram. 

Figure 4 shows the correlation matrix between six physiological indicators, 

including myoglobin, insulin, cortisol, blood oxygen saturation, blood lactate 

concentration, and heart rate. Each value in the matrix represents the Pearson 

correlation coefficient between the corresponding features, ranging from −1 to +1, 

reflecting the linear relationship between the variables. The closer the value is to 1, the 

stronger the positive correlation is. The closer the value is to −1, the stronger the 

negative correlation is. The closer the value is to 0, the weaker the linear relationship 

is. The matrix reveals the mutual influence between various physiological indicators. 

For example, there is a strong positive correlation of 0.85 between myoglobin and 

insulin, indicating that they may be regulated by similar mechanisms in physiological 

processes. There is a strong negative correlation between blood lactate concentration 

and blood oxygen saturation, which is −0.8. The correlation of the features is weak, 

indicating that they may be independent or affected by different factors in 
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physiological responses. Finally, according to Figure 4, three weakly correlated 

physiological indicators of blood oxygen saturation, blood lactate concentration and 

heart rate were selected. Figure 4 helps to understand the relationship between the 

features in the modeling process and provides an important reference for feature 

selection and model optimization. 

 

Figure 4. Feature correlation matrix. 

4.2. Evaluation of high-dimensional data processing capabilities 

In the evaluation of high-dimensional data processing capabilities, the loss 

function is used as the main evaluation indicator to measure the fitting effect of 

different models when processing high-dimensional physiological and biochemical 

data. The evaluation process can cover four training stages: basic period, load period, 

high-intensity period and recovery period, to comprehensively evaluate the 

performance of the model under different physiological conditions. 

High-dimensional physiological and biochemical data sets from four training 

stages were selected and processed to form high-dimensional feature vectors as the 

input of the model. The improved XGBoost model, the traditional XGBoost model 

and the CatBoost (Categorical Boosting) model were trained to ensure the reliability 

of the evaluation results. CatBoost is a popular algorithm based on gradient boosting 

trees, which is specially optimized for classification features. CatBoost was chosen as 

the experimental comparison object because it performs well in processing high-

dimensional data and categorical features, and can effectively reduce data bias and 

improve the prediction accuracy of the model; comparison with XGBoost is necessary 

because they are both tree models based on gradient boosting, but CatBoost has unique 

advantages in feature preprocessing and avoiding overfitting, and can provide more 

robust analysis of athletes’ physiological and biochemical data. 

During the evaluation process, the loss value of each model in each training 

period is calculated to compare its performance in processing high-dimensional data. 
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The loss value reflects the gap between the model’s predicted value and the true value. 

The smaller the value, the stronger the model’s fitting ability. For each training stage, 

the loss value of each model is evaluated to analyze its ability to process high-

dimensional data under different training conditions. Using this series of evaluations, 

it can comprehensively compare the performance of the improved XGBoost model 

with other models in high-dimensional data processing and reveal the advantages and 

disadvantages of each model at different training stages. 

Figure 5 shows the performance of the loss values of the three models, namely 

the improved XGBoost model, the traditional XGBoost model and the CatBoost 

model, in 100 training rounds in four different training periods: the basic period, the 

load period, the high-intensity period and the recovery period. 

 

Figure 5. The loss values of different models in different training periods. 

In the basic period, the loss values of all three models dropped rapidly from high 

at the beginning. The loss value of the improved XGBoost model dropped the fastest 

and finally fluctuated around 0.5, indicating that the model was able to fit the data 

quickly in the initial training. Although the loss values of the traditional XGBoost 

model and the CatBoost model also showed a downward trend, the final values were 

higher than those of the improved XGBoost model. This shows that the improved 

XGBoost has obvious advantages in data fitting and convergence speed in the early 

stage of training, and can better capture the patterns of physiological and biochemical 

data; during the load period, the loss value of the improved XGBoost model is still 

lower than that of the other two models, and finally tends to 0.42. The model can also 

adapt well to data changes during this stage; after entering the high-intensity period, 

the improved XGBoost model still maintains a low loss value, and the downward trend 
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gradually slows down, and finally tends to 0.4, reflecting its adaptability to high-

intensity data during training. The loss values of traditional XGBoost and CatBoost 

decrease less during this period, and the curve changes are not as stable as the 

improved XGBoost model. This phenomenon reflects that the improved XGBoost can 

better capture the data patterns and show higher stability and accuracy when facing 

the fluctuations of physiological and biochemical indicators during high-intensity 

training. During the recovery period, the loss value tends to be stable, and the loss 

values of the three models are close to a stable value. The improved XGBoost model 

maintains the optimal loss value with the smallest change, and finally tends to 0.35. It 

is proved that it can stably maintain a high prediction accuracy during the recovery 

period. Although the loss values of traditional XGBoost and CatBoost tend to be 

stable, the fluctuation range is relatively large, and it fails to achieve the stability of 

improved XGBoost. The improved XGBoost model shows strong adaptability during 

the recovery period and can effectively adapt to the recovery process of physiological 

state. 

The improved XGBoost model always maintains a low loss value during each 

training period. Compared with traditional XGBoost and CatBoost, it has faster 

convergence speed and stronger stability, and shows better adaptability and accuracy 

when processing high-dimensional data. 

4.3. Dynamic monitoring accuracy and real-time analysis 

In the accuracy and real-time evaluation of the dynamic monitoring system, the 

experiment selected 4 batches, with 100 athletes in each batch participating in the 

monitoring. Accuracy and response time were used as core indicators to measure the 

system’s performance in capturing changes in the athletes’ physiological state, and the 

average value was calculated for each batch of athletes. The evaluation covers four 

training phases: basic period, load period, high intensity period and recovery period, 

verifying the applicability and stability of the system under different physiological 

states. 

This paper combines the athlete’s physiological state records and model 

prediction results to analyze the system’s ability to detect key state changes. The 

accuracy rate is used as an evaluation indicator to measure the consistency between 

the system’s predicted state and the actual state. In verifying the real-time performance 

of the system, the response time of the system between processing input data and 

outputting prediction results is recorded, and high-frequency data input is used to 

simulate real-time dynamic changes. The response efficiency of the system under 

different training times is evaluated. The measurement of response time is combined 

with the characteristics of each training stage to ensure that the evaluation results can 

fully reflect the real-time processing capabilities of the system. This evaluation process 

provides data support for the performance optimization of the dynamic monitoring 

system in practical applications, while revealing its potential for improvement under 

different training conditions. 

Figure 6 shows the accuracy of the dynamic monitoring system in four different 

training stages. The accuracy of the monitoring of the four groups of athletes 

participating in the experiment varies, ranging from 0.8 to 1.0. The accuracy rate in 
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the high-intensity period reached the highest value in all groups of athletes, ranging 

from 0.91 to 0.94, which shows that the dynamic monitoring system is more accurate 

in detecting drastic physiological changes. The accuracy rate in the basic period was 

slightly lower, ranging from 0.83 to 0.86, which may be due to the small fluctuation 

of physiological state, resulting in unclear data characteristics. The accuracy of the 

load period and the recovery period was relatively close among the groups, ranging 

from 0.87 to 0.90 during the load period and 0.86 to 0.89 during the recovery period, 

indicating that the system also has stable performance when processing physiological 

data of moderate intensity and gradual recovery. The fluctuation of data accuracy 

reflects the sensitivity and adaptability of the system to the data characteristics of 

different training stages. Figure 6 clearly shows the performance advantage of the 

dynamic monitoring system under complex physiological conditions, providing data 

support for subsequent optimization. 

 

Figure 6. Accuracy of the dynamic monitoring system in different training stages. 

Figure 7 shows the response time performance of the dynamic monitoring system 

at four different training stages, with the response time ranging from 1.0 s to 2.0 s. 

During the high-intensity period, the response time of athletes in each group reached 

a peak of 1.7 s to 1.9 s, indicating that the system had a high computational complexity 

when dealing with drastic changes, and the response time was extended, but within a 

reasonable range. During the basic period and recovery period, the response time was 

relatively short, ranging from 1.1 s to 1.3 s and 1.2 s to 1.4 s, respectively, indicating 

that the data characteristics changed less during this stage and the system’s 

computational burden was lighter. The response time during the load period was 

between 1.4 s and 1.6 s. The overall trend shows that the response time increases with 

the increase of physiological state complexity during the training phase, but it still 

remains within a reasonable range. This fully demonstrates the real-time and stability 

of the system in complex data processing. 
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Figure 7. Response time of the dynamic monitoring system at different training stages. 

5. Conclusions 

Aiming at the monitoring needs of dynamic changes in physiological and 

biochemical data of football players during training, an improved XGBoost model was 

constructed, and the system performance was deeply analyzed from three aspects: 

feature importance evaluation, high-dimensional data processing capability, and 

dynamic monitoring accuracy. The research results show that the proposed system 

introduces the SHAP method to quantitatively screen the input variables, which 

reduces the model complexity and significantly improves the computational 

efficiency. The improved XGBoost model more accurately obtains the changes in the 

physiological state of athletes at different training stages by adjusting the loss function 

and introducing an adaptive learning rate mechanism, providing reliable prediction 

support for the monitoring system. In the evaluation of high-dimensional data 

processing capabilities, the improved model showed lower loss values than traditional 

XGBoost and CatBoost, In the four training stages of base, load, high-intensity, and 

recovery, the loss values of the XGBoost model were approximately 0.5, 0.42, 0.4 and 

0.35, respectively, verified that optimizing algorithms and adjusting input features can 

effectively improve the model’s adaptability to complex physiological changes. In the 

monitoring data of four batches of football players, with 100 players in each batch, the 

accuracy remained above 0.83 and the response time was below 2 s. The dynamic 

monitoring system provides a scientific basis for coaches to formulate and adjust 

training plans by obtaining abnormal trends in real time during training. The response 

speed and monitoring accuracy showed significant advantages in the experiment. 

The dynamic monitoring system proposed in this paper can efficiently and 

accurately realize real-time monitoring and prediction of athletes’ training status, 

providing a new technical path for the field of sports science and a useful reference 

for dynamic monitoring research in other similar fields. Future work can further 

expand the application scope of the system and combine more biological data sources 
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to further enhance the generalization ability and applicability of the model. 
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