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Abstract: This meta-analysis aimed to evaluate the accuracy of multimodal imaging prediction 

models for preoperative microvascular invasion (MVI) in hepatocellular carcinoma (HCC) 

patients from both radiological and biomechanical perspectives. We systematically searched 

PubMed, Embase, and Cochrane Library databases, including 42 studies with 10,876 patients. 

Statistical analysis using a bivariate random-effects model assessed the diagnostic performance 

of different imaging modalities and prediction model types, with particular emphasis on 

biomechanical features including tissue elasticity, vascular wall mechanics, and tumor 

microenvironment properties. Results demonstrated excellent performance of multimodal 

imaging prediction models incorporating biomechanical parameters in MVI prediction, with a 

pooled sensitivity of 0.78 (95% CI: 0.73–0.82), specificity of 0.80 (95% CI: 0.76–0.84), and 

area under the curve (AUC) of 0.86 (95% CI: 0.83–0.89). Deep learning approaches 

demonstrated particular advantages in feature extraction and biomechanical pattern 

recognition, achieving superior performance (AUC 0.88) through their ability to automatically 

learn hierarchical representations from complex imaging data and mechanical data. The 

integration of multiple imaging modalities with biomechanical parameters further enhanced 

predictive accuracy (AUC 0.91), offering complementary information that captures different 

aspects of tumor biology, mechanics and behavior. This enhanced performance of multimodal 

combinations, particularly when leveraging biomechanical features and deep learning 

algorithms, suggests significant potential for improving clinical decision-making and treatment 

planning in HCC patients. Future research should focus on large-scale prospective validation, 

standardization of biomechanical measurements, and clinical application assessment to further 

enhance the accuracy and clinical value of MVI prediction. 

Keywords: hepatocellular carcinoma; microvascular invasion; multimodal imaging; 

biomechanical modeling; prediction models; deep learning; radiomics 

1. Introduction 

Hepatocellular carcinoma (HCC) stands as a formidable challenge in the 

landscape of global health, ranking as the sixth most common cancer and the third 

leading cause of cancer-related deaths worldwide. The management of HCC has seen 

significant advancements in recent years, with surgical resection and liver 

transplantation emerging as potentially curative treatments for early-stage disease. 

However, the long-term prognosis for HCC patients remains poor, largely due to the 

high incidence of postoperative recurrence and metastasis. Among the various factors 

influencing patient outcomes, microvascular invasion (MVI) has been identified as a 

critical predictor of recurrence and survival in HCC patients undergoing curative 

treatments. 

MVI, defined as the presence of tumor cells in the portal vein, hepatic vein, or 
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large capsular vessels, is a histopathological feature that can only be definitively 

diagnosed postoperatively. This presents a significant clinical dilemma, as 

preoperative knowledge of MVI status is crucial for optimal treatment planning and 

prognostication. Patients with MVI may benefit from more aggressive surgical 

approaches, such as anatomical resection or wider surgical margins, or may be better 

candidates for liver transplantation or neoadjuvant therapy. Conversely, patients 

without MVI might be suitable for less invasive treatments like radiofrequency 

ablation. Therefore, accurate preoperative prediction of MVI has become a key focus 

in HCC management, driving research into various predictive models and techniques. 

In recent years, imaging modalities have emerged as powerful tools for the non-

invasive assessment of HCC characteristics, including the prediction of MVI. 

Conventional imaging techniques such as computed tomography (CT) and magnetic 

resonance imaging (MRI) have been extensively studied for their ability to detect 

imaging biomarkers associated with MVI. These biomarkers include tumor size, 

margins, capsule appearance, and peritumoral enhancement patterns. More advanced 

imaging techniques, such as diffusion-weighted imaging (DWI), dynamic contrast-

enhanced MRI, and radiomics analysis, have further enhanced the potential for 

accurate MVI prediction. The integration of multiple imaging modalities and 

techniques, termed multimodal imaging, has shown promise in improving predictive 

accuracy by capturing complementary information about tumor biology and behavior. 

Beyond traditional imaging features, the biomechanical properties of HCC tissue 

and its microenvironment have emerged as critical factors in understanding tumor 

progression and vascular invasion patterns. Various imaging modalities can now 

capture these biomechanical characteristics: elastography techniques in both MRI and 

ultrasound can quantify tissue stiffness and elastic properties; dynamic contrast-

enhanced imaging can reveal vascular wall mechanics and blood flow dynamics; 

diffusion-weighted imaging can reflect cellular density and mechanical organization 

of the tumor microenvironment. These biomechanical parameters provide unique 

insights into the mechanical forces driving tumor invasion and metastasis. For 

instance, increased tissue stiffness often correlates with higher metastatic potential, 

while altered vascular wall mechanics may indicate early stages of microvascular 

invasion. The integration of these biomechanical features with conventional imaging 

markers represents a promising approach to enhance the accuracy of MVI prediction. 

Despite the growing body of literature on imaging-based MVI prediction, there 

remains considerable heterogeneity in reported predictive accuracies, model 

performances, and optimal imaging features. This variability can be attributed to 

differences in study populations, imaging protocols, feature selection methods, and 

statistical approaches. Moreover, the relative performance of different imaging 

modalities and the added value of multimodal approaches have not been systematically 

evaluated across studies. This lack of consensus poses challenges for clinicians 

seeking to implement these predictive models in practice and highlights the need for a 

comprehensive synthesis of existing evidence. 

In light of these considerations, we conducted a systematic review and meta-

analysis to evaluate the predictive accuracy of multimodal imaging models for 

preoperative MVI in HCC. Our study aims to synthesize the current evidence on 

imaging-based MVI prediction, compare the performance of different imaging 
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modalities and techniques, and assess the added value of multimodal approaches. By 

pooling data from multiple studies, we seek to provide more robust estimates of 

predictive accuracy and identify the most promising imaging features and model 

architectures. Additionally, this meta-analysis aims to explore sources of heterogeneity 

in predictive performance and highlight areas for future research and standardization 

in imaging-based MVI prediction. 

Through this comprehensive analysis, we hope to provide clinicians and 

researchers with valuable insights into the current state of imaging-based MVI 

prediction in HCC, with particular emphasis on the role of biomechanical features in 

enhancing predictive accuracy. This integrated approach, combining traditional 

imaging markers with biomechanical parameters, aims to facilitate more informed 

decision-making in patient management and guide future developments in this critical 

area of oncological imaging. 

2. Method 

2.1. Literature search strategy 

A comprehensive literature search was conducted to identify relevant studies on 

multimodal imaging prediction models for preoperative microvascular invasion in 

hepatocellular carcinoma. The search systematically covered multiple electronic 

databases, including PubMed, Embase, Web of Science, and Cochrane Library, from 

their inception to March 2024. The search strategy was developed using a combination 

of Medical Subject Headings (MeSH) terms and free-text keywords related to 

hepatocellular carcinoma, microvascular invasion, and imaging modalities. Key 

search terms included “hepatocellular carcinoma”, “liver cancer”, “microvascular 

invasion”, “CT”, “MRI”, “ultrasound”, “radiomics”, and “prediction model.” To 

ensure a comprehensive search, the reference lists of included studies and relevant 

review articles were also reviewed for additional eligible studies. No language 

restrictions were applied to capture a global perspective on the topic. Conference 

abstracts and unpublished studies were considered to minimize publication bias. The 

search was independently performed by two reviewers, and any discrepancies were 

resolved through discussion with a third reviewer. The detailed search strategy for each 

database was documented to ensure reproducibility. The literature search was 

supplemented by manual searching of key journals in the field of hepatology, 

radiology, and oncology to identify any studies that might have been missed in the 

electronic database search. 

2.2. Inclusion and exclusion criteria 

2.2.1. Inclusion criteria 

The inclusion criteria for this meta-analysis were carefully defined to ensure the 

selection of high-quality, relevant studies that address the research question regarding 

multimodal imaging prediction models for preoperative microvascular invasion (MVI) 

in hepatocellular carcinoma (HCC). Studies were included if they met all of the 

following criteria: 

Study Design: Prospective or retrospective studies that evaluated imaging-based 
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prediction models for MVI in HCC. Both development and validation studies were 

considered eligible. 

Patient Population: Studies involving adult patients (≥ 18 years old) with a 

confirmed diagnosis of HCC based on histopathological examination or established 

imaging criteria (e.g., AASLD or EASL guidelines). 

1) Index Test: Studies that used at least one imaging modality (CT, MRI, ultrasound, 

or a combination) to predict MVI preoperatively. The imaging features or 

prediction models should be clearly described. Studies were required to include 

biomechanical analysis through imaging modalities alongside conventional 

imaging features. The biomechanical parameters were primarily derived from 

elastography measurements, dynamic contrast imaging, and advanced 

mechanical property analysis. Quantitative biomechanical assessment included 

tissue elasticity values, mechanical stiffness measurements, vascular flow 

dynamics, and tumor microenvironment mechanical characteristics. These 

parameters needed to be systematically measured and reported using 

standardized protocols with clearly defined measurement techniques and quality 

control procedures. 

2) Reference Standard: Histopathological confirmation of MVI status from surgical 

specimens obtained through resection or liver transplantation. 

3) Outcome Measures: Studies that reported sufficient data to construct 2  2 

contingency tables for calculating diagnostic accuracy measures (sensitivity, 

specificity, positive predictive value, negative predictive value) or provided area 

under the receiver operating characteristic curve (AUC) values. 

4) Publication Type: Full-text articles published in peer-reviewed journals. 

Conference abstracts with sufficient data were also considered if they met all 

other inclusion criteria. 

5) Language: Studies published in English or with available English translations. 

6) Sample Size: A minimum sample size of 50 patients to ensure adequate statistical 

power. 

The inclusion criteria for study selection are presented in Table 1. The table 

outlines eight key criteria that were systematically applied during the study selection 

process. Studies were required to be either prospective or retrospective in design, 

focusing on imaging-based MVI prediction models in adult HCC patients. Eligible 

studies needed to employ at least one imaging modality and use histopathological 

confirmation as the reference standard for MVI. To ensure statistical robustness, 

studies were required to provide sufficient data for constructing 2 × 2 contingency 

tables or report AUC values. Only full-text articles in peer-reviewed journals and 

eligible conference abstracts were considered, with a minimum sample size 

requirement of 50 patients to ensure adequate statistical power. The search was limited 

to English language publications or those with available English translations to 

maintain consistency in data interpretation. 
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Table 1. summarizes the key inclusion criteria. 

Criterion Description 

Study Design Prospective or retrospective studies evaluating imaging-based MVI prediction models 

Patient Population Adults (≥ 18 years) with confirmed HCC 

Index Test At least one imaging modality (CT, MRI, ultrasound, or combination) 

Reference Standard Histopathological confirmation of MVI 

Outcome Measures Data for 2  2 contingency tables or AUC values 

Publication Type Full-text articles in peer-reviewed journals; eligible conference abstracts 

Language English or with available English translations 

Sample Size Minimum of 50 patients 

Summary of inclusion criteria. 

2.2.2. Exclusion criteria 

To maintain the focus and quality of the meta-analysis, studies were excluded if 

they met any of the following criteria (as shown in Table 2): 

Table 2. summarizes the key exclusion criteria. 

Criterion Description 

Study Design Case reports, editorials, letters, reviews, meta-analyses 

Patient Population Pediatric populations, > 10% non-HCC malignancies 

Index Test Non-imaging biomarkers alone, invasive techniques, unclear imaging protocols 

Reference 

Standard 
Lack of histopathological confirmation of MVI 

Outcome Measures Insufficient data for accuracy assessment, qualitative results only 

Duplicate Data Multiple publications on the same cohort (retain most recent/comprehensive) 

Quality Concerns Significant methodological flaws based on quality assessment 

Summary of exclusion criteria. 

1) Study Design: Case reports, editorials, letters to the editor, review articles, and 

meta-analyses were excluded as they do not provide primary data suitable for the 

analysis. 

2) Patient Population: Studies focusing exclusively on pediatric populations or 

including a significant proportion (> 10%) of non-HCC liver malignancies were 

excluded to maintain homogeneity in the patient cohort. 

3) Index Test: Studies using only non-imaging biomarkers (e.g., serum markers 

alone) or invasive techniques (e.g., biopsy) for MVI prediction were excluded. 

Additionally, studies that did not clearly describe their imaging protocols or 

feature extraction methods were excluded due to lack of reproducibility. 

4) Reference Standard: Studies without histopathological confirmation of MVI 

status or those using alternative reference standards (e.g., clinical follow-up alone) 

were excluded to ensure accuracy in MVI assessment. 

5) Outcome Measures: Studies that did not report sufficient data to assess diagnostic 

accuracy or model performance were excluded. This includes studies that only 

reported qualitative results or used non-standard outcome measures. 

6) Duplicate or Overlapping Data: In cases where multiple publications were based 



Molecular & Cellular Biomechanics 2025, 22(1), 931. 
 

6 

on the same patient cohort, only the most recent or comprehensive study was 

included to avoid duplication of data. 

7) Quality Concerns: Studies with significant methodological flaws, as assessed by 

quality assessment tools (e.g., QUADAS-2), were excluded to maintain the 

overall quality of the meta-analysis. 

2.3. Data extraction 

A standardized data extraction form was developed and piloted on a subset of 

included studies to ensure consistency and comprehensiveness in data collection. Two 

independent reviewers extracted data from each eligible study, with any discrepancies 

resolved through discussion or consultation with a third reviewer. The extracted 

information encompassed study characteristics (author, year of publication, country, 

study design), patient demographics (sample size, age, gender, etiology of liver 

disease), imaging protocols (modalities used, technical parameters, timing of imaging 

relative to surgery), MVI prediction models (features included, model development 

method, cut-off values), and outcome measures (sensitivity, specificity, positive and 

negative predictive values, area under the receiver operating characteristic curve). For 

CT imaging studies, key technical parameters were documented, including slice 

thickness (range: 1–5 mm), reconstruction interval, contrast agent type and dose, 

arterial and portal venous phase timing, and scanner specifications. For MRI studies, 

we recorded field strength (1.5T or 3.0T), sequence parameters (including TR/TE 

values, flip angles, and slice thickness), contrast agent properties (type, dose, and 

timing), and specific protocols for dynamic contrast-enhanced and diffusion-weighted 

imaging (including b-values). For ultrasound studies, we documented equipment 

specifications, transducer frequency ranges, and detailed contrast-enhanced 

ultrasound protocols including contrast agent type, dose, and timing parameters. The 

consistency of image acquisition and post-processing methods was evaluated across 

studies, with particular attention to protocol standardization and quality control 

measures. For studies reporting multiple prediction models or using different imaging 

modalities, data were extracted separately for each model or modality to enable 

subgroup analyses. The histopathological criteria used for MVI diagnosis were also 

recorded, along with any additional relevant information such as tumor characteristics 

(size, number, location) and liver function parameters. In cases where required data 

were not explicitly reported, efforts were made to calculate the necessary values from 

available information or to contact the study authors for clarification. The 

completeness and accuracy of the extracted data were verified by cross-checking 

against the original articles before analysis. For studies incorporating biomechanical 

assessments, data extraction included documentation of mechanical property 

measurements from elastography and dynamic contrast imaging. Quantitative 

parameters such as tissue stiffness values, strain ratios, and flow dynamics were 

recorded along with their technical specifications and quality metrics. The integration 

methods of these biomechanical parameters with conventional imaging features were 

documented, including any correlations between mechanical properties and MVI 

status. 
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2.4. Quality assessment 

2.4.1. Assessment tool selection 

The selection of an appropriate quality assessment tool is crucial for evaluating 

the methodological rigor and potential biases of included studies in a meta-analysis. 

For this study on multimodal imaging prediction models for microvascular invasion 

(MVI) in hepatocellular carcinoma (HCC), the Quality Assessment of Diagnostic 

Accuracy Studies 2 (QUADAS-2) tool was chosen as the primary instrument for 

quality assessment. QUADAS-2 is widely recognized and recommended by the 

Cochrane Collaboration for systematic reviews of diagnostic accuracy studies. This 

tool was selected due to its comprehensive coverage of key domains relevant to 

diagnostic studies, including patient selection, index test, reference standard, and flow 

and timing. The QUADAS-2 tool allows for the assessment of both risk of bias and 

concerns regarding applicability in each domain, providing a nuanced evaluation of 

study quality. To tailor the tool to the specific context of imaging-based MVI 

prediction in HCC, minor modifications were made to the signaling questions within 

each domain. These modifications included specific considerations for imaging 

protocols, blinding procedures for image interpretation, and the consistency of 

histopathological assessment of MVI. Additionally, to complement the QUADAS-2 

assessment, the Prediction model Risk Of Bias ASsessment Tool (PROBAST) was 

incorporated to evaluate aspects specific to prediction model studies, such as model 

development, validation, and performance measures. The quality assessment 

framework was enhanced to address biomechanical measurements in imaging studies, 

incorporating criteria for evaluating mechanical property measurements, elastography 

protocol standardization, and measurement reproducibility. This enhancement ensured 

comprehensive evaluation of both imaging and biomechanical aspects. 

2.4.2. Assessment process 

The quality assessment process was designed to ensure a thorough and objective 

evaluation of each included study. Two independent reviewers, experienced in both 

diagnostic imaging and clinical research methodology, conducted the quality 

assessment using the modified QUADAS-2 and PROBAST tools. Prior to the formal 

assessment, both reviewers underwent training sessions to familiarize themselves with 

the assessment criteria and to calibrate their judgments. A pilot assessment was 

performed on a subset of studies to ensure consistency in interpretation and application 

of the quality assessment tools. For each study, the reviewers independently evaluated 

the risk of bias and applicability concerns across all domains of QUADAS-2, as well 

as the relevant aspects of PROBAST. The assessment placed particular emphasis on 

imaging protocol evaluation, including detailed examination of: Image acquisition 

parameters standardization across different centers; Technical specifications of 

imaging equipment and protocols; Quality control measures for image acquisition and 

processing; Consistency in imaging interpretation methods. Disagreements between 

reviewers were resolved through discussion, and when necessary, a third reviewer was 

consulted to reach consensus. The assessment results were documented using 

standardized forms, which included detailed justifications for each rating. To provide 

a comprehensive overview of study quality, both narrative summaries and graphical 

representations of the quality assessment results were prepared. These included tabular 
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summaries of individual study ratings and overall quality scores, as well as graphical 

plots illustrating the distribution of quality across the included studies. The impact of 

study quality on meta-analysis results was explored through sensitivity analyses, 

excluding studies with high risk of bias or significant applicability concerns. This 

rigorous assessment process ensured that the methodological quality of included 

studies was thoroughly evaluated and transparently reported, enhancing the reliability 

and interpretability of the meta-analysis findings. 

2.5. Statistical analysis 

The statistical analysis for this meta-analysis was conducted using a 

comprehensive approach to synthesize the available evidence on multimodal imaging 

prediction models for microvascular invasion (MVI) in hepatocellular carcinoma 

(HCC). Pooled estimates of sensitivity, specificity, positive likelihood ratio, negative 

likelihood ratio, and diagnostic odds ratio were calculated using a bivariate random-

effects model. This model accounts for the potential correlation between sensitivity 

and specificity across studies. Summary receiver operating characteristic (SROC) 

curves were generated to visualize the overall diagnostic performance. Heterogeneity 

among studies was assessed using the I2 statistic and Cochran’s Q test, with I2 values 

of 25%, 50%, and 75% considered as low, moderate, and high heterogeneity, 

respectively. To explore sources of heterogeneity, subgroup analyses were performed 

based on imaging modalities, study design, and sample size. Meta-regression was 

conducted to investigate the impact of continuous variables such as publication year 

and prevalence of MVI on diagnostic accuracy. Publication bias was evaluated using 

Deeks’ funnel plot asymmetry test. Sensitivity analyses were carried out to assess the 

robustness of the results by excluding studies with high risk of bias. All statistical 

analyses were performed using R software (version 4.1.0) with the “mada” and 

“metafor” packages. A p-value < 0.05 was considered statistically significant for all 

analyses. Forest plots and SROC curves were generated to visually present the results, 

facilitating interpretation of the findings. Additional analyses were conducted to 

evaluate biomechanical parameters’ contribution to MVI prediction accuracy. This 

included subgroup analyses of mechanical measurement techniques and meta-

regression analysis examining the impact of biomechanical parameters on diagnostic 

performance. Where applicable, correlation analyses assessed relationships between 

biomechanical properties and MVI prediction. 

3. Results 

3.1. Literature screening results 

The systematic literature search and screening process yielded a final set of 42 

studies for inclusion in the meta-analysis. The selection process followed the PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, 

ensuring a transparent and reproducible approach. Initially, the database search 

identified a total of 1247 potentially relevant articles. After removing 326 duplicates, 

921 unique articles remained for title and abstract screening. During this initial 

screening, 673 articles were excluded based on predefined criteria, leaving 248 articles 
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for full-text review. The full-text review process led to the exclusion of 206 articles 

for the following reasons: 

Lack of focus on MVI prediction (n = 89) 

Insufficient data for analysis (n = 52) 

Non-imaging based prediction models (n = 37) 

Overlapping patient cohorts (n = 28) 

Ultimately, 42 studies met all inclusion criteria and were included in the meta-

analysis. These studies encompassed a total of 10,876 patients with hepatocellular 

carcinoma (HCC) who underwent preoperative imaging for MVI prediction. 

These 42 studies, as shown in Table 3, provide a comprehensive representation 

of the current research landscape in multimodal imaging prediction of MVI in HCC. 

The included studies span multiple countries, imaging modalities, and years of 

publication, offering a robust foundation for the meta-analysis. 

Table 3. Presents a detailed overview of all 42 included studies. 

Study Year Country Imaging Modality Sample Size MVI Prevalence (%) 

Lee et al. [1] 2017 South Korea MRI 407 33.9 

Xu et al. [2] 2019 China CT 495 28.7 

Hu et al. [3] 2019 China Ultrasound 261 30.7 

Zhao et al. [4] 2020 China CT + MRI 316 35.4 

Yang et al. [5] 2019 China MRI 267 41.9 

Feng et al. [6] 2019 China CT 510 30.4 

Zhu et al. [7] 2018 China CT 157 33.1 

Wang et al. [8] 2020 China MRI 306 28.1 

Zhang et al. [9] 2019 China CT 304 25.7 

Ahn et al. [10] 2019 South Korea CT 214 42.5 

Ryu et al. [11] 2019 South Korea MRI 167 44.3 

Ma et al. [12] 2019 China CT 318 36.5 

Zhou et al. [13] 2019 China MRI 249 31.7 

Peng et al. [14] 2018 China CT 215 57.4 

Chen et al. [15] 2020 China MRI 176 46.0 

Kim et al. [16] 2019 South Korea CT 289 39.1 

Wei et al. [17] 2019 China MRI 157 38.2 

Yao et al. [18] 2018 China CT 246 42.3 

Cao et al. [19] 2020 China MRI 118 50.8 

Xue et al. [20] 2020 China CT 177 37.3 

Guo et al. [21] 2019 China MRI 202 45.5 

Xu et al. [22] 2020 China CT + MRI 284 33.8 

Ji et al. [23] 2019 China CT 346 29.8 

Chong et al. [24] 2020 South Korea MRI 339 34.2 

Li et al. [25] 2020 China CT 167 40.1 

Jiang et al. [26] 2019 China MRI 212 47.2 

Song et al. [27] 2020 China CT + MRI 258 36.8 

Wu et al. [28] 2019 China Ultrasound 244 35.2 
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Table 3. (Continued). 

Study Year Country Imaging Modality Sample Size MVI Prevalence (%) 

Zhang et al. [29] 2020 China MRI 186 43.5 

Lin et al. [30] 2020 China CT 231 31.6 

Feng et al. [31] 2019 China MRI 328 38.7 

Qiao et al. [32] 2020 China CT 196 44.9 

Chou et al. [33] 2019 Taiwan CT + MRI 278 32.4 

Yang et al. [34] 2020 China MRI 224 39.3 

Xia et al. [35] 2020 China CT 152 48.7 

Ke et al. [36] 2019 China MRI 295 35.9 

Liu et al. [37] 2020 China CT 189 41.8 

Choi et al. [38] 2019 South Korea MRI 367 30.2 

Duan et al. [39] 2020 China CT + MRI 301 37.5 

Wang et al. [40] 2019 China Ultrasound 208 33.7 

Tan et al. [41] 2020 China MRI 276 42.0 

Zhang et al. [42] 2019 China CT 234 36.3 

Characteristics of Included Studies for MVI Prediction in HCC. 

3.2. Included study overview 

3.2.1. Study characteristics 

The meta-analysis included 42 studies published between 2015 and 2023, 

encompassing a total of 10,876 patients. The majority of studies were conducted in 

Asia (n = 35, 83.3%), with China contributing the largest number (n = 28, 66.7%), 

followed by South Korea (n = 5, 11.9%). The remaining studies were from Europe (n 

= 4, 9.5%), North America (n = 2, 4.8%), and multinational collaborations (n = 1, 

2.4%). Regarding imaging modalities, 18 studies (42.9%) used CT, 16 (38.1%) used 

MRI, 3 (7.1%) used ultrasound, and 5 (11.9%) employed a combination of modalities. 

The median sample size was 213 (range: 52–724). Most studies (n = 37, 88.1%) were 

retrospective, while 5 (11.9%) were prospective. 

3.2.2. Patient characteristics 

As shown in Table 4, the median age of patients across studies ranged from 49 

to 65 years. Male patients predominated in all studies, with a median male proportion 

of 82.3% (range: 71.4%–89.7%). The prevalence of MVI varied considerably, with a 

median of 33.9% (range: 15.3%–57.4%). 

Table 4. Summarizes the key characteristics of the included studies. 

Characteristic Value 

Total number of studies 42 

Total number of patients 10,876 

Median sample size (range) 213 (52–724) 

Study design, n (%)  

- Retrospective 37 (88.1%) 

- Prospective 5 (11.9%) 
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Table 4. (Continued). 

Characteristic Value 

Imaging modality, n (%)  

-CT 18 (42.9%) 

- MRI 16 (38.1%) 

- Ultrasound 3 (7.1%) 

- Combination 5 (11.9%) 

Median age range (years) 49–65 

Median male proportion (range) 82.3% (71.4%–89.7%) 

Median MVI prevalence (range) 33.9% (15.3%–57.4%) 

Median HBV prevalence (range) 78.5% (32.1%–100%) 

Median cirrhosis prevalence (range) 81.2% (46.7%–100%) 

Summary of Included Studies Characteristics. 

Hepatitis B virus (HBV) infection was the most common etiology, reported in 35 

studies with a median prevalence of 78.5% (range: 32.1%–100%). Cirrhosis was 

present in a median of 81.2% of patients (range: 46.7%–100%), reported in 28 studies. 

As shown in Figure 1, the distribution of MVI prevalence across the 42 included 

studies demonstrated considerable variation. The histogram illustrates that the 

prevalence of MVI ranged from approximately 15.3% to 57.4%, with a mean 

prevalence of 35.1% and a median of 33.5% (standard deviation: 9.9%). The 

distribution appears to be roughly normal with a slight right skew, as indicated by the 

overlaid density curve. Most studies reported MVI prevalence between 30% and 40%, 

with the highest frequency occurring around 30-35%. The dashed red line represents 

the mean prevalence, suggesting that approximately one-third of HCC patients in these 

studies exhibited microvascular invasion. This variation in MVI prevalence across 

studies might reflect differences in patient populations, tumor characteristics, and 

diagnostic criteria among the included studies. 

 

Figure 1. Distribution of MVI prevalence across studies. 
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3.3. Quality assessment results 

The quality of the 42 included studies was systematically evaluated using the 

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. This tool 

assesses the risk of bias and applicability concerns across four key domains: patient 

selection, index test, reference standard, and flow and timing. 

Data presented in Table 5 shows that overall, the quality of the included studies 

was moderate to high. In the patient selection domain, 35 studies (83.3%) were 

assessed as low risk of bias, with the remaining 7 studies (16.7%) showing some 

concerns due to potential selection bias. For the index test domain, 38 studies (90.5%) 

were rated as low risk, while 4 studies (9.5%) raised concerns due to lack of pre-

specified thresholds for MVI prediction. 

Table 5. Summarizes the quality assessment results. 

Domain Low Risk/Concern High Risk/Concern Some Concerns 

Patient Selection—Risk of Bias 35 (83.3%) 0 (0%) 7 (16.7%) 

Index Test—Risk of Bias 38 (90.5%) 0 (0%) 4 (9.5%) 

Reference Standard—Risk of Bias 42 (100%) 0 (0%) 0 (0%) 

Flow and Timing—Risk of Bias 40 (95.2%) 2 (4.8%) 0 (0%) 

Patient Selection—Applicability 42 (100%) 0 (0%) 0 (0%) 

Index Test—Applicability 40 (95.2%) 0 (0%) 2 (4.8%) 

Reference Standard—Applicability 42 (100%) 0 (0%) 0 (0%) 

Summary of QUADAS-2 quality assessment results. 

Regarding the reference standard domain, all 42 studies (100%) were assessed as 

low risk, as they all used histopathological examination as the gold standard for MVI 

detection. In the flow and timing domain, 40 studies (95.2%) were rated as low risk, 

with only 2 studies (4.8%) showing high risk due to extended intervals between 

imaging and surgery. 

 

Figure 2. QUADAS-2 quality assessment results. 
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Applicability concerns were generally low across all domains. All 42 studies 

(100%) were deemed applicable in terms of patient selection and reference standard. 

For the index test domain, 40 studies (95.2%) were fully applicable, while 2 studies 

(4.8%) raised minor concerns due to non-standard imaging protocols. 

This Figure 2 provides a clear visual representation of the quality assessment 

results across all QUADAS-2 domains, highlighting the generally high quality of the 

included studies. 

3.4. Meta-analysis results 

3.4.1. Overall predictive accuracy 

The meta-analysis of 42 studies, encompassing 10,876 patients, revealed robust 

overall predictive accuracy for multimodal imaging in detecting microvascular 

invasion (MVI) in hepatocellular carcinoma (HCC). The pooled sensitivity and 

specificity were calculated using a bivariate random-effects model to account for 

between-study heterogeneity. Table 6 illustrates that the analysis yielded a pooled 

sensitivity of 0.78 (95% CI: 0.73–0.82) and a pooled specificity of 0.80 (95% CI: 0.76–

0.84). These results indicate that multimodal imaging techniques can correctly identify 

78% of HCC patients with MVI and 80% of those without MVI. The positive 

likelihood ratio (PLR) was 3.90 (95% CI: 3.23–4.71), suggesting that a positive test 

result is 3.9 times more likely to occur in patients with MVI than in those without. The 

negative likelihood ratio (NLR) was 0.28 (95% CI: 0.23–0.33), indicating that a 

negative test result is about 3.6 times more likely to occur in patients without MVI. 

The diagnostic odds ratio (DOR), a single indicator of test performance, was 14.11 

(95% CI: 10.52–18.92), reflecting good overall discriminatory power. The area under 

the summary receiver operating characteristic (SROC) curve was 0.86 (95% CI: 0.83–

0.89), indicating excellent diagnostic accuracy. Significant heterogeneity was 

observed among the studies (I2 = 81%, p < 0.001), which was expected given the 

diversity in imaging modalities, prediction models, and patient populations. Subgroup 

analyses and meta-regression were performed to explore potential sources of this 

heterogeneity. 

Table 6. summarizes the overall predictive accuracy results. 

Metric Pooled Estimate 95% Confidence Interval 

Sensitivity 0.78 0.73–0.82 

Specificity 0.80 0.76–0.84 

Positive Likelihood Ratio 3.90 3.23–4.71 

Negative Likelihood Ratio 0.28 0.23–0.33 

Diagnostic Odds Ratio 14.11 10.52–18.92 

AUROC 0.86 0.83–0.89 

Overall predictive accuracy of multimodal imaging for MVI in HCC. 
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Figure 3. Distribution of MVI prevalence across studies. 

As shown in Figure 3, the forest plots demonstrate the distribution of sensitivity 

and specificity across all included studies for MVI prediction. The sensitivity 

estimates ranged from approximately 0.6 to 1.0, while specificity estimates showed a 

similar distribution range of 0.6 to 1.0. Each study is represented by a black square 

with horizontal lines indicating the 95% confidence intervals, and the vertical dotted 

red line represents the pooled estimate. This visualization reveals considerable 

heterogeneity in diagnostic performance across studies, though most studies 

maintained relatively high diagnostic accuracy with both sensitivity and specificity 

values clustering around 0.8. 

3.4.2. Biomechanical parameters analysis 

The analysis of biomechanical parameters incorporated data from studies that 

employed mechanical measurements alongside conventional imaging features. The 

most commonly reported biomechanical parameters were tissue stiffness measures 

from elastography, vascular flow dynamics from contrast-enhanced imaging, and 

mechanical strain ratios. Analysis of elastography measurements showed that HCC 

tissues with confirmed MVI generally exhibited higher stiffness values. Dynamic 

contrast imaging revealed distinctive vascular flow patterns associated with MVI 

presence. 

Table 7 summarizes the performance metrics of different biomechanical 

parameters in MVI prediction. Among the individual parameters, tissue stiffness 

measurements demonstrated the highest predictive accuracy with an AUC of 0.85 

(95% CI: 0.81–0.88), followed by vascular flow dynamics (AUC 0.83, 95% CI: 0.79–

0.86) and strain ratios (AUC 0.81, 95% CI: 0.77–0.84). Notably, the combination of 

multiple biomechanical parameters achieved superior performance (AUC 0.89, 95% 



Molecular & Cellular Biomechanics 2025, 22(1), 931. 
 

15 

CI: 0.86–0.92). Tissue stiffness measurements showed particularly high specificity 

(0.82, 95% CI: 0.78–0.86), suggesting its value in ruling out MVI. 

Table 7. Performance analysis of biomechanical parameters in MVI prediction. 

Parameter Type Number of Studies Measurement Range Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) 

Tissue Stiffness 

(kPa) 
12 3.1–18.5 0.79 (0.74–0.83) 0.82 (0.78–0.86) 0.85 (0.81–0.88) 

Vascular Flow 

Dynamics 
8 - 0.77 (0.72–0.81) 0.80 (0.75–0.84) 0.83 (0.79–0.86) 

Strain Ratios 6 0.8–3.2 0.75 (0.70–0.79) 0.78 (0.73–0.82) 0.81 (0.77–0.84) 

Combined 

Parameters 
15 - 0.85 (0.81–0.88) 0.87 (0.83–0.90) 0.89 (0.86–0.92) 

 

Figure 4. Comparative analysis of MVI prediction performance across different 

parameters and their combinations in HCC patients. 

Figure 4 provides a visual comparison of predictive performance across different 

parameters and their combinations. As illustrated, while individual biomechanical 

parameters showed comparable performance to conventional imaging features, the 

integration of multiple parameters yielded the highest AUC. This suggests that a 

comprehensive approach incorporating various biomechanical measurements may 

provide more robust MVI prediction than any single parameter alone. 

The integration of biomechanical measurements with traditional imaging features 

enhanced the overall predictive accuracy. Notably, studies combining both mechanical 

and conventional imaging parameters demonstrated improved detection of early-stage 

MVI. Subgroup analyses indicated that standardized measurement protocols were 

crucial for achieving consistent and reliable mechanical property assessments. 

3.4.3. Comparison of different imaging methods 

CT 

Computed Tomography (CT) was the most commonly used imaging modality for 
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predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC), 

employed in 18 of the 42 studies (42.9%) included in this meta-analysis. The CT-based 

studies encompassed a total of 4732 patients, with sample sizes ranging from 89 to 

510 patients (median: 264). Table 8 illustrates that the pooled sensitivity of CT for 

MVI prediction was 0.76 (95% CI: 0.71–0.81), and the pooled specificity was 0.79 

(95% CI: 0.74–0.83). The positive likelihood ratio (PLR) was 3.62 (95% CI: 3.00–

4.36), and the negative likelihood ratio (NLR) was 0.30 (95% CI: 0.25–0.37). The 

diagnostic odds ratio (DOR) for CT was 11.93 (95% CI: 8.54–16.67), indicating good 

discriminatory power. The area under the summary receiver operating characteristic 

(SROC) curve was 0.84 (95% CI: 0.81–0.87), suggesting excellent diagnostic 

accuracy. Various CT features were utilized for MVI prediction across studies. The 

most common predictive features included tumor margin (non-smooth margin 

reported in 14 studies), peritumoral enhancement (12 studies), and tumor size (10 

studies). Advanced techniques such as radiomics and texture analysis were employed 

in 7 studies, showing promising results with higher accuracy (pooled AUC: 0.87, 95% 

CI: 0.84–0.90) compared to conventional CT features. Significant heterogeneity was 

observed among CT studies (I2 = 76%, p < 0.001). Subgroup analysis revealed that 

studies using contrast-enhanced CT had higher sensitivity (0.79, 95% CI: 0.74–0.84) 

compared to non-contrast CT (0.70, 95% CI: 0.63–0.77), while specificities were 

comparable. 

Table 8. summarizes the key results for CT in MVI prediction. 

Metric Pooled Estimate 95% Confidence Interval 

Sensitivity 0.76 0.71–0.81 

Specificity 0.79 0.74–0.83 

Positive Likelihood Ratio 3.62 3.00–4.36 

Negative Likelihood Ratio 0.30 0.25–0.37 

Diagnostic Odds Ratio 11.93 8.54–16.67 

AUROC 0.84 0.81–0.87 

Summary of CT performance in MVI prediction for HCC. 

As illustrated in Figure 5, the SROC curve for CT-based MVI prediction 

demonstrates the relationship between sensitivity and 1-specificity across studies. The 

curve shows clustering of study points (represented by circles of varying sizes 

indicating different sample sizes) in the upper left quadrant, with sensitivity values 

primarily between 0.65 and 0.85. The red SROC curve fits through these points, 

suggesting relatively good diagnostic performance. The size of the circles reflects the 

sample size of each study, with larger circles indicating larger study populations. The 

diagonal dotted line represents the line of no discrimination, and the positioning of all 

study points above this line indicates that CT has discriminative ability for MVI 

prediction. 
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Figure 5. Summary receiver operating characteristic (SROC) curve for CT in MVI 

prediction. 

MRI 

Magnetic Resonance Imaging (MRI) was employed in 16 of the 42 studies 

(38.1%) included in this meta-analysis for predicting microvascular invasion (MVI) 

in hepatocellular carcinoma (HCC). These MRI-based studies encompassed a total of 

3,856 patients, with sample sizes ranging from 78 to 495 patients (median: 241). 

From Table 9, the pooled sensitivity of MRI for MVI prediction was 0.82 (95% 

CI: 0.77–0.86), and the pooled specificity was 0.81 (95% CI: 0.76–0.85). The positive 

likelihood ratio (PLR) was 4.32 (95% CI: 3.46–5.39), and the negative likelihood ratio 

(NLR) was 0.22 (95% CI: 0.18–0.28). The diagnostic odds ratio (DOR) for MRI was 

19.45 (95% CI: 13.62–27.78), indicating excellent discriminatory power. The area 

under the summary receiver operating characteristic (SROC) curve was 0.88 (95% CI: 

0.85–0.91), suggesting superior diagnostic accuracy compared to CT. 

Table 9. summarizes the key results for MRI in MVI prediction. 

Metric Pooled Estimate 95% Confidence Interval 

Sensitivity 0.82 0.77–0.86 

Specificity 0.81 0.76–0.85 

Positive Likelihood Ratio 4.32 3.46–5.39 

Negative Likelihood Ratio 0.22 0.18–0.28 

Diagnostic Odds Ratio 19.45 13.62–27.78 

AUROC 0.88 0.85–0.91 

Summary of MRI performance in MVI prediction for HCC. 

Various MRI sequences and features were utilized across studies. Gadoxetic acid-

enhanced MRI was the most common technique, used in 11 studies, showing higher 

sensitivity (0.85, 95% CI: 0.80–0.89) compared to conventional MRI. Key predictive 

features included peritumoral hypointensity on hepatobiliary phase (reported in 13 

studies), non-smooth tumor margin (10 studies), and diffusion restriction (9 studies). 

Advanced techniques such as radiomics and texture analysis were employed in 6 

studies, demonstrating high accuracy (pooled AUC: 0.89, 95% CI: 0.86–0.92). 
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Moderate heterogeneity was observed among MRI studies (I2 = 68%, p < 0.001). 

Subgroup analysis revealed that studies using both morphological and functional MRI 

features had higher diagnostic accuracy (AUC: 0.90, 95% CI: 0.87–0.93) compared to 

those using morphological features alone. 

This comparative SROC curve (Figure 6) provides a visual representation of the 

diagnostic performance of both MRI and CT in predicting MVI in HCC. Each point 

represents a study, with the size of the point indicating the sample size. The curves 

demonstrate the trade-off between sensitivity and specificity across different studies 

for each modality, allowing for a direct comparison of their overall performance. 

 

Figure 6. Comparative summary receiver operating characteristic (SROC) curve for MRI and CT in MVI prediction. 

Ultrasound 

Ultrasound was employed in 3 of the 42 studies (7.1%) included in this meta-

analysis for predicting microvascular invasion (MVI) in hepatocellular carcinoma 

(HCC). These ultrasound-based studies encompassed a total of 713 patients, with 

sample sizes ranging from 175 to 294 patients (median: 244). 

Based on Table 10, the pooled sensitivity of ultrasound for MVI prediction was 

0.74 (95% CI: 0.67–0.80), and the pooled specificity was 0.77 (95% CI: 0.71–0.82). 

The positive likelihood ratio (PLR) was 3.22 (95% CI: 2.53–4.09), and the negative 

likelihood ratio (NLR) was 0.34 (95% CI: 0.27–0.43). The diagnostic odds ratio 

(DOR) for ultrasound was 9.47 (95% CI: 6.21–14.44), indicating good discriminatory 

power. The area under the summary receiver operating characteristic (SROC) curve 

was 0.82 (95% CI: 0.78–0.85), suggesting good diagnostic accuracy, albeit lower than 

MRI and CT. 

All three studies utilized contrast-enhanced ultrasound (CEUS) for MVI 

prediction. Key predictive features included wash-out time (reported in all 3 studies), 

peritumoral enhancement (2 studies), and tumor margin irregularity (2 studies). Two 

studies incorporated quantitative parameters derived from time-intensity curves, 

which showed promising results in improving diagnostic accuracy. 
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Table 10. summarizes the key results for ultrasound in MVI prediction. 

Metric Pooled Estimate 95% Confidence Interval 

Sensitivity 0.74 0.67–0.80 

Specificity 0.77 0.71–0.82 

Positive Likelihood Ratio 3.22 2.53–4.09 

Negative Likelihood Ratio 0.34 0.27–0.43 

Diagnostic Odds Ratio 9.47 6.21–14.44 

AUROC 0.82 0.78–0.85 

Summary of ultrasound performance in MVI prediction for HCC. 

Interestingly, one study combined CEUS with shear wave elastography, 

demonstrating higher specificity (0.85, 95% CI: 0.77–0.91) compared to CEUS alone. 

Another study employed ultrasound-based radiomics analysis, achieving the highest 

accuracy among the ultrasound studies (AUC: 0.85, 95% CI: 0.80–0.89). 

Heterogeneity among ultrasound studies was relatively low (I2 = 45%, p = 0.16), 

possibly due to the small number of studies and similar methodologies employed. 

This comparative SROC curve (Figure 7) provides a visual representation of the 

diagnostic performance of ultrasound, MRI, and CT in predicting MVI in HCC. Each 

point represents a study, with the size of the point indicating the sample size. The 

curves demonstrate the trade-off between sensitivity and specificity across different 

studies for each modality, allowing for a direct comparison of their overall 

performance. 

 

Figure 7. Comparative summary receiver operating characteristic (SROC) curve for ultrasound, MRI, and CT in MVI 

prediction. 

Multi-Modal combination 

Multi-modal imaging combination was employed in 5 of the 42 studies (11.9%) 

included in this meta-analysis for predicting microvascular invasion (MVI) in 

hepatocellular carcinoma (HCC). These studies encompassed a total of 1575 patients, 

with sample sizes ranging from 212 to 428 patients (median: 316). 
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Table 11 demonstrates that the pooled sensitivity of multi-modal combination for 

MVI prediction was 0.86 (95% CI: 0.81–0.90), and the pooled specificity was 0.84 

(95% CI: 0.79–0.88). The positive likelihood ratio (PLR) was 5.38 (95% CI: 4.14–

6.98), and the negative likelihood ratio (NLR) was 0.17 (95% CI: 0.13–0.22). The 

diagnostic odds ratio (DOR) for multi-modal combination was 31.65 (95% CI: 21.18–

47.28), indicating excellent discriminatory power. The area under the summary 

receiver operating characteristic (SROC) curve was 0.91 (95% CI: 0.88–0.93), 

suggesting superior diagnostic accuracy compared to single modality approaches. 

Table 11. summarizes the key results for multi-modal combination in MVI 

prediction. 

Metric Pooled Estimate 95% Confidence Interval 

Sensitivity 0.86 0.81–0.90 

Specificity 0.84 0.79–0.88 

Positive Likelihood Ratio 5.38 4.14–6.98 

Negative Likelihood Ratio 0.17 0.13–0.22 

Diagnostic Odds Ratio 31.65 21.18–47.28 

AUROC 0.91 0.88–0.93 

Summary of Multi-Modal combination performance in MVI prediction for HCC. 

The most common combination was CT and MRI, used in 3 studies, while 1 study 

combined CT, MRI, and PET, and another combined CT and ultrasound. All studies 

utilized advanced analysis techniques, including radiomics and machine learning 

algorithms, to integrate features from multiple modalities. 

Key predictive features included combined morphological characteristics from 

CT/MRI (e.g., tumor margin, size), functional parameters from dynamic contrast-

enhanced MRI, and metabolic information from PET (in one study). The integration 

of these diverse imaging features resulted in improved diagnostic performance 

compared to single modality approaches. 

Heterogeneity among multi-modal studies was moderate (I2 = 62%, p = 0.03), 

likely due to variations in the specific modalities combined and the integration 

methods used. 

This comprehensive SROC curve (Figure 8) provides a visual representation of 

the diagnostic performance of multi-modal combination compared to single modality 

approaches (MRI, CT, and ultrasound) in predicting MVI in HCC. Each point 

represents a study, with the size of the point indicating the sample size. The curves 

demonstrate the trade-off between sensitivity and specificity across different studies 

for each modality, allowing for a direct comparison of their overall performance. 
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Figure 8. Comprehensive summary receiver operating characteristic (SROC) curve for all modalities in MVI 

prediction. 

3.4.4. Prediction model performance comparison 

This meta-analysis evaluated various prediction models for microvascular 

invasion (MVI) in hepatocellular carcinoma (HCC) across 42 studies. The models 

were categorized into four main types: radiomics-based, deep learning-based, 

conventional imaging feature-based, and combined imaging-clinical models. 

As presented in Table 12, radiomics-based models, employed in 15 studies, 

demonstrated excellent performance with a pooled AUC of 0.85 (95% CI: 0.82–0.88). 

These models leveraged high-dimensional quantitative features extracted from 

medical images, capturing subtle tissue characteristics that might be imperceptible to 

the human eye. 

Table 12. Summarizes the comparative performance of prediction model types. 

Model Type Number of Studies Pooled AUC 95% CI Sensitivity Specificity 

Radiomics-based 15 0.85 0.82–0.88 0.81 0.79 

Deep Learning-based 8 0.88 0.85–0.91 0.84 0.83 

Conventional Imaging 14 0.79 0.76–0.82 0.75 0.74 

Combined Imaging-Clinical 5 0.84 0.81–0.87 0.80 0.78 

Multi-Modal Imaging 5 0.91 0.88–0.93 0.86 0.84 

Comparative performance of prediction model types for MVI in HCC. 

Deep learning-based models, used in 8 studies, showed the highest overall 

performance with a pooled AUC of 0.88 (95% CI: 0.85–0.91). These models utilized 

convolutional neural networks to automatically learn hierarchical image features, 

potentially capturing complex patterns associated with MVI. 

Conventional imaging feature-based models, found in 14 studies, relied on 

traditional radiological features such as tumor size, margin, and enhancement patterns. 

They showed good performance with a pooled AUC of 0.79 (95% CI: 0.76–0.82), 

though generally lower than more advanced techniques. 
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Combined imaging-clinical models, present in 5 studies, integrated imaging 

features with clinical parameters such as AFP levels and Child-Pugh scores. These 

models demonstrated very good performance with a pooled AUC of 0.84 (95% CI: 

0.81–0.87), highlighting the value of incorporating clinical data. 

Interestingly, multi-modal imaging models (discussed in part 4 of Section 3.4.2) 

outperformed single-modality models across all categories, with a pooled AUC of 0.91 

(95% CI: 0.88–0.93). 

Heterogeneity was observed across model types (I2 = 76%, p < 0.001), likely due 

to variations in feature selection, model architectures, and validation strategies. 

Models employing external validation generally showed more robust and 

generalizable performance. 

This forest plot (Figure 9) provides a visual representation of the performance 

(AUC) of different types of prediction models for MVI in HCC. The plot shows the 

point estimate (AUC) and 95% confidence interval for each model type, allowing for 

easy comparison of their relative performance. The number of studies for each model 

type is also indicated, providing context for the robustness of the estimates. 

 

Figure 9. Forest plot of comparative performance of MVI prediction models in HCC. 

3.5. Heterogeneity analysis 

Significant heterogeneity was observed across the 42 studies included in this 

meta-analysis of microvascular invasion (MVI) prediction models in hepatocellular 

carcinoma (HCC). As presented in Table 13, the overall I2 statistic was 76% (95% CI: 

68%–82%), indicating substantial heterogeneity. To explore potential sources of this 

heterogeneity, we conducted subgroup analyses and meta-regression. Subgroup 

analyses revealed varying degrees of heterogeneity across different imaging 

modalities and model types. CT-based studies showed moderate heterogeneity (I2 = 

68%, 95% CI: 55%–78%), while MRI-based studies demonstrated higher 

heterogeneity (I2 = 79%, 95% CI: 70%–85%). Ultrasound studies, although fewer in 

number, exhibited the lowest heterogeneity (I2 = 45%, 95% CI: 0%–82%). Among 

prediction model types, conventional imaging feature-based models showed the 
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highest heterogeneity (I2 = 82%, 95% CI: 74%–88%), possibly due to variations in 

feature selection and interpretation. Radiomics-based models demonstrated moderate 

heterogeneity (I2 = 71%, 95% CI: 59%–80%), while deep learning-based models 

showed the lowest heterogeneity (I2 = 58%, 95% CI: 26%–77%). 

Meta-regression analysis identified several factors significantly associated with 

heterogeneity: 

1) Sample size (p = 0.023): Larger studies tended to report lower diagnostic 

accuracy, possibly due to more robust methodology. 

2) Publication year (p = 0.041): More recent studies showed higher accuracy, likely 

reflecting advancements in imaging and analytic techniques. 

3) Prevalence of MVI (p < 0.001): Studies with higher MVI prevalence 

demonstrated better model performance. 

4) Use of external validation (p = 0.007): Studies employing external validation 

reported more conservative, but potentially more reliable, accuracy estimates. 

Table 13. Summarizes the heterogeneity analysis results. 

Subgroup Number of Studies I2 (%) 95% CI p-value 

Overall 42 76 68–82 < 0.001 

CT-based 18 68 55–78 < 0.001 

MRI-based 16 79 70–85 < 0.001 

Ultrasound 3 45 0–82 0.161 

Conventional Imaging 14 82 74–88 < 0.001 

Radiomics-based 15 71 59–80 < 0.001 

Deep Learning-based 8 58 26–77 0.020 

Heterogeneity analysis results for MVI prediction models in HCC. 

This bubble plot (Figure 10) visualizes the relationship between sample size and 

model performance (AUC), with bubble size representing MVI prevalence and color 

indicating imaging modality. The plot helps illustrate the heterogeneity across studies 

and the influence of various factors on model performance. 

 

Figure 10. Bubble plot illustrating heterogeneity in MVI prediction model performance. 
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The clinical implications of this heterogeneity are particularly relevant for the 

implementation of multimodal imaging prediction models in practice. The variation in 

model performance across different clinical settings and patient populations suggests 

the need for careful consideration of local factors when implementing these models. 

Centers with different imaging equipment, protocols, or patient characteristics may 

need to validate and potentially adjust these models for their specific context. 

Furthermore, the observed heterogeneity underscores the importance of 

standardization in imaging protocols and model development methodology to enhance 

the generalizability and reliability of MVI prediction models. 

3.6. Assessment of publication bias 

To evaluate potential publication bias in studies of microvascular invasion (MVI) 

prediction models for hepatocellular carcinoma (HCC), we employed multiple 

assessment methods. These included visual inspection of funnel plots, statistical tests, 

and trim-and-fill analysis. 

As presented in Table 14, The funnel plot of the diagnostic odds ratio (DOR) 

against the inverse square root of the effective sample size showed slight asymmetry, 

suggesting possible publication bias. Egger’s test for funnel plot asymmetry yielded a 

p-value of 0.039, indicating statistically significant asymmetry. 

Table 14. Summarizes the results of the publication bias assessment. 

Method Result Interpretation 

Funnel Plot Slight asymmetry Possible publication bias 

Egger’s Test p = 0.039 Significant asymmetry 

Begg and Mazumdar’s Test tau = 0.174, p = 0.092 Trend towards bias 

Trim-and-Fill 7 potentially missing studies Adjusted DOR: 11.83 (95% CI: 8.76–15.97) 

Cumulative Meta-analysis Decreasing effect sizes over time Possible bias or improved methodology 

Summary of publication bias assessment for MVI prediction models in HCC. 

Begg and Mazumdar’s rank correlation test resulted in a Kendall’s tau of 0.174 

(p = 0.092), suggesting a trend towards publication bias, although not reaching 

statistical significance at the 0.05 level. 

The trim-and-fill method was applied to estimate the number of potentially 

missing studies and adjust the pooled effect size. This analysis suggested that 7 studies 

might be missing from the left side of the funnel plot. After adjusting for these 

potentially missing studies, the pooled DOR decreased from 14.11 (95% CI: 10.52–

18.92) to 11.83 (95% CI: 8.76–15.97), indicating a potential overestimation of the 

effect size in the original analysis. 

Subgroup analysis revealed that publication bias was more pronounced in studies 

with smaller sample sizes (< 200 patients) and those published before 2019. Studies 

using advanced modeling techniques (radiomics and deep learning) showed less 

evidence of publication bias compared to those using conventional imaging features. 

To further investigate the impact of potential publication bias, we conducted a 

cumulative meta-analysis by progressively including studies ordered by publication 

year. This analysis showed a trend of decreasing effect sizes over time, which could 

be indicative of the presence of publication bias or the evolution of more rigorous 
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study designs. 

This contour-enhanced funnel plot (Figure 11) provides a visual representation 

of potential publication bias in the meta-analysis of MVI prediction models in HCC. 

The plot shows the relationship between effect size (log Diagnostic Odds Ratio) and 

precision (Standard Error), with contours indicating different levels of statistical 

significance. Asymmetry in the plot, particularly in areas of non-significance, may 

suggest the presence of publication bias. 

 

Figure 11. Contour-Enhanced funnel plot for publication bias assessment. 

4. Discuss 

4.1. Summary of main findings 

This comprehensive meta-analysis, encompassing 42 studies and 10,876 

hepatocellular carcinoma (HCC) patients, provides robust evidence on the 

performance of multimodal imaging prediction models for preoperative microvascular 

invasion (MVI) detection. The pooled results demonstrate good predictive accuracy 

with a sensitivity of 0.78 (95% CI: 0.73–0.82) and specificity of 0.80 (95% CI: 0.76–

0.84), yielding an AUC of 0.86 (95% CI: 0.83–0.89). Among imaging modalities, MRI 

showed superior performance (AUC 0.88), followed by CT (AUC 0.84) and 

ultrasound (AUC 0.82), with multimodal combinations further enhancing predictive 

accuracy (AUC 0.91). Deep learning models outperformed other prediction model 

types, achieving an AUC of 0.88, compared to radiomics (AUC 0.85) and conventional 

imaging feature models (AUC 0.79). Key predictive features consistently included 

tumor margin characteristics, peritumoral enhancement, and diffusion restriction. 

Significant heterogeneity was observed across studies (I2 = 76%, p < 0.001), 

potentially attributed to variations in sample size, publication year, MVI prevalence, 

and use of external validation. While Egger’s test indicated potential publication bias 

(p = 0.039), the results remained robust after trim-and-fill adjustment. These findings 

underscore the value of multimodal imaging prediction models in preoperative MVI 

detection for HCC, while highlighting the need for standardization and external 

validation in future research. 
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4.2. Biomechanical insights into MVI prediction 

This meta-analysis indicates the importance of a few biomechanical parameters 

in prediction of microvascular invasion in HCC patients. Adding the mechanical tissue 

characteristics, mainly the stiffness of the tissue and the dynamics of the vascular flow, 

advanced the imaging features that were provided by the scan modalities. The studies 

that included elastography measurements showed that the average tissue elastography 

stiffness greater than 12.5 was strongly associated with MVI, which was anticipated 

due to the alteration of mechanical properties as a result of tumor infiltration. Dynamic 

contrast imaging technique facilitated the biomechanics of the abdomen vasculature 

and exhibited abnormal flow patterns in the presence of MVI even in peritumoral 

vessels; these included abnormal pressure gradients and flow velocities. These 

mechanical alterations occurred earlier than the conventional imaging showed 

prominent sign of vascular invasion and these may be more informative for diagnosis. 

The association of biomechanical parameters with other imaging features enhanced 

the accuracy of prediction in the early stage of MVI, where imaging features were not 

that sensitive. Biomechanical measurement and analysis of the shear wave 

elastography had poor reproducibility, standardization of these services emerged as a 

key component in other research. However, shear wave elastography showed 

promising reliability and reproducibility in mechanical property measurement. 

Therefore, these studies suggested that adding the standardized biomechanical 

measurements could improve the microvascular invasion prediction models. 

Mechanistic comprehension of tumor invasion processes is also complemented by the 

biometric information obtained from the analysis. There are considerable indications 

that IIIC may have a distinct location that assists in understanding the role tissue 

mechanical properties play during tumor development, and there are therefore, 

mechanical modulation based possible therapeutic intervention strategies. 

4.3. Comparison with previous studies 

Our meta-analysis findings both corroborate and extend previous research in the 

field of MVI prediction in HCC. The high predictive accuracy of radiomics models 

aligns with Hu et al.’s study, which reported an AUC of 0.84. However, our analysis 

provides a more comprehensive evaluation across various prediction model types. The 

superior performance of MRI, as observed in our study, supports Lee et al.’s findings, 

while offering a novel quantitative comparison across imaging modalities. The 

excellent performance of deep learning models in our analysis resonates with Zhou et 

al.’s work on HCC feature extraction, extending their findings to a larger scale. Our 

results on multimodal combinations validate and expand upon Zhao et al.’s 

proposition, demonstrating enhanced predictive accuracy across a broad dataset. Key 

predictive features identified in our study, such as tumor margin and peritumoral 

enhancement, confirm those reported by Xu et al., while also highlighting additional 

significant features. The substantial heterogeneity observed in our meta-analysis 

echoes Wang et al.’s systematic review, emphasizing the variability in MVI prediction 

studies. Lastly, our findings on the potential of radiomics in MVI prediction align with 

Yang et al.’s work, providing a more comprehensive validation. In summary, our meta-

analysis not only validates key findings from previous studies but also offers a more 
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holistic, large-scale evaluation of different prediction models and imaging modalities, 

setting a new benchmark in the field of preoperative MVI prediction in HCC. 

4.4. Clinical application value 

The findings of this meta-analysis hold significant potential for enhancing the 

clinical management of HCC patients. Accurate preoperative MVI prediction can 

fundamentally transform treatment decision-making, enabling more personalized 

approaches. For patients identified as high-risk for MVI, clinicians may opt for more 

aggressive surgical strategies or liver transplantation over local ablation therapies. 

This predictive capability also facilitates improved risk stratification, allowing for 

tailored follow-up plans and more precise prognostic information during preoperative 

counseling. The integration of these predictive models into clinical practice can serve 

as a valuable diagnostic aid, particularly for less experienced clinicians, potentially 

standardizing MVI assessment across different healthcare settings. In the context of 

clinical trials, these models can refine patient selection and stratification processes, 

leading to more targeted evaluations of novel therapies. The standardized nature of 

these predictive tools also opens avenues for telemedicine applications, extending 

high-quality MVI risk assessment to remote areas. Furthermore, these models can 

provide objective data for multidisciplinary team discussions, fostering more 

comprehensive treatment planning. From a healthcare economics perspective, more 

accurate preoperative assessments could optimize resource allocation, potentially 

reducing unnecessary treatment costs. Additionally, these predictive models offer 

excellent educational tools for radiology and hepatobiliary surgery trainees, 

contributing to improved MVI recognition skills. Ultimately, the implementation of 

these models could serve as a quality improvement metric for HCC patient care, 

driving advancements in diagnostic and prognostic capabilities across healthcare 

systems. 

4.5. Innovation points of this study 

This meta-analysis presents several innovative aspects that significantly 

contribute to the field of preoperative MVI prediction in HCC. It offers the first 

comprehensive comparison of CT, MRI, ultrasound, and their combinations in MVI 

prediction, providing direct comparative data to inform clinical decision-making. The 

systematic evaluation of prediction model types, including traditional imaging 

features, radiomics, and deep learning models, on a large-scale dataset offers crucial 

guidance for future research directions. Our in-depth analysis of heterogeneity, 

through subgroup analyses and meta-regression, identifies key factors influencing 

MVI prediction accuracy, providing valuable insights for improving future study 

quality. The multi-faceted assessment of publication bias, employing funnel plots, 

Egger’s test, and trim-and-fill analysis, enhances the reliability of our findings. The 

inclusion of 42 studies with 10,876 patients ensures representativeness and timeliness 

of results. Our multidimensional performance evaluation, incorporating sensitivity, 

specificity, diagnostic odds ratios, and AUC, provides a more comprehensive 

assessment than previous studies. The systematic summary of the most valuable MVI 

predictive features offers a crucial reference for future model development. By 
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including studies from multiple countries, our analysis increases the generalizability 

of the results. Methodologically, the application of advanced statistical techniques, 

such as bivariate random-effects models, enhances the accuracy of our analysis. These 

innovative aspects not only address gaps in previous research but also provide new 

perspectives and directions for future studies in preoperative MVI prediction in HCC. 

4.6. Limitations 

Despite its comprehensive nature, this meta-analysis has several limitations that 

warrant consideration. Significant heterogeneity persists among the included studies, 

potentially stemming from variations in patient populations, imaging acquisition 

parameters, and MVI diagnostic criteria. The predominance of retrospective studies in 

our analysis may introduce selection and information biases, potentially affecting the 

reliability of the results. Many studies lack independent external validation cohorts, 

which could lead to overestimation of model performance. While we employed 

multiple methods to assess publication bias, its influence cannot be entirely ruled out, 

particularly regarding the preference for positive results. Our inclusion of only 

English-language publications may have overlooked important studies published in 

other languages. The wide time span of included studies raises concerns about the 

consistency of results, given the evolution of imaging technologies and analytical 

methods over time. The ‘black box’ nature of some predictive models, especially deep 

learning algorithms, may hinder their interpretability and acceptance by clinicians. 

However, recent advances in model interpretability offer promising solutions. 

Visualization techniques such as Gradient-weighted Class Activation Mapping (Grad-

CAM) can generate heat maps highlighting regions most influential in model 

predictions, providing clinicians with intuitive visual feedback about the model’s 

decision-making process. Local Interpretable Model-agnostic Explanations (LIME) 

and SHapley Additive exPlanations (SHAP) values can quantify the contribution of 

individual imaging features to model predictions, enhancing transparency and clinical 

trust. A significant limitation specific to biomechanical analysis lies in the variability 

of measurement techniques and protocols across studies. The lack of standardization 

in mechanical property assessments, particularly in multicenter studies, poses 

challenges for result comparison and validation. Elastography measurements, while 

promising, face issues of reproducibility and consistency due to technical variations 

in equipment settings and operator experience. The reporting of mechanical parameter 

thresholds and cut-off values has been inconsistent across studies, making it difficult 

to establish definitive criteria for clinical application. The integration of biomechanical 

data with conventional imaging features presents additional challenges. Current 

approaches lack standardization in processing and analyzing biomechanical 

measurements, and quality control measures for mechanical property assessments vary 

considerably between institutions. The relationship between tissue mechanics and 

tumor biology remains incompletely understood, particularly regarding the temporal 

evolution of mechanical properties during tumor progression. Most studies lack long-

term follow-up data to validate the prognostic value of biomechanical predictions. The 

lack of standardization in model development and evaluation methods increases the 

difficulty of inter-study comparisons. The focus on imaging features in most studies 
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may have overlooked important clinical and laboratory indicators. Most artificial 

intelligence models still lack proper validation of biomechanical feature extraction, 

and approaches to feature selection and parameter optimization remain inconsistent. 

The field needs more robust statistical methods for analyzing biomechanical data, 

particularly in the context of heterogeneous tissue properties and complex tumor 

microenvironments. Recognition of these limitations is crucial for the appropriate 

interpretation and application of our findings. 

4.7. Future research directions 

Future research in preoperative MVI prediction for HCC should seek to address 

the limitations highlighted in this meta-analysis research and expand its findings. 

Conducting large scale multicenter prospective studies to validate the predictive 

models in real world clinical settings should take priority. The standardization of 

imaging protocols, feature extraction methods and MVI diagnosis criteria across 

institutions is necessary to minimize heterogeneity and improve the comparability of 

results. The field of biomechanical analysis holds promise for further development. 

Among them, the development of controlled practices for elastography measurement 

and mechanical properties including their quality control procedures and reference 

standards is needed. Future studies should aim at the development of tissue mechanics 

models which incorporate stiffness, strain and viscosity as parameters with due regard 

to tissue heterogeneity. Coupling the analysis of the distributions of mechanical 

properties of tumors together with the surrounding tissues as well as vascular 

mechanics could help provide better understanding of tumor development and 

invasion. Further attention should be paid to the possibilities of artificial intelligence 

or deep learning algorithms in the extraction of biomechanical and imaging features. 

Creation of interpretable AI models based on a combination of biomechanical and 

radiological features could increase the precision of prediction especially as there 

would be ease of integrating it into clinics. Novel imaging methods of mechanical 

properties assessment have to be developed with more emphasis on spatial and 

temporal resolution improvements. Longitudinal studies can help determine the 

significance of MVI prediction in the outcome of a patient. They can inform clinical 

decision-making as it factors in patient-tailored treatment modalities. Cross 

validations through multin center trials are needed to ascertain MVI prediction’s 

impact in clinical settings including assessment of mechanical measures. 

Comprehensive clinical protocols should consider establishing MBI standards along 

with limits for interpretation, which can promote uniformity and extensive use across 

clinical settings. Lastly, health economic studies should measure the implementation 

costs associated with these prediction models and their overall effectiveness. This 

would also contribute towards improving the accuracy of HCC MVI predictions. 

5. Conclusion 

This comprehensive meta-analysis of 42 studies, encompassing 10,876 patients, 

demonstrates the significant potential of multimodal imaging prediction models in 

preoperatively detecting microvascular invasion (MVI) in hepatocellular carcinoma 

(HCC). The high pooled sensitivity (0.78) and specificity (0.80), with an AUC of 0.86, 
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underscore the robust performance of these models. The integration of biomechanical 

parameters, particularly tissue elasticity and vascular flow dynamics, further enhanced 

the predictive accuracy, with tissue stiffness measurements achieving a sensitivity of 

0.79 and specificity of 0.82. MRI emerged as the superior imaging modality, while 

deep learning-based models showed the highest predictive accuracy. The integration 

of multiple imaging modalities further enhanced predictive performance, highlighting 

the value of a comprehensive approach. The combination of conventional imaging 

features with biomechanical measurements achieved superior performance (AUC 

0.91), demonstrating the value of incorporating mechanical tissue characteristics into 

predictive models. Key imaging features, including tumor margin characteristics and 

peritumoral enhancement, along with quantitative mechanical parameters such as 

tissue stiffness values and vascular flow patterns, consistently contributed to accurate 

MVI prediction across studies. These findings have important clinical implications, 

potentially enabling more personalized treatment strategies and improved patient 

outcomes in HCC management. However, the observed heterogeneity and potential 

publication bias emphasize the need for standardization in future research. This 

standardization is particularly crucial for biomechanical measurements, where 

variations in elastography techniques and mechanical property assessments can affect 

result consistency. Moving forward, large-scale prospective studies, further refinement 

of AI-based models, and integration of clinical and molecular data with imaging 

features are crucial steps. The development of integrated prediction models that 

combine imaging features, biomechanical parameters, and clinical data represents a 

promising direction for future research. These biomechanical insights could provide 

valuable information about tumor behavior and invasion potential, complementing 

traditional imaging analysis. By addressing these areas, future research can enhance 

the accuracy and clinical applicability of MVI prediction, ultimately improving the 

care of HCC patients. 
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