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Abstract: In order to reduce the incidence of injuries in college athletics, this study used a 

computer-assisted preventive training program for analysis. The effects of different training 

intensities and recovery strategies on athlete injuries were investigated by establishing an 

athlete injury prediction model, combining personalized training programs with real-time data 

feedback. The results showed that the computer model-based training program could 

significantly reduce the injury rate and enhance the performance and recovery efficiency, 

which verified the effectiveness of personalized training in reducing sports injuries. 
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1. Introduction 

Sports injuries are among the most significant challenges faced by athletes, 

directly influencing their physical health and overall performance. These injuries are 

especially prevalent during high-intensity training sessions and competitive events, 

where the physical demands on athletes often exceed their physiological thresholds. 

The implications of such injuries extend beyond individual health, affecting team 

performance, training schedules, and long-term career sustainability for athletes. 

Therefore, effective strategies to mitigate these risks are essential. 

In recent years, advancements in sports medicine and technology have facilitated 

a paradigm shift from reactive injury management to proactive injury prevention. 

Preventive training programs, grounded in accurate monitoring and tailored to the 

individual needs of athletes, have emerged as pivotal tools to minimize injury risks 

and enhance performance outcomes. Such programs emphasize the importance of 

understanding individual biomechanical and physiological profiles, enabling targeted 

interventions that address specific vulnerabilities. 

Among the innovative approaches in preventive training is the integration of 

computer technology, which has redefined the landscape of injury prediction and 

training optimization. By leveraging real-time data collection and analysis, computer-

assisted systems provide a robust framework for identifying potential injury risks. 

These systems utilize advanced methodologies, such as machine learning algorithms 

and big data analytics, to process complex datasets, including metrics on stride 

frequency, heart rate variability, muscle fatigue, and exercise loads. The insights 

derived from these analyses allow for dynamic adjustments to training programs, 

ensuring an optimal balance between workload and recovery. 

This study aims to explore the effectiveness of a computer-assisted preventive 

training model specifically designed for college athletes. By constructing a predictive 

model rooted in real-time data and individualized programming, the research seeks to 
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demonstrate the utility of this approach in reducing injury incidence, enhancing 

athletic performance, and improving recovery efficiency. The findings are anticipated 

to provide a scientific basis for integrating such technologies into sports training and 

athlete health management, paving the way for more personalized and effective injury 

prevention strategies. This work contributes to the growing body of knowledge at the 

intersection of sports science, data analytics, and preventive medicine, highlighting 

the transformative potential of technology in promoting athlete well-being and 

performance sustainability. 

2. Current state of research 

Nye et al. argued that scientific preventive training measures can significantly 

reduce the incidence of sport-related injuries and improve athletes’ physical fitness 

and sports performance. Their study proposes that precision training programmes 

based on big data and artificial intelligence technologies can effectively predict and 

prevent the risk of injuries in athletes during high-intensity training and competition. 

Through real-time monitoring and adjustment of exercise patterns and loads, potential 

risks can be controlled within a reasonable range, thus achieving the goal of protecting 

athletes’ health and prolonging their professional life. This idea provides a theoretical 

basis for the construction of a personalised preventive training system [1]. Parisien et 

al. found through their study of NCAA Division I athletes that the implementation of 

a systematic injury prevention programme not only reduces the rate of athletic injuries, 

but also reduces the resulting healthcare costs. Their study highlights the importance 

of collecting physiological data from athletes with the help of sensor devices and 

combining them with machine learning algorithms to analyse the relationship between 

training intensity and sports injuries as a means of improving the effectiveness of 

preventive training. This research provides a quantitative basis for injury management 

in competitive sport and promotes the digitisation of injury prevention systems [2]. 

Padua et al. suggested that preventive training programmes for ACL injuries are an 

important way to reduce serious knee injuries. In their study, they noted that improving 

joint stability and movement patterns through neuromuscular training and strength 

training can significantly reduce the incidence of knee injuries in adolescent athletes. 

Additionally, the study showed that individual difference-based sport assessment and 

training interventions can further improve the effectiveness of preventive measures, 

providing a scientific basis for the design and implementation of injury prevention 

programmes [3]. Krug et al. concluded that when implementing an injury prevention 

programme in high school athletes, programme adherence and the accuracy of its 

implementation are important factors that influence its effectiveness. Their study 

found that standardised training guidelines and real-time monitoring techniques can 

ensure that athletes effectively implement prevention programmes during training and 

reduce sports injuries caused by poor training. This study highlights the monitoring 

and feedback mechanisms during the implementation of training programmes and 

provides a new perspective on the practicalities of preventive training [4]. Minnig et 

al. provided an in-depth analysis of the barriers and facilitators that may be 

encountered during the adoption and implementation of injury prevention 

programmes. Their study found that despite the high theoretical effectiveness of 
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science-based injury prevention programmes, in practice they are often limited by 

factors such as the level of awareness of athletes and coaches, the availability of 

resources, and the complexity of the programme. This suggests that in order to 

improve the effectiveness of the programmes, there is a need to enhance the education 

of athletes and related personnel, as well as to simplify the design of the programmes 

so that they can be more widely applied in practice [5]. 

These studies provide important support for theory and practice in the field of 

injury prevention, suggesting that preventive measures combining computer 

technology and personalised training programmes can significantly improve athlete 

health management and sport performance. However, there is a lack of systematic 

research based on large-scale data and multifactorial analyses, as the current research 

focuses on specific groups of athletes or the application of a single technology. In 

order to fill this research gap, this paper combines computer-aided technology to 

construct a personalised preventive training model, and thoroughly explores its 

practical effects in reducing injury rates, enhancing sports performance and 

accelerating recovery efficiency of college athletes, so as to provide a new scientific 

basis and optimisation strategy for injury prevention and health management in the 

field of competitive sports. 

3. Application of computer technology in sports injury management 

With the continuous advancement of computer technology, significant 

breakthroughs in big data processing, machine learning, and artificial intelligence have 

propelled the prediction and management of sports injuries into a new era. These 

technologies offer unprecedented opportunities to enhance the accuracy and efficiency 

of injury prevention strategies, providing valuable insights into the complex interplay 

of training variables, physiological responses, and individual risk factors. 

One of the core strengths of computer technology in this domain lies in its ability 

to facilitate real-time data collection and analysis [6]. Utilizing devices such as 

accelerometers, gyroscopes, heart rate monitors, and GPS systems, detailed 

physiological and biomechanical data from athletes can be captured during training 

and competition. These datasets include metrics such as stride frequency, heart rate 

variability, muscle fatigue, and exercise load, providing a comprehensive picture of 

the athlete’s condition and performance trends. 

Machine learning algorithms, such as support vector machines, decision trees, 

and random forests, play a pivotal role in analyzing these complex datasets. By 

identifying patterns and correlations within the data, these algorithms enable the 

prediction of potential injury risks associated with specific training intensities, 

movement patterns, or biomechanical inefficiencies. For instance, an athlete with a 

high training load and insufficient recovery might exhibit physiological markers 

indicative of an increased injury risk, allowing for timely intervention. 

Moreover, computer-assisted systems enable dynamic adjustments to training 

programs based on individualized data. By integrating information on training load, 

recovery status, and historical injury data, these systems can optimize the balance 

between workload and rest. This ensures that athletes are neither overtrained nor 
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subjected to improper movement patterns, both of which are major contributors to 

injuries.  

The integration of computer technology also supports the design of personalized 

preventive training programs, tailored to address the unique physiological and 

biomechanical characteristics of each athlete. This targeted approach not only reduces 

injury incidence but also enhances overall performance and recovery efficiency. As 

computer technology continues to evolve, its application in sports injury management 

promises to refine preventive strategies and foster a more scientific and individualized 

approach to athlete health and performance. 

4. Research methodology and model design 

4.1. Data acquisition and processing 

The data acquisition utilizes a variety of high-precision sensor devices, mainly 

including accelerometers, gyroscopes, heart rate monitors and GPS devices, in order 

to record the athletes’ movement status, physiological responses and environmental 

changes in the training process in real time, and to provide a comprehensive support 

of movement data. The data collection covers a wide range of dimensions such as the 

athlete’s stride frequency, stride length, exercise load, heart rate fluctuation, and 

muscle fatigue. These data are transmitted to the central processing system for real-

time monitoring and storage. The collected data are first cleaned and filtered by data 

preprocessing to remove noise and outliers, and all data are uniformly converted to a 

standardized format for subsequent analysis [7]. The data normalization uses the min-

max normalization method with the following formula: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥

 (1) 

where 𝑋 is the original data, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values 

of the data respectively, and 𝑋𝑛𝑜𝑟𝑚  is the normalized data. The data-processed 

samples are downscaled by PCA (Principal Component Analysis) to reduce feature 

redundancy and improve computational efficiency. 

4.2. Computer model construction 

Computer model construction Based on the collected exercise data, a machine 

learning method was used to establish an exercise injury prediction model. First, after 

data processing, features highly correlated with exercise injuries, such as step 

frequency, exercise load, and heart rate variability, were screened by feature selection 

algorithms (e.g., mutual information method, chi-square test, etc.). The selected 

features were fed into multiple machine learning algorithms for training, mainly using 

support vector machine (SVM) and random forest (RF) models for injury risk 

prediction and training effect evaluation, respectively [8]. During the model training 

process, a cross-validation method is used to assess the generalization ability of the 

model and ensure the reliability of the prediction results. The SVM model formulation 

is expressed as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝜔𝑇𝑥 + 𝑏)  (2) 
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where 𝑥 is the input feature vector, 𝜔 is the model weight, 𝑏 is the bias, 𝑓(𝑥) is the 

prediction result, 𝑠𝑖𝑔𝑛 is the sign function and the output classification result. By 

comparing different models, the best performing model is selected as the final 

prediction model. Table 1 demonstrates the performance metrics of different 

algorithms in terms of accuracy, precision, recall, etc. on the training and test sets, and 

the results show that the random forest model outperforms the SVM model on both 

the training and test sets. 

Table 1. Performance comparison of different models. 

Model Accuracy (%) Precision (%) Recall (%) 

Support Vector Machine (SVM) 87.5 83.2 79.5 

Random Forest (RF) 91.3 89.6 84.1 

4.3. Preventive training program design 

The computer model-based preventive training program dynamically adjusts the 

training intensity and recovery cycle based on key indicators such as athletes’ exercise 

load, fatigue, and heart rate variability, in order to avoid overtraining and inappropriate 

exercise load [9]. As shown in the flowchart of Figure 1, the injury risk of each athlete 

is first assessed by the sports injury prediction model, and the training content aimed 

at improving sports performance and reducing the probability of injury is designed for 

high-risk athletes. For example, for athletes with excessive step frequency and heavy 

knee burden, the focus is on lower limb stability training and flexibility training to 

reduce the risk of knee injury. The training content includes strength training, 

flexibility training, explosive force training, etc., in order to enhance the muscular 

endurance and joint flexibility of the athletes and reduce the potential injuries during 

exercise [10]. During the implementation of the training program, the athletes’ 

exercise data are monitored in real time, and the training intensity is dynamically 

adjusted by computer algorithms to ensure that the training load is maintained at the 

optimal level. 

 

Figure 1. Preventive training program implementation process. 

4.4. Research experiment process 

In order to assess the effectiveness of a preventive training programme, college 

track and field athletes with extensive athletic experience were selected as 

experimental subjects. Participants were divided into two groups: experimental and 

control. The experimental group used a personalised preventive training programme 

designed by a computer-assisted model, while the control group used traditional 
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training methods. Prior to the start of the experiment, all athletes underwent a 

comprehensive sports injury risk assessment and fitness assessment. This process 

involved the collection of detailed physiological and biomechanical data, including 

metrics such as exercise load, heart rate variability and stride frequency. These data 

were analysed by computer models to predict each athlete’s injury risk and provide a 

baseline for the experiment. 

During the experiment, all athletes’ physiological data were continuously 

monitored via advanced exercise tracking equipment such as accelerometers, heart rate 

monitors and GPS devices. The collected data is transmitted in real time to a central 

processing system, which analyses the data to detect changes in key indicators such as 

heart rate and muscle fatigue [11]. Based on the feedback from the central system, the 

training load and intensity level of the experimental group is dynamically adjusted to 

ensure an optimal balance between workload and recovery. This real-time adjustment 

mechanism aims to minimise overtraining and reduce the risk of injury. 

Injuries were also regularly assessed in order to monitor the reliability and 

effectiveness of the training programme. Changes in key physiological parameters, 

such as step frequency and heart rate fluctuations, before and after training were also 

analysed to assess the effectiveness of the training programme. Comparative analyses 

between the experimental and control groups helped to provide insight into the 

differences in training outcomes. 

At the end of the experiment, all collected data were rigorously statistically 

analysed. Techniques such as analysis of variance (ANOVA) and regression 

modelling were applied to quantify the impact of the computer-assisted preventive 

training programme. These analyses were designed to validate the effectiveness of the 

programme in reducing injury rates and improving athletic performance and recovery 

efficiency. By combining real-time feedback with personalised training adjustments, 

this study provides strong evidence for the potential of computer-aided modelling in 

advancing sports injury prevention strategies [12]. 

5. Research results and analysis 

5.1. Data analysis results 

During the experiment, data analysis was a critical component aimed at 

evaluating the impact of the computer-assisted preventive training program. The 

analysis focused primarily on three key aspects: the incidence rate of injuries, the 

athletic performance of participants, and changes in their fitness levels throughout 

various training stages. By systematically comparing these metrics between the 

experimental and control groups, the study provided a comprehensive understanding 

of how the personalized training program influenced both injury prevention and 

physical performance enhancement. 

One of the most significant metrics analyzed was the injury incidence rate. Data 

collected before and after the training period revealed notable differences between the 

groups, highlighting the program’s efficacy in reducing the likelihood of sports-related 

injuries. The experimental group, which followed a dynamically adjusted preventive 

training regimen, exhibited a substantial decrease in injury rates compared to the 

control group, which adhered to traditional training methods. This finding underscores 
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the potential of integrating data-driven, personalized training approaches to enhance 

athlete safety. 

Athletic performance indicators, including heart rate, step frequency, and training 

load, were also closely monitored. For example, changes in heart rate variability before 

and after training sessions offered insights into cardiovascular efficiency and recovery. 

Similarly, step frequency measurements provided a deeper understanding of 

biomechanical adjustments and improved efficiency in movement patterns [13]. The 

experimental group demonstrated more favorable outcomes in these indicators, 

suggesting that the preventive training program contributed to better physiological 

adaptation and enhanced performance. 

Fitness level changes were assessed through the analysis of recovery time and 

workload management. The experimental group showed a significant reduction in 

recovery time compared to the control group, indicating improved physical resilience 

and recovery efficiency. Additionally, training load data revealed that the 

experimental group’s workload was more effectively managed, preventing 

overtraining and mitigating associated risks. 

Statistical tools such as SPSS and Python were employed to ensure accurate data 

analysis and validation of results. Techniques such as variance analysis and correlation 

studies allowed for precise evaluation of the program’s effectiveness. By synthesizing 

these findings, the study demonstrated the clear advantages of adopting computer-

assisted preventive training programs in reducing injuries, improving athletic 

performance, and promoting efficient recovery. These results provide a strong 

foundation for further development and application of similar data-driven approaches 

in sports science. 

Table 2. Data analysis results of experimental and control groups. 

Group Experimental Control 

Injury Rate Before Training (%) 15 20 

Injury Rate After Training (%) 5 15 

Average Heart Rate Before Training (bpm) 140 138 

Average Heart Rate After Training (bpm) 135 142 

Step Frequency Before Training (steps/min) 145 150 

Step Frequency After Training (steps/min) 152 148 

Training Load Before Training (kJ) 320 315 

Training Load After Training (kJ) 310 325 

Recovery Time (hours) 24 30 

From the data analysis in Table 2, it can be seen that there were significant 

differences between the performance of the experimental group and the control group 

before and after training, especially in terms of injury incidence, exercise load, step 

frequency, heart rate and recovery time. The pre-training injury incidence rate of the 

experimental group was 15% while that of the control group was 20%. Although there 

was a difference in the pre-training injury incidence rate between the two groups, the 

computer-assisted preventive training program reduced the injury incidence rate of the 

experimental group to 5% after training, which was a more significant decrease 
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compared to that of the control group (15%). This change suggests that a dynamically 

adjusted training program based on computer modeling can be more effective in 

reducing athletic injuries in athletes. 

In terms of heart rate and stride frequency, the average heart rate of the 

experimental group before training was 140 bpm, while the average heart rate of the 

control group was 138 bpm, which was not a big difference between the two. However, 

the heart rate of the experimental group dropped to 135 bpm after training, which was 

significantly lower than that of the control group, which was 142 bpm, indicating that 

the training loads of athletes in the experimental group were more effectively 

controlled and adjusted, and the fluctuations in heart rate brought by over-training 

could be avoided. In terms of stride frequency, the experimental group’s stride 

frequency increased from 145 to 152 steps/min before training, while the control group 

increased from 150 to 148 steps/min. The increase in stride frequency of the 

experimental group was significantly greater than that of the control group, which 

indicated that the experimental group’s training regimen was more effective in 

enhancing athletic performance. 

In terms of recovery time, the recovery time of the experimental group was 24 h, 

compared with 30 h in the control group, a reduction of 6 h, indicating that the 

experimental group promoted faster recovery of the athletes through personalized 

training programs. 

5.2. Evaluation of model prediction accuracy 

The evaluation of model prediction accuracy is a crucial aspect of determining 

the effectiveness of machine learning algorithms in predicting injury risks. In this 

study, two models—Support Vector Machine (SVM) and Random Forest (RF)—were 

assessed based on their performance metrics, including accuracy, precision, recall, and 

F1 score, using a cross-validation approach to ensure robustness and reliability [14]. 

The results, as shown in Table 3, reveal that the RF model significantly 

outperforms the SVM model across all evaluation metrics. The RF model 

demonstrated a higher accuracy on both the training and test sets, achieving 94.1% 

and 91.3%, respectively, compared to SVM’s 89.2% and 87.5%. This notable 

improvement of approximately 5 percentage points highlights the superior ability of 

RF to identify patterns and relationships within the data, making it more reliable in 

both training and practical applications. 

Table 3. Results of model prediction accuracy evaluation. 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Support Vector Machine (SVM) 87.5 83.2 79.5 81.3 

Random Forest (RF) 91.3 89.6 84.1 86.7 

Precision and recall metrics further illustrate the advantages of the RF model. On 

the test set, RF achieved a precision of 89.6% and a recall of 84.1%, outperforming 

SVM by more than 6 percentage points in both metrics. This suggests that RF is more 

effective in reducing both false positives and false negatives, which is essential for 

accurately predicting injury risks and minimizing misclassifications. The enhanced 
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precision indicates that RF is better at correctly identifying athletes at risk of injury, 

while the higher recall demonstrates its ability to capture a greater proportion of actual 

injury cases. 

The F1 score, which balances precision and recall, also supports the superiority 

of RF, as it achieves a more consistent performance across all data subsets. This 

consistency indicates that RF is better equipped to handle complex data structures and 

adapt to new data without overfitting, an issue that SVM struggles with. SVM’s 

performance gap between the training and test sets suggests a tendency to overfit the 

training data, making it less effective in real-world applications where data variability 

is common. 

The RF model’s advantage lies in its ensemble learning approach, which 

combines multiple decision trees to produce more stable and accurate predictions. By 

aggregating results from various models, RF reduces the impact of individual errors 

and enhances overall reliability. In contrast, SVM relies on a single hyperplane for 

classification, which limits its flexibility in handling diverse data scenarios. 

In conclusion, the RF model’s superior performance across all metrics makes it 

the preferred choice for predicting injury risks in athletes. Its ability to maintain high 

accuracy, precision, recall, and F1 score ensures reliable and actionable predictions, 

demonstrating its potential for practical applications in injury prevention and sports 

management. This evaluation underscores the importance of selecting appropriate 

machine learning algorithms to address specific challenges in predictive modeling. 

The comparative analysis of the Random Forest (RF) and Support Vector 

Machine (SVM) models reveals significant differences in their performance on both 

the training and test datasets. As shown in the bar chart of Figure 2, the RF model 

consistently outperforms the SVM model across multiple metrics, demonstrating 

superior accuracy, precision, recall, and F1 score. On the training set, RF achieves an 

accuracy of 94.1%, significantly higher than SVM’s 89.2%. This disparity highlights 

RF’s ability to capture intricate patterns within the training data, leveraging its 

ensemble approach to deliver a more robust predictive performance. 

 

Figure 2. Comparison of the accuracy of different models on the training and test 

sets. 
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The distinction between the two models becomes even more pronounced on the 

test set, where RF maintains an accuracy of 91.3%, compared to SVM’s 87.5%. This 

result underscores RF’s strong generalization capability, as it effectively handles 

previously unseen data without a significant drop in performance. In contrast, SVM 

exhibits a notable degradation in accuracy, indicative of its tendency to overfit the 

training data. Overfitting limits SVM’s adaptability to new data, reducing its reliability 

in real-world applications. 

Beyond accuracy, RF also demonstrates notable advantages in precision, recall, 

and F1 score, particularly on the test set. RF achieves a precision of 89.6% and a recall 

of 84.1%, both of which are markedly higher than SVM’s corresponding values of 

83.2% and 79.5%. The higher F1 score of RF further confirms its balanced 

performance, ensuring minimal false positives and false negatives. These results 

highlight RF’s stability and reliability when applied to complex, high-dimensional 

datasets typical in injury risk prediction. 

The ensemble nature of RF, which combines multiple decision trees, contributes 

significantly to its resilience and adaptability. By aggregating the predictions of 

individual trees, RF minimizes the risk of overfitting and enhances its ability to 

generalize across diverse datasets. SVM, although effective in controlled 

environments, struggles to maintain this balance, as evidenced by its diminished 

performance on the test set. 

In summary, the RF model’s consistent and superior performance across key 

metrics establishes it as a more suitable choice for practical applications involving 

injury risk prediction. Its ability to handle complex data with high stability and 

adaptability makes it an invaluable tool for developing reliable, data-driven preventive 

training programs. This comparison underscores the importance of selecting 

appropriate machine learning models to address the specific demands of real-world 

applications in sports injury prevention. 

5.3. Optimization suggestions for preventive training programs 

According to the results of this study, preventive training programs have shown 

good results in reducing sports injuries and improving athletes’ fitness, but there is 

still room for further optimization. First, for athletes with higher risk of injury, more 

recovery and flexibility training can be included in the personalized training program 

to avoid overuse injuries caused by overtraining [15]. Second, it is recommended to 

further refine the adjustment of training intensity based on real-time data feedback. 

For example, real-time monitoring of athletes’ recovery status through heart rate 

variability and fatigue index, and dynamic adjustment of training intensity and load to 

minimize the occurrence of injury. Third, considering the individual differences of 

athletes, the training program can introduce more personalized training models in the 

future, such as optimizing the injury risk prediction model through deep learning to 

improve the prediction accuracy and model adaptability [16]. Fourth, it is 

recommended to incorporate more biomechanical and sports injury data into the 

training evaluation system, combining the athletes’ movement patterns, gait analysis 

and other data to improve the scientific and comprehensive nature of the training 

program. 
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6. Conclusion 

This study demonstrated a substantial improvement in injury prevention among 

athletes through the implementation of a computer-assisted preventive training 

program, which was designed based on advanced computational models. The 

program’s success in optimizing individualized training plans was evident from the 

experimental results. By systematically comparing the prediction accuracies of 

different machine learning models, the study confirmed the superiority of the Random 

Forest algorithm in accurately predicting sports injury risks. This finding highlights 

the potential of leveraging computer technology in the field of sports medicine, where 

accurate injury risk assessment is critical for effective prevention strategies. 

The experimental results underscored the significant impact of personalized 

training programs in reducing injury incidence rates, improving athletic performance, 

and enhancing recovery efficiency. The dynamic adjustments facilitated by the 

computer-assisted system allowed for real-time adaptation to each athlete’s 

physiological and biomechanical conditions, minimizing overtraining risks and 

ensuring optimal workload distribution. 

Looking forward, further refinement of preventive training programs is essential 

to enhance their efficacy. This can be achieved by incorporating more detailed 

physiological data monitoring, advanced feedback mechanisms, and biomechanical 

analysis into the program framework. Additionally, the integration of deep learning 

techniques promises to improve the prediction accuracy and adaptability of injury 

prevention models. These advancements will enable long-term optimization and 

continuous improvement in athlete health management, ensuring sustainable 

performance and well-being. 
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