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Abstract: With the rapid development of Internet of Things (IoT) technology, its integration 

into intelligent medical monitoring devices has significantly transformed the healthcare 

landscape. This integration not only enhances the functionality of medical monitoring 

equipment but also improves the real-time accuracy of data collection. This review 

comprehensively discusses the data acquisition and processing methods of intelligent medical 

monitoring devices based on IoT, with a particular focus on their applications in molecular 

and cellular biomechanics. In the context of biomechanics, IoT technology offers new 

perspectives and tools for biomechanics research. By accurately monitoring mechanical 

changes at the cellular and molecular levels, IoT technology enhances our understanding of 

biological systems, thereby providing a scientific foundation for the early diagnosis and 

treatment of diseases. For instance, by observing the mechanical responses of cells, we can 

gain insights into how cells sense and react to changes in their external environment. We 

summarize the current research progress related to IoT data acquisition and processing 

methods for these devices, analyze the advantages and limitations of existing technologies, 

and explore future development trends. The review seeks to foster technological innovation 

and practical applications within this field, ultimately enhancing the quality of medical care 

and improving the overall quality of life for patients. 

Keywords: biomechanics; data acquisition; data processing; internet of things (IoT); 

intelligent medical monitoring; healthcare innovation 

1. Introduction 

Internet of Things (IoT) technology, regarded as the third revolutionary 

wave of the information industry, is transforming the convergence and 

interaction patterns of global networks through its unique intelligent sensing, 

recognition, and computing technologies [1]. At the core of IoT is the ability to 

connect physical devices to the Internet via embedded systems, enabling 

automated data collection, exchange, and analysis to optimize operational 

processes and enhance efficiency [2]. In this context, the application of IoT 

technology in the medical field is particularly compelling, especially regarding 

the data collection and processing capabilities of intelligent medical monitoring 

devices, the potential of which is gradually being explored and realized. 

In the medical field, the application of IoT technology extends beyond mere 

data collection. It also encompasses the comprehensive analysis and utilization of 

this data to facilitate precision medicine and personalized treatment. Intelligent 

medical monitoring devices, which serve as crucial components of IoT 

technology in healthcare, significantly influence the efficiency and quality of 
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medical services through their data collection and processing capabilities [3]. 

These devices can monitor patients’ physiological parameters in real time, such 

as heart rate, blood pressure, and blood glucose levels [4–7]. Thereby providing 

essential information for clinical decision-making. However, ensuring the 

accuracy, timeliness, and safety of this data, as well as transforming it into 

actionable clinical insights, remains a pressing challenge in contemporary 

research. 

At the molecular and cellular biomechanics level, the application of IoT 

technology offers new perspectives and tools for biomechanics research [8]. By 

accurately monitoring mechanical changes at the cellular and molecular levels, 

IoT technology enhances our understanding of biological systems, thereby 

providing a scientific foundation for the early diagnosis and treatment of diseases. 

For instance, by observing the mechanical responses of cells, we can gain 

insights into how cells sense and react to changes in their external environment. 

This understanding is crucial for studying cell signaling, tissue regeneration, and 

disease progression [9,10]. 

The aim of this review is to explore the application of IoT technologies for 

data acquisition and processing methods in smart medical monitoring devices, 

particularly in the field of molecular and cellular biomechanics. We will analyze 

how IoT technologies facilitate efficient data acquisition and processing, and 

how these technologies can enhance our understanding and application of 

biomechanical principles to improve clinical outcomes. Through this review, we 

aim to provide readers with a comprehensive overview of the current status and 

future directions of IoT technologies in smart medical monitoring devices, as 

well as how these technologies can be integrated with recent advancements in 

biomechanics to collectively advance biomedical science. 

2. Research on data collection methods 

2.1. Sensor technology 

In the research and application of intelligent medical monitoring devices, sensor 

technology plays a crucial role [11]. As the core component of data acquisition, the 

research and development of sensors are directly linked to the performance of 

monitoring devices and the effectiveness of clinical applications. 

2.1.1. Types of sensors 

Driven by continuous innovation in the field of biomedical engineering, sensor 

technology has made remarkable advancements, particularly in smart medical 

monitoring devices, where the range of sensors for various physiological parameters 

is expanding. The design and application of these sensors offer robust technical 

support for precision medicine and personalized health management. A diverse array 

of sensors applicable to different physiological parameters, such as 

electrocardiogram (ECG) sensors, blood pressure sensors, and blood oxygen sensors, 

has been developed. 

Cardiac sensors 
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ECG sensors are essential tools for monitoring cardiac activity and diagnosing 

cardiac diseases, such as arrhythmias, by capturing ECG signals [12]. With 

advancements in microelectronics technology, ECG sensors have achieved high-

precision, low-power signal acquisition and have demonstrated significant potential 

in the field of mobile health monitoring [13]. 

Blood pressure sensor 

Blood pressure sensors play a crucial role in the prevention and treatment of 

cardiovascular diseases, such as hypertension, by noninvasively monitoring changes 

in blood pressure [14]. For molecular and cellular biomechanics, sensors that can 

detect mechanical forces at the nanoscale are of particular interest. These sensors can 

be integrated into cell culture systems or implanted in vivo to monitor the 

mechanical environment of tissues and cells. For example, piezoelectric sensors can 

detect changes in cellular stiffness and contractility, providing real-time data on 

cellular biomechanical behavior. Current research is focused on enhancing the 

accuracy and comfort of these sensors for long-term monitoring. Significant 

advancements are being made in cuffless blood pressure monitoring technologies 

[15], which are anticipated to replace traditional blood pressure measurement 

methods in the near future, offering patients a more convenient monitoring 

experience. 

Oxygen sensor 

Oximetry sensors monitor blood oxygen saturation in real time, serving as a 

crucial tool for patients with respiratory diseases [16]. In recent years, optical-based 

oximetry sensors have garnered significant attention due to their noninvasive nature 

and ability to provide continuous monitoring [17]. 

Other sensors 

In addition to the aforementioned sensors, temperature sensors [18] and blood 

glucose sensors [19] are also vital components of smart medical monitoring devices. 

Temperature sensors can monitor fluctuations in body temperature, which is 

essential for the early detection and management of febrile illnesses [20]. Conversely, 

blood glucose sensors play a critical role in enhancing the quality of life for diabetic 

patients, as they enable real-time monitoring of blood glucose levels, thereby 

assisting patients in better managing their health [21]. 

Together, these sensors create a sensor network for multiparameter monitoring, 

equipping healthcare professionals with a robust tool for comprehensively assessing 

a patient’s health status. As technology continues to advance, sensors are evolving 

towards miniaturization, increased intelligence, and multifunctionality, which will 

further enhance the application of intelligent medical monitoring devices in clinical 

practice. 

2.1.2. Sensor performance 

The enhancement of sensor performance is undoubtedly one of the central 

topics in the research and development of intelligent medical monitoring devices 

[22]. Key performance indicators, such as sensitivity, stability, and anti-interference 

capability, are directly related to the accuracy and reliability of the collected data. 
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Consequently, these indicators have become essential criteria for evaluating sensor 

performance [23]. 

Sensitivity optimization 

In the context of molecular and cellular biomechanics, the development of 

highly sensitive and specific sensors is essential for capturing subtle mechanical 

changes at the cellular level. These sensors can provide real-time data on cellular 

responses to mechanical stimuli, such as changes in cell shape, stiffness, and 

signaling pathways [24]. Innovations in materials science have led researchers to 

introduce novel nanomaterials, such as graphene [25] and carbon nanotubes [26], 

which possess a high surface area and exceptional electronic properties, significantly 

improving sensor sensitivity. These sensors can provide real-time data on cellular 

responses to mechanical stimuli. Furthermore, by employing surface 

functionalization techniques, researchers can further enhance the responsiveness of 

sensors to specific physiological parameters, enabling more accurate monitoring. 

Stability improvement 

Stability of sensors is crucial for ensuring reliable monitoring over time [27]. 

The application of microelectromechanical systems (MEMS) technology offers 

innovative solutions for the miniaturization and stabilization of sensors [28]. With 

MEMS technology, sensors can be miniaturized while preserving their mechanical 

and electrical stability, allowing them to maintain consistent performance across a 

range of environments, including extreme temperatures, humidity levels, and 

mechanical vibrations. 

Enhanced anti-interference capability 

In complex physiological monitoring environments, the anti-interference 

capability of sensors is essential [29]. Advances in digital signal processing 

technology have introduced innovative methods to enhance this capability [30]. 

Researchers have developed a variety of algorithms, including noise filtering, signal 

amplification, and pattern recognition, to eliminate or minimize the impact of 

external interference on sensor signals [31]. 

The enhancement of sensor performance depends on the interdisciplinary 

collaboration among various fields, including materials science, microelectronic 

engineering, and signal processing [32]. Researchers continually optimize sensor 

design through this collaboration, for instance, by integrating research on 

biocompatible materials to create sensors that are better suited for in vivo 

implantation [33]. Advances in microelectronic engineering technologies are 

employed to achieve high integration and low power consumption in sensors [34]. 

Additionally, advanced signal processing techniques are utilized to enhance the 

sensors’ ability to interpret data in complex environments [35]. Through ongoing 

material innovation, technological integration, and algorithm optimization, the 

sensitivity, stability, and resistance to interference of sensors have significantly 

improved. This not only enhances the applicability of sensors in challenging 

environments but also provides more accurate and reliable data support for medical 

diagnosis and treatment. 

 



Molecular & Cellular Biomechanics 2025, 22(4), 923.  

5 

2.1.3. Sensor integration 

In the medical monitoring field, sensor integration technology has emerged as a 

focal point of research due to the increasing demand for multi-parameter monitoring. 

The essence of this technology is the integration of multiple sensors onto a single 

platform, enabling the simultaneous acquisition of various physiological parameters 

[36]. By consolidating multiple sensors, the synchronized collection of diverse 

parameters is achieved, thereby enhancing the comprehensiveness of data acquisition. 

For instance, the integration of force sensors with biochemical sensors can offer 

valuable insights into how mechanical forces influence cell signaling pathways and 

gene expression. The miniaturization of design and seamless integration are crucial 

for developing wearable or implantable devices that can monitor cellular 

biomechanics without disrupting normal physiological processes. 

Miniaturized design and integration 

Research in sensor integration begins with the challenge of miniaturized design. 

To achieve multi-parameter monitoring without disrupting the patient’s daily 

activities, researchers have focused on developing miniaturized sensors [37]. These 

sensors facilitate the integration of multiple functions within a compact space by 

utilizing MEMS technology [38]. Miniaturized design necessitates not only a 

reduction in sensor size but also the maintenance of performance, which demands 

synergistic innovations in materials science and precision engineering technologies. 

Low power circuit design 

Integrated sensors cannot operate efficiently without the support of low-power 

circuits [39]. To ensure that the sensor module operates stably over extended periods, 

researchers have developed various low-power circuit designs. These designs 

encompass optimized power management circuits, low-power signal processing units, 

and energy recovery techniques [40]. With these advancements, integrated sensors 

can sustain data acquisition and transmission for prolonged durations while utilizing 

a limited energy supply. 

Data fusion algorithms 

Data fusion algorithms play a crucial role in multiparameter monitoring [41]. 

These algorithms can process data from various sensors, extract valuable information, 

reduce data redundancy, and enhance data accuracy. Researchers are developing 

advanced data fusion techniques, including time series analysis [42], pattern 

recognition [43], and machine learning algorithms [44], to facilitate more efficient 

data processing and provide deeper insights into health state analysis. 

Energy efficiency 

The design of integrated sensors must also prioritize energy efficiency [45]. 

This entails optimizing sensor operating modes, developing dormancy strategies, and 

managing energy allocation. For instance, overall energy consumption can be 

significantly reduced by intelligently activating the sensor’s operating mode and 

conducting data acquisition only when necessary [46]. Furthermore, research has 

focused on the development of innovative energy storage technologies, such as 

flexible batteries [47] and supercapacitors [48], to support integrated sensor systems 

that function over extended periods. 
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Currently, researchers are developing wearable multiparameter sensor modules 

capable of continuously monitoring key physiological parameters, such as ECG, 

blood pressure, and blood oxygen levels [49,50]. These wearable devices are 

designed with ergonomics in mind to ensure patient comfort during daily activities. 

By integrating advanced sensor technology, these devices provide physicians with 

comprehensive, real-time information about the patient’s health, thereby enhancing 

the accuracy of diagnoses and the effectiveness of treatments. 

2.2. Communications technology 

In the development and application of intelligent medical monitoring devices, 

IoT communication technology is essential for facilitating data collection and 

transmission. 

2.2.1. Wireless communications 

Wi-Fi technology 

Wi-Fi technology, based on the IEEE 802.11 standard, has become an 

indispensable means of communication in smart medical monitoring devices. This 

technology is capable of providing data transfer rates of up to hundreds of megabits 

per second, which is crucial for transmitting large volumes of real-time data in 

environments such as hospitals [51]. The relatively wide coverage of Wi-Fi 

technology, typically extending up to hundreds of meters, enables it to meet the 

communication needs of large-scale medical facilities. In medical surveillance 

systems, Wi-Fi technology not only supports the transmission of high-definition 

video streams but also ensures rapid synchronization of medical data, thereby 

enhancing the efficiency of medical services. 

Bluetooth technology 

Bluetooth technology, a short-range wireless communication method, has 

particularly prominent applications in wearable medical devices. With the 

advancement of Bluetooth Low Energy (BLE) technology, Bluetooth devices can 

achieve rapid connections and data transmission with terminals such as smartphones 

and tablets while maintaining low power consumption [52]. Although the 

transmission rate and range of BLE technology are not as high as those of traditional 

Bluetooth, its lower energy consumption and compact size make it the preferred 

communication solution for wearable medical devices [53]. Furthermore, the 

maturity and widespread market acceptance of Bluetooth technology facilitate the 

proliferation of smart medical monitoring devices. 

ZigBee technology 

ZigBee technology, characterized by its low-speed, short-range transmission, 

and cost-effectiveness, plays a significant role in healthcare monitoring networks 

[54]. This technology supports self-organizing network capabilities, facilitating the 

efficient deployment of numerous sensor nodes within healthcare environments. 

These nodes can collectively form a sensor network that offers extensive coverage 

and numerous nodes for real-time monitoring of patients’ physiological parameters 

[55]. Another notable advantage of ZigBee technology is its low power consumption, 
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which is crucial for medical monitoring devices that require prolonged operation and 

are not easily serviced for battery replacement. 

2.2.2. Wired communications 

Although wireless communication technology is widely utilized in intelligent 

medical monitoring devices, wired communication technology continues to play an 

indispensable role in certain specific scenarios, particularly in environments that 

demand high real-time data transmission. For instance, serial ports and USB 

connections are well-suited for applications with stringent real-time requirements. 

Serial communications technology 

Serial communication, a traditional wired data transmission method, facilitates 

the exchange of data through a serial communication interface. Its high stability and 

resistance to interference provide significant advantages in data transmission 

scenarios that require precise control [56,57]. In intelligent medical monitoring 

devices, serial communication is commonly employed for real-time monitoring [58] 

and hardware control [59]. For instance, in applications such as ECG monitoring and 

blood pressure monitoring, serial communication ensures data accuracy and 

transmission stability while minimizing errors caused by signal interference or 

attenuation. Furthermore, for medical devices that necessitate precise control, such 

as surgical robots and precision testing instruments, serial communication offers 

reliable data transmission, thereby ensuring the normal operation of these devices. 

USB communication technology 

USB (Universal Serial Bus) communication is a widely used computer interface 

that plays a crucial role in data transmission between medical devices and computers, 

owing to its high data transfer speed and excellent compatibility [60]. The 

advantages of USB communication technology include: 1) USB interfaces can 

provide data transfer rates of up to several tens of megabits per second, which is 

essential for transmitting large medical data files [61]. 2) The plug-and-play 

functionality of USB communication simplifies the process of connecting devices, 

thereby enhancing the efficiency of medical personnel. 3) The USB interface 

supports the connection of multiple devices, facilitating the seamless integration of 

medical monitoring devices with other medical information systems [62]. 

The application of wired communication technology in intelligent medical 

monitoring equipment ensures stability and real-time data transmission, particularly 

in environments with stringent requirements for data accuracy and transmission 

speed. As medical informatization continues to advance, wired communication 

technology will remain crucial in intelligent medical monitoring devices, 

complementing wireless communication technology to collectively enhance the 

development of medical monitoring technology. 

2.2.3. Low-power communications 

Low-power communication technologies are particularly crucial in the realm of 

intelligent medical monitoring devices, especially for those that rely on battery 

power. These technologies not only facilitate the long-term operation of the devices 

but also ensure reliable data transmission in complex environments [63]. 
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Technologies such as LoRa and NB-IoT are well-suited for battery-powered medical 

monitoring devices. 

LoRa technology 

LoRa (Long Range) technology, which is based on the principles of spread-

spectrum communication, is a low-power, long-range wireless communication 

solution [64]. Operating in the sub-GHz frequency band, LoRa technology enables 

stable data transmission even in remote areas with poor signal coverage—a feature 

that is particularly crucial for medical monitoring devices. Additionally, LoRa 

devices exhibit extremely low power consumption, resulting in longer lifespans and 

reduced maintenance requirements for battery-powered medical monitoring 

equipment [65]. Furthermore, LoRa technology supports connectivity for a large 

number of devices, making it highly advantageous for establishing extensive medical 

surveillance networks that can accommodate various application scenarios, such as 

hospitals and homes. 

NB-IoT technology 

Narrowband Internet of Things (NB-IoT) technology is a low-power, wide-

coverage communication solution specifically designed for the Internet of Things 

[66]. The application of NB-IoT technology in medical monitoring equipment 

exhibits several key characteristics. First, the narrowband nature of NB-IoT enables 

stable communication while consuming minimal power, making it particularly 

suitable for frequent small packet transmissions in medical monitoring devices [67]. 

Second, NB-IoT technology offers extensive coverage over large geographic areas, 

including basements and remote locations, which is essential for ensuring the 

continuity and reliability of medical monitoring data. Most importantly, NB-IoT 

technology provides a stable network connection that minimizes latency and 

interruptions in data transmission, a critical factor for monitoring patient conditions 

that require real-time oversight [68].  

The application of low-power communication technology in intelligent medical 

monitoring devices significantly enhances the long-term operation of these devices 

and ensures stable data transmission. The distinct advantages of LoRa and NB-IoT 

technologies allow medical monitoring devices to achieve efficient and reliable data 

collection and transmission across various environments and requirements. 

3. Research on data-processing methods 

In the application of intelligent medical monitoring equipment, data 

processing is a crucial component that directly impacts the accuracy and 

practicality of the final monitoring results. Data processing techniques are 

essential for extracting meaningful information from the complex mechanical 

signals generated by cells and tissues in biomechanical applications. 

3.1. Data pre-processing 

Data preprocessing is a crucial initial stage in the data processing workflow of 

intelligent medical monitoring equipment. Its primary objective is to enhance data 

quality and ensure the accuracy and effectiveness of subsequent analyses and 
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processing [69]. Data preprocessing primarily involves operations such as denoising, 

filtering, and normalization, all aimed at improving data quality and providing a 

reliable foundation for further processing. In biomechanical studies, denoising and 

filtering are crucial for maintaining the integrity of mechanical signals. For instance, 

low-pass filtering can effectively eliminate high-frequency noise from force 

measurements, while normalization ensures that data from various sensors or 

experiments remain comparable. 

3.1.1. Denoising 

During the acquisition of medical monitoring data, environmental interference 

and the inherent noise of the equipment often affect the data. This interference can 

obscure genuine physiological signals and compromise the final monitoring results. 

Denoising is the initial step in data preprocessing, aimed at minimizing the impact of 

noise on data quality. Specific methods for denoising include median filtering and 

Kalman filtering [70]. Median filtering is a nonlinear technique that effectively 

suppresses impulse and random noise while preserving the edge characteristics of the 

signal. It is particularly suitable for data denoising that requires high real-time 

performance [71]. In contrast, Kalman filtering is an optimal estimation algorithm 

that recursively estimates noise-contaminated data through two steps: prediction and 

updating. This process filters out noise and extracts the clean signal [72]. 

3.1.2. Filtering operation 

Filtering operations play a crucial role in data preprocessing by eliminating 

irrelevant information and preserving physiological signals that are essential for 

diagnosis. Common filtering methods include low-pass filtering, high-pass filtering, 

and band-pass filtering [73]. Low-pass filters permit low-frequency signals to pass 

through while attenuating high-frequency signals, making them effective for 

removing high-frequency noise, such as power line interference [74]. In contrast, 

high-pass filters allow high-frequency signals to pass while eliminating low-

frequency noise, such as motion artifacts [75]. Band-pass filters selectively permit 

signals within a specific frequency range to pass while suppressing signals outside 

that range, making them suitable for extracting physiological signals within 

designated frequency bands [76]. 

3.1.3. Normalization process 

Normalization is a crucial aspect of data preprocessing that enhances the 

comparability of data collected from various sensors by adjusting the data scale, 

thereby facilitating subsequent data analysis. Linear normalization can efficiently 

standardize the data scale by mapping it linearly to the [0, 1] or [−1, 1] interval. 

Additionally, the data can be centered by subtracting the mean and then scaled by 

dividing by the standard deviation, resulting in a dataset with a mean of zero and a 

unit variance, which is ideal for further statistical analysis [77]. 

Data preprocessing is an essential component of the data processing workflow 

for intelligent medical monitoring equipment. Through operations such as denoising, 

filtering, and normalization, data preprocessing not only enhances data quality but 

also establishes a robust foundation for subsequent complex analyses. With the 

ongoing advancements in signal processing technology, data preprocessing methods 
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are becoming increasingly efficient and precise, thereby providing substantial 

support for the application of intelligent medical monitoring devices in clinical 

settings. 

3.2. Data compression and fusion 

With the widespread use of intelligent medical monitoring devices, the vast 

amount of data generated presents new challenges for data processing efficiency. 

Research into data compression and fusion technologies has become a crucial 

approach to enhancing data processing efficiency. 

3.2.1. Data compression technology 

Data compression techniques aim to alleviate the demands of data transmission 

and storage while ensuring the integrity of the information represented by the data. 

By leveraging the sparsity of signals, compressed sensing techniques can reconstruct 

signals at a sampling rate significantly lower than the Nyquist rate, thereby 

substantially reducing the volume of data [78]. This approach is particularly effective 

for physiological signals characterized by sparsity, such as ECG and 

electroencephalogram (EEG) signals. The wavelet transform is a time-frequency 

localized analysis method that decomposes a signal into wavelet coefficients across 

various frequencies [79]. By applying thresholding, redundant information can be 

eliminated, facilitating data compression. The wavelet transform effectively reduces 

data size while preserving the essential features of the signal. 

3.2.2. Data fusion technology 

Data fusion techniques enhance the accuracy and completeness of information 

by integrating data from various sensors or different time points [80]. There could be 

a more comprehensive understanding of cellular behavior in terms of molecular and 

cellular biomechanics. For instance, combining data from force and imaging sensors 

can yield both quantitative and qualitative insights into cellular biomechanics. In the 

context of medical surveillance, applications of data fusion techniques include 

weighted averaging, Kalman filtering, and multi-sensor data fusion algorithms. 

The weighted averaging method generates a composite value by assigning 

varying weights to data collected from different sensors. This method is 

straightforward and easy to implement, making it suitable for scenarios where the 

consistency of sensor data is high [81]. Kalman filtering, on the other hand, is a 

recursive optimal estimation algorithm that integrates predicted and observed values 

to provide an optimal estimate of the system state [82]. In the context of multi-sensor 

data fusion, Kalman filtering effectively reduces noise and enhances data quality. 

Beyond the traditional Kalman filter, researchers have developed a range of multi-

sensor data fusion algorithms, including neural networks and support vector 

machines, which can address more complex data relationships and improve the 

overall fusion effectiveness [83]. 

3.3. Data analysis and mining 

Data analysis and mining are essential technologies for extracting valuable 

information from medical surveillance data, which is crucial for the early detection, 

diagnosis, and treatment of diseases. The primary methods of data analysis and 
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mining include time-domain analysis, frequency-domain analysis, machine learning, 

and deep learning. 

3.3.1. Time domain analysis 

Time-domain analysis serves as the foundation for data analysis, revealing the 

time-domain characteristics of signals through direct statistical examination of raw 

data. In the realm of medical monitoring, the primary methods of time-domain 

analysis include the calculation of basic statistical parameters and the extraction of 

waveform features [84]. Statistical parameter calculations, such as mean, variance, 

standard deviation, and root mean square, reflect the stability and volatility of the 

signal, providing essential data for subsequent signal identification and disease 

diagnosis [85]. Waveform feature extraction, exemplified by the time-domain 

analysis of heart rate variability, allows for the assessment of inter-beat interval 

variability in ECG signals [86]. This information is crucial for evaluating autonomic 

nervous system activity and diagnosing cardiovascular diseases. 

3.3.2. Frequency domain analysis 

Frequency domain analysis reveals the frequency components and dynamics of 

a signal by transforming the data into the frequency domain [87]. In the context of 

medical surveillance data, the primary techniques for frequency domain analysis 

include the Fourier transform and the wavelet transform. The Fourier transform 

converts a time-domain signal into a frequency-domain representation, thereby 

facilitating the analysis of the signal’s frequency distribution [88]. In the analysis of 

ECG signals, the Fourier transform is instrumental in identifying the frequency 

domain features associated with arrhythmias. Conversely, the wavelet transform 

possesses the unique property of time-frequency localization, allowing for the 

analysis of frequency components across different time scales. The wavelet 

transform demonstrates distinct advantages when addressing non-stationary 

physiological signals [89]. 

3.3.3. Machine learning and deep learning 

Machine learning and deep learning techniques are increasingly utilized in the 

analysis of medical surveillance data, enabling intelligent analysis and prediction of 

complex datasets through the construction of data models. Specific applications 

include classification, regression, cluster analysis, and deep learning models [90]. 

Machine learning algorithms, such as support vector machines (SVM) and random 

forests (RF), can be employed for the classification and regression analysis of 

diseases, thereby supporting clinical decision-making. Clustering algorithms, 

including K-means and hierarchical clustering, can uncover natural groupings within 

data, which is crucial for exploring unknown disease patterns and patient 

categorization [91]. Deep learning models, such as Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN), offer significant advantages in 

processing time series data [92]. For instance, CNNs excel in classifying ECG 

images, while RNNs are particularly effective in analyzing sequence-dependent 

physiological signals. 
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4. Challenges and prospects 

The development of low-power, high-sensitivity sensors is essential for the 

long-term monitoring of the mechanical properties of cell mechanics. Furthermore, 

data security and privacy protection are becoming increasingly critical, particularly 

when handling sensitive biomechanical data. Robust encryption techniques and 

stringent access control measures must be implemented during data transmission and 

processing. Despite the significant advancements in the research of IoT data 

acquisition and processing methods for smart medical monitoring devices, several 

challenges persist in practical applications, hindering the widespread deployment and 

comprehensive development of this technology. One of the primary concerns is 

achieving a balance between sensor performance and power consumption in the 

design of these devices. High-performance sensors typically come with increased 

power consumption, which restricts the portability and longevity of the device. To 

tackle this issue, researchers have sought to enhance sensor performance through. 

Low-power sensor technology and dynamic power management are essential 

components in the development of modern medical monitoring devices. Additionally, 

with the advancement of IoT technology, data security and privacy protection have 

emerged as increasingly critical issues. In medical monitoring devices, patients’ 

physiological data is highly sensitive; therefore, robust encryption techniques and 

stringent access control measures must be implemented during data transmission and 

processing. Furthermore, to enhance the overall performance of intelligent medical 

monitoring devices, system integration and optimization are crucial. This process 

involves the collaborative efforts of various components, including data acquisition, 

transmission, and processing, as well as the design of system architecture and 

performance optimization. 

With the continuous advancement of IoT technology, data acquisition and 

processing methods for smart medical monitoring devices are anticipated to be 

realized. The development of more sensitive, stable, and low-power sensors is 

essential to meet the demands of long-term real-time monitoring. Additionally, it is 

crucial to establish a more robust data security protection system to safeguard patient 

privacy through technological innovation. Furthermore, the utilization of artificial 

intelligence and machine learning technologies will facilitate the integrated and 

intelligent management of data acquisition, transmission, and processing.  

5. Conclusion 

Compared to some existing studies, this review not only addresses a single 

technology or application but also systematically summarizes the integrated 

application of multiple data acquisition and processing methods in IoT smart medical 

monitoring devices, particularly in the field of molecular and cellular biomechanics. 

This review emphasizes the multi-protocol fusion of wireless IoT technologies, 

which significantly enhances the flexibility and scalability of these devices. In 

current research, data processing and fusion predominantly rely on a single tool or 

platform, such as Apache NiFi or Kafka. In contrast, this review further investigates 

the integration of multiple data processing tools, including the co-optimization of 

data preprocessing, compression, and fusion. For instance, by combining edge 
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computing with AI models, devices can perform preliminary data processing locally, 

thereby reducing dependence on cloud resources. This optimization not only 

improves data processing efficiency but also decreases system latency. Compared to 

the existing literature, this review not only summarizes current technologies but also 

offers insights into future trends, such as the development of low-power sensor 

technologies, enhancements in data encryption and access control, and optimizations 

in system architecture. These forward-looking insights provide clear directions for 

researchers and technology developers, fostering continuous innovation in smart 

medical monitoring devices. 

Author contributions: Conceptualization, HW and TW; methodology, HW and TW; 

investigation, HW and TW; resources, HW and TW; writing—original draft 

preparation, HW; writing—review and editing, TW; supervision, TW; project 

administration, HW; funding acquisition, HW. All authors have read and agreed to 

the published version of the manuscript. 

Acknowledgments: The study was supported by Henan Digital Learning 

Engineering Technology Research Center. 

Ethical approval: Not applicable. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Sanislav T, Mois GD, Zeadally S, et al. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access. 2021; 9: 

39530-39549. doi: 10.1109/access.2021.3064066 

2. Islam SMR, Lloret J, Zikria YB. Internet of Things (IoT)-Based Wireless Health: Enabling Technologies and Applications. 

Electronics. 2021; 10(2): 148. doi: 10.3390/electronics10020148 

3. Hussain AA, Dawood BA. A survey on IoT-cloud task in healthcare system. The Journal of Supercomputing. 2024; 81(1). 

doi: 10.1007/s11227-024-06629-1 

4. Guk K, Han G, Lim J, et al. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. 

Nanomaterials. 2019; 9(6): 813. doi: 10.3390/nano9060813 

5. Ota H, Chao M, Gao Y, et al. 3D Printed “Earable” Smart Devices for Real-Time Detection of Core Body Temperature. ACS 

Sensors. 2017; 2(7): 990-997. doi: 10.1021/acssensors.7b00247 

6. Lebedinskii KM, Kovalenko AN, Kurapeev IS, et al. Physical and Physiological Problems of Medical Monitoring. Technical 

Physics. 2020; 65(9): 1343-1359. doi: 10.1134/s1063784220090212 

7. Lu C, Wang X, Jia Q, et al. 3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for 

multifunctional electronic devices. Carbohydrate Polymers. 2024; 324: 121496. doi: 10.1016/j.carbpol.2023.121496 

8. Cereatti A, Gurchiek R, Mündermann A, et al. ISB recommendations on the definition, estimation, and reporting of joint 

kinematics in human motion analysis applications using wearable inertial measurement technology. Journal of Biomechanics. 

2024; 173: 112225. doi: 10.1016/j.jbiomech.2024.112225 

9. Yang L, Sinsurin K, Shen F, et al. Biomechanical changes in lower extremity in individuals with knee osteoarthritis in the 

past decade: A scoping review. Heliyon. 2024; 10(11): e32642. doi: 10.1016/j.heliyon.2024.e32642 

10. Fandaros M, Kwok C, Wolf Z, et al. Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and 

Biomechanics: A Pathway to Clinical Use. Cardiovascular Engineering and Technology. 2024; 15(5): 503-521. doi: 

10.1007/s13239-024-00731-4 

11. Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends in 

Analytical Chemistry. 2017; 91: 26-41. doi: 10.1016/j.trac.2017.04.001 

12. Qin J. A design and optimization of CMOS ECG amplifier applied to medical monitoring system. Highlights in Science, 

Engineering and Technology. 2023; 32: 56-64. doi: 10.54097/hset.v32i.4939 



Molecular & Cellular Biomechanics 2025, 22(4), 923.  

14 

13. Correia Pinheiro E, Postolache OA, Silva Girão P. Implementation of Compressed Sensing in Telecardiology Sensor 

Networks. International Journal of Telemedicine and Applications. 2010; 2010: 1-12. doi: 10.1155/2010/127639 

14. Ahmadpour A, Yetisen AK, Tasoglu S. Piezoelectric Metamaterial Blood Pressure Sensor. ACS Applied Electronic 

Materials. 2023; 5(6): 3280-3290. doi: 10.1021/acsaelm.3c00344 

15. Miao F, Liu ZD, Liu JK, et al. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement. IEEE Journal of 

Biomedical and Health Informatics. 2020; 24(1): 79-91. doi: 10.1109/jbhi.2019.2901724 

16. Saffati G, Wiatrowski A, Khera M, et al. (136) Development and Evaluation of a Novel Penile Blood Oxygen Sensor for 

Assessing Tissue Oxygenation. The Journal of Sexual Medicine. 2024; 21(Supplement_1). doi: 10.1093/jsxmed/qdae001.130 

17. Kannan Loganathan P, O’Shea JE, Harikumar C, et al. Effect of opaque wraps for pulse oximeter sensors: randomised cross-

over trial. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2020; 106(1): 57-61. doi: 10.1136/archdischild-

2020-319049 

18. Liu R, He L, Cao M, et al. Flexible Temperature Sensors. Frontiers in Chemistry. 2021; 9. doi: 10.3389/fchem.2021.539678 

19. Litvinova O, Eitenberger M, Bilir A, et al. Patent analysis of digital sensors for continuous glucose monitoring. Frontiers in 

Public Health. 2023; 11. doi: 10.3389/fpubh.2023.1205903 

20. Arman Kuzubasoglu B, Kursun Bahadir S. Flexible temperature sensors: A review. Sensors and Actuators A: Physical. 2020; 

315: 112282. doi: 10.1016/j.sna.2020.112282 

21. Nascimento RAS, Mulato M. Microelectronic sensor for continuous glucose monitoring. Applied Physics A. 2019; 125(3). 

doi: 10.1007/s00339-019-2455-6 

22. An BW, Shin JH, Kim SY, et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers. 2017; 9(8): 303. doi: 

10.3390/polym9080303 

23. Abbas N, Yu F, Fan Y. Intelligent Video Surveillance Platform for Wireless Multimedia Sensor Networks. Applied Sciences. 

2018; 8(3): 348. doi: 10.3390/app8030348 

24. Jin J, Zhang C, Zhao J, et al. An adaptive bionic sensor: enhancing ankle joint tracking with high sensitivity and superior 

cushioning performance. Chemical Engineering Journal. 2024; 500: 157332. doi: 10.1016/j.cej.2024.157332 

25. Justino CIL, Gomes AR, Freitas AC, et al. Graphene based sensors and biosensors. TrAC Trends in Analytical Chemistry. 

2017; 91: 53-66. doi: 10.1016/j.trac.2017.04.003 

26. Schroeder V, Savagatrup S, He M, et al. Carbon Nanotube Chemical Sensors. Chemical Reviews. 2018; 119(1): 599-663. doi: 

10.1021/acs.chemrev.8b00340 

27. Wu H, Chai S, Zhu L, et al. Wearable fiber-based visual strain sensors with high sensitivity and excellent cyclic stability for 

health monitoring and thermal management. Nano Energy. 2024; 131: 110300. doi: 10.1016/j.nanoen.2024.110300 

28. Sripriya T, Juliette AA. Theoretical analysis and comparative study of assorted diaphragm primarily based Micro Electro 

Mechanical System (MEMS) optical pressure sensors. Expert Systems with Applications. 2024; 245: 122993. doi: 

10.1016/j.eswa.2023.122993 

29. Chen Y, Feng T, Li C, et al. Comprehensive and Robust Anti‐Jamming Dual‐Electrode Pair Sensor. Small. 2024; 20(51). doi: 

10.1002/smll.202406739 

30. Cao X, Jiang K. Design of intelligent terminal app for digital manufacturing technology based on virtual reality and wireless 

sensor network technology. The International Journal of Advanced Manufacturing Technology; 2024. 

31. Khalili M, GholamHosseini H, Lowe A, et al. Motion artifacts in capacitive ECG monitoring systems: a review of existing 

models and reduction techniques. Medical & Biological Engineering & Computing. 2024; 62(12): 3599-3622. doi: 

10.1007/s11517-024-03165-1 

32. Jin Z, Yim W, Retout M, et al. Colorimetric sensing for translational applications: from colorants to mechanisms. Chemical 

Society Reviews. 2024; 53(15): 7681-7741. doi: 10.1039/d4cs00328d 

33. Mei X, Ye D, Zhang F, et al. Implantable application of polymer‐based biosensors. Journal of Polymer Science. 2021; 60(3): 

328-347. doi: 10.1002/pol.20210543 

34. Baek S, Jo Y, Lee Y, et al. Design and Integration of Organic Printed Thin-Film Transistor-Based Soft Biosensors for 

Wearable Applications. ACS Applied Electronic Materials. 2024; 6(11): 7657-7678. doi: 10.1021/acsaelm.4c01632 

35. Zampolli S, Elmi I, Bruschi P, et al. An ASIC-based system-in-package MEMS gas sensor with impedance spectroscopy 

readout and AI-enabled identification capabilities. Sensors and Actuators B: Chemical. 2025; 424: 136924. doi: 

10.1016/j.snb.2024.136924 



Molecular & Cellular Biomechanics 2025, 22(4), 923.  

15 

36. Cubells-Beltrán MD, Reig C, Madrenas J, et al. Integration of GMR Sensors with Different Technologies. Sensors. 2016; 

16(6): 939. doi: 10.3390/s16060939 

37. Zaras I, Sokal M, Jarczewska M. Studies on the ssDNA-Based Biosensor Regeneration and Miniaturization for 

Electrochemical Detection of miRNAs. Journal of The Electrochemical Society. 2024; 171(11): 117520. doi: 10.1149/1945-

7111/ad91e5 

38. Chen J, Li J, Li Y, et al. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by 

MEMS Technology. Sensors. 2018; 18(3): 732. doi: 10.3390/s18030732 

39. Chatterjee B, Mohseni P, Sen S. Bioelectronic Sensor Nodes for the Internet of Bodies. Annual Review of Biomedical 

Engineering. 2023; 25(1): 101-129. doi: 10.1146/annurev-bioeng-110220-112448 

40. Kwon SK, Kim JN, Byun HG, et al. Low-power and cost-effective readout circuit design for compact semiconductor gas 

sensor systems. Electrochemistry Communications. 2024; 169: 107834. doi: 10.1016/j.elecom.2024.107834 

41. Rivera Velázquez JM, Mailly F, Nouet P. System-level simulations of multi-sensor systems and data fusion algorithms. 

Microsystem Technologies. 2018; 28(6): 1399-1408. doi: 10.1007/s00542-018-4204-8 

42. Habash O, Mizouni R, Singh S, et al. Gaussian process-based online sensor selection for source localization. Internet of 

Things. 2024; 28: 101388. doi: 10.1016/j.iot.2024.101388 

43. Song Y, Li M, Wang F, et al. Contact Pattern Recognition of a Flexible Tactile Sensor Based on the CNN-LSTM Fusion 

Algorithm. Micromachines. 2022; 13(7): 1053. doi: 10.3390/mi13071053 

44. Pan N. A sensor data fusion algorithm based on suboptimal network powered deep learning. Alexandria Engineering Journal. 

2022; 61(9): 7129-7139. doi: 10.1016/j.aej.2021.12.058 

45. Wang K, Zhang L. Integrated design of high‐speed permanent‐magnet machines considering sensorless operation. IEEJ 

Transactions on Electrical and Electronic Engineering. 2018; 13(8): 1189-1195. doi: 10.1002/tee.22682 

46. Landi G, Avallone G, Barone C, et al. Design of an Environmental Sensor Board for Energy Harvesting: Integration of 

Conventional and Eco-friendly Sensors with Power Generation Sources. Electronics. 2024; 13(19): 3801. 

47. Sheng H, Ma Y, Zhang H, et al. Integration of Supercapacitors with Sensors and Energy‐Harvesting Devices: A Review. 

Advanced Materials Technologies. 2024; 9(21). doi: 10.1002/admt.202301796 

48. Lee J, Kim S, Kim JW, et al. Self‐Healing and Antifreezing/Antidrying Conductive Eutectohydrogel‐Based Biosignal 

Monitoring Multisensors with Integrated Supercapacitor. Small. 2024; 21(3). doi: 10.1002/smll.202409365 

49. Hu X, Cao J, Wu H. A wearable device for collecting multi-signal parameters of newborn. Computer Communications. 2020; 

154: 269-277. doi: 10.1016/j.comcom.2020.02.082 

50. Ates HC, Nguyen PQ, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nature Reviews Materials. 2022; 

7(11): 887-907. doi: 10.1038/s41578-022-00460-x 

51. Bassoli M, Bianchi V, Munari ID. A Plug and Play IoT Wi-Fi Smart Home System for Human Monitoring. Electronics. 2018; 

7(9): 200. doi: 10.3390/electronics7090200 

52. Yu L, Nazir B, Wang Y. Intelligent power monitoring of building equipment based on Internet of Things technology. 

Computer Communications. 2020; 157: 76-84. doi: 10.1016/j.comcom.2020.04.016 

53. Li J, Ma Q, Chan AHS, et al. Health monitoring through wearable technologies for older adults: Smart wearables acceptance 

model. Applied Ergonomics. 2019; 75: 162-169. doi: 10.1016/j.apergo.2018.10.006 

54. Zhu J, Fu J, Sun Y, et al. Design of Intelligent Safety Monitoring System for Power Supply Bureau Based on ZigBee 

Technology and Information Fusion. Journal of Physics: Conference Series. 2020; 1486(2): 022017. doi: 10.1088/1742-

6596/1486/2/022017 

55. Vitazkova D, Kosnacova H, Turonova D, et al. Transforming Sleep Monitoring: Review of Wearable and Remote Devices 

Advancing Home Polysomnography and Their Role in Predicting Neurological Disorders. Biosensors. 2025; 15(2): 117. doi: 

10.3390/bios15020117 

56. Huang C, Sun CC, Duan N, et al. Smart Meter Pinging and Reading Through AMI Two-Way Communication Networks to 

Monitor Grid Edge Devices and DERs. IEEE Transactions on Smart Grid. 2022; 13(5): 4144-4153. doi: 

10.1109/tsg.2021.3133952 

57. Wang Q, Li H, Wang H, et al. A Remote Calibration Device Using Edge Intelligence. Sensors. 2022; 22(1): 322. doi: 

10.3390/s22010322 

58. Su C, Chen W. Design of Remote Real-Time Monitoring and Control Management System for Smart Home Equipment 

Based on Wireless Multihop Sensor Network. Zeng W, ed. Journal of Sensors. 2022; 2022: 1-10. doi: 10.1155/2022/6228440 



Molecular & Cellular Biomechanics 2025, 22(4), 923.  

16 

59. Si Y, Korada N, Ayyanar R, et al. A High Performance Communication Architecture for a Smart Micro-Grid Testbed Using 

Customized Edge Intelligent Devices (EIDs) With SPI and Modbus TCP/IP Communication Protocols. IEEE Open Journal 

of Power Electronics. 2021; 2: 2-17. doi: 10.1109/ojpel.2021.3051327 

60. Rodríguez-Ríos A, Espinoza-Téllez G, Martínez-Ezquerro JD, et al. Information and Communication Technology, Mobile 

Devices, and Medical Education. Journal of Medical Systems. 2020; 44(4). doi: 10.1007/s10916-020-01559-w 

61. Yang LQ, Ruan SJ, Cheng KH, et al. Model-Based Deep Encoding Based on USB Transmission for Modern Edge 

Computing Architectures. IEEE Access. 2020; 8: 112553-112561. doi: 10.1109/access.2020.3002844 

62. Ayub MF, Saleem MA, Altaf I, et al. Fuzzy extraction and PUF based three party authentication protocol using USB as mass 

storage device. Journal of Information Security and Applications. 2020; 55: 102585. doi: 10.1016/j.jisa.2020.102585 

63. Joh H, Ryoo I. A hybrid Wi-Fi P2P with bluetooth low energy for optimizing smart device’s communication property. Peer-

to-Peer Networking and Applications. 2014; 8(4): 567-577. doi: 10.1007/s12083-014-0276-0 

64. Islam R, Rahman MdW, Rubaiat R, et al. LoRa and server-based home automation using the internet of things (IoT). Journal 

of King Saud University - Computer and Information Sciences. 2022; 34(6): 3703-3712. doi: 10.1016/j.jksuci.2020.12.020 

65. Faye I, Fam PA, Ndiaye ML. Energy Consumption of IoT Devices: An Accurate Evaluation to Better Predict Battery 

Lifetime. Radio Science. 2022; 57(12). doi: 10.1029/2021rs007423 

66. Sultania AK, Mahfoudhi F, Famaey J. Real-Time Demand Response Using NB-IoT. IEEE Internet of Things Journal. 2020; 

7(12): 11863-11872. doi: 10.1109/jiot.2020.3004390 

67. Boni A, Bianchi V, Ricci A, et al. NB-IoT and Wi-Fi Technologies: An Integrated Approach to Enhance Portability of Smart 

Sensors. IEEE Access. 2021; 9: 74589-74599. doi: 10.1109/access.2021.3082006 

68. Martiradonna S, Piro G, Boggia G. On the Evaluation of the NB-IoT Random Access Procedure in Monitoring 

Infrastructures. Sensors. 2019; 19(14): 3237. doi: 10.3390/s19143237 

69. Xia Y, Chen J, Lu X, et al. Big traffic data processing framework for intelligent monitoring and recording systems. 

Neurocomputing. 2016; 181: 139-146. doi: 10.1016/j.neucom.2015.07.140 

70. Talaat M, Alsayyari AS, Alblawi A, et al. Hybrid-cloud-based data processing for power system monitoring in smart grids. 

Sustainable Cities and Society. 2020; 55: 102049. doi: 10.1016/j.scs.2020.102049 

71. Zhang N, Wu C, Wu Y, et al. An improved target tracking algorithm and its application in intelligent video surveillance 

system. Multimedia Tools and Applications. 2018; 79(23-24): 15965-15983. doi: 10.1007/s11042-018-6871-y 

72. Zhang Q, Pan S. An AI-Augmented Kalman Filter Approach to Monitoring Network Traffic Matrix. IEEE Transactions on 

Network Science and Engineering. 2024; 11(3): 2426-2437. doi: 10.1109/tnse.2023.3297660 

73. R R, S M. Frequency response masking based FIR filter using approximate multiplier for bio-medical applications. Sādhanā. 

2019; 44(11). doi: 10.1007/s12046-019-1186-x 

74. Pérez-Bailón J, Calvo B, Medrano N. A CMOS Low Pass Filter for SoC Lock-in-Based Measurement Devices. Sensors. 

2019; 19(23): 5173. doi: 10.3390/s19235173 

75. Lin WC, Wang JW. Edge detection in medical images with quasi high-pass filter based on local statistics. Biomedical Signal 

Processing and Control. 2018; 39: 294-302. doi: 10.1016/j.bspc.2017.08.011 

76. Yuan H, Ma L, Yuan Z, et al. On-Chip Cascaded Bandpass Filter and Wavelength Router Using an Intelligent Algorithm. 

IEEE Photonics Journal. 2021; 13(4): 1-8. doi: 10.1109/jphot.2021.3100357 

77. Bhadoria RS, Bajpai D. Stabilizing Sensor Data Collection for Control of Environment-Friendly Clean Technologies Using 

Internet of Things. Wireless Personal Communications. 2019; 108(1): 493-510. doi: 10.1007/s11277-019-06414-x 

78. Cormane J, de O. Nascimento FA. Spectral Shape Estimation in Data Compression for Smart Grid Monitoring. IEEE 

Transactions on Smart Grid. 2016; 7(3): 1214-1221. doi: 10.1109/tsg.2015.2500359 

79. Landau-Feibish S, Liu Z, Rexford J. Compact Data Structures for Network Telemetry. ACM Computing Surveys. 2025; 

57(8): 1-31. doi: 10.1145/3716819 

80. Li X, Yu Q, Alzahrani B, et al. Data Fusion for Intelligent Crowd Monitoring and Management Systems: A Survey. IEEE 

Access. 2021; 9: 47069-47083. doi: 10.1109/access.2021.3060631 

81. King RC, Villeneuve E, White RJ, et al. Application of data fusion techniques and technologies for wearable health 

monitoring. Medical Engineering & Physics. 2017; 42: 1-12. doi: 10.1016/j.medengphy.2016.12.011 

82. Jan MA, Zhang W, Khan F, et al. Lightweight and smart data fusion approaches for wearable devices of the Internet of 

Medical Things. Information Fusion. 2024; 103: 102076. doi: 10.1016/j.inffus.2023.102076 



Molecular & Cellular Biomechanics 2025, 22(4), 923.  

17 

83. Ghosh S, Manna D, Chatterjee A, et al. Remote Appliance Load Monitoring and Identification in a Modern Residential 

System With Smart Meter Data. IEEE Sensors Journal. 2021; 21(4): 5082-5090. doi: 10.1109/jsen.2020.3035057 

84. Zong X, Zhang C, Wu D. Research on Data Mining of Sports Wearable Intelligent Devices Based on Big Data Analysis. 

Discrete Dynamics in Nature and Society. 2022; 2022(1). doi: 10.1155/2022/3723269 

85. Ma Z, Xie J, Li H, et al. The Role of Data Analysis in the Development of Intelligent Energy Networks. IEEE Network. 

2017; 31(5): 88-95. doi: 10.1109/mnet.2017.1600319 

86. Salehi H, Das S, Biswas S, et al. Data mining methodology employing artificial intelligence and a probabilistic approach for 

energy-efficient structural health monitoring with noisy and delayed signals. Expert Systems with Applications. 2019; 135: 

259-272. doi: 10.1016/j.eswa.2019.05.051 

87. Masterson Creber RM, Hickey KT, Maurer MS. Gerontechnologies for Older Patients with Heart Failure: What is the Role 

of Smartphones, Tablets, and Remote Monitoring Devices in Improving Symptom Monitoring and Self-Care Management? 

Current Cardiovascular Risk Reports. 2016; 10(10). doi: 10.1007/s12170-016-0511-8 

88. Choi HS, Yoon S, Kim J, et al. Calibrating Low-Cost Smart Insole Sensors with Recurrent Neural Networks for Accurate 

Prediction of Center of Pressure. Sensors. 2024; 24(15): 4765. doi: 10.3390/s24154765 

89. Farago E, Chan ADC. Motion artifact synthesis for research in biomedical signal quality analysis. Biomedical Signal 

Processing and Control. 2021; 68: 102611. doi: 10.1016/j.bspc.2021.102611 

90. Zhao Y, Yin Y, Gui G. Lightweight Deep Learning Based Intelligent Edge Surveillance Techniques. IEEE Transactions on 

Cognitive Communications and Networking. 2020; 6(4): 1146-1154. doi: 10.1109/tccn.2020.2999479 

91. Hu D, Huang Z, Yin K, et al. Multidimensional heterogeneous data clustering algorithm for power transmission and 

transformation equipment. Journal of Intelligent & Fuzzy Systems. 2023; 44(4): 5871-5878. doi: 10.3233/jifs-222924 

92. Liu X, Yuan J, Zhao H. Efficient and Intelligent Density and Delta-Distance Clustering Algorithm. Arabian Journal for 

Science and Engineering. 2018; 43(12): 7177-7187. doi: 10.1007/s13369-017-3060-7 


