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Abstract: The integration of biosensor technologies, like electroencephalography (EEG), has 

extended the limits of adaptive, intelligent education systems, offering real-time, personalized 

learning knowledge. This study explores the use of EEG to track and assess students’ cognitive 

states, allowing for the improvement of an active, adaptive English learning system that tailors 

content according to every student’s participation and improvement. Students’ cognitive states 

serve as the foundation for personalized education responses that motivate and enhance their 

participation. EEG data are gathered during English language testing to assess the correlation 

between learners’ cognitive states and their performance. Noise reduction is one of the 

preprocessing stages that ensures clear and pertinent data for analysis. Power spectral density 

(PSD) for feature extraction approaches is used to identify key cognitive patterns. Based on 

real-time EEG data, the personalized education feedback system constantly modified the 

course material, enhancing motivation and learning results. This research proposed a novel 

Dynamic Osprey Optimized Intelligent Gradient Boosting Machines (DOO-IGBM) to assess 

and improve the efficiency of an adaptive intelligent education system. The findings suggest 

that EEG-based adaptive systems make it possible to significantly progress English learning 

by offering personalized education paths based on brain activity to other conventional 

algorithms with 98.5% accuracy, 97.7% precision, 98% recall, and 98.6% F1-score. These 

outcomes provide precious insights and data to support the future development of adaptive, 

intelligent education systems for language learning. 

Keywords: English learning; personalized education feedback; biosensor; adaptive intelligent 

education; Dynamic Osprey Optimized Intelligent Gradient Boosting Machines (DOO-IGBM) 

1. Introduction 

The goal of adaptive education systems is to modify the system through the 

information delivered based on every learner’s exclusive desires. These systems are 

used in progress response to regulate lessons to every student’s speed and favored 

process of education, ensuring a more efficient and personalized educational skill 

Mirata et al. [1]. Students’ inclinations for how they process information and connect 

with the education environment are referred to as their knowledge styles. These 

preferences are mainly stable slanting in time and cognitive, emotive, or physiological. 

A student’s preferred educational system helps them to become more self-aware, use 

their talents, and improve their weaknesses, especially in a variety of learning 

situations Bernard et al. [2]. Beyond the classic prospectus, teachers exploit this 

information to generate actions that improve outcomes of the different desires of their 

students. Student engagement, satisfaction, and education outcomes are improved by 

the adaptive educational systems that modify lessons to every student’s exclusive 

education preferences. It has been demonstrated that these adjustments improve 

overall educational experiences, shorten education times, and boost education gains 
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Kanchon et al. [3]. The conventional academic on-the-stage approach to teaching 

English is giving way to the guide on the side, in which professors support students’ 

education through investigation and problem-solving. Technology automates 

repetitive work, personalizes education, and offers data-driven insights to meet 

individual needs, particularly in online and hybrid education contexts Alam [4]. 

Teachers focus on motivating and engaging students since technology complements 

their jobs rather than replaces them. Adaptive education is one example of an 

innovation that aids in identifying education difficulties and offering focused remedies. 

Critical thinking, creativity, communication, and teamwork improved in English 

language education when instructor skills and technology are combined Burbules et 

al. [5]. The potential of biosensor technology in education, which offers real-time 

information on students’ emotional and cognitive states, is being realized through 

adapted teaching Antoniou et al. [6]. When they perceive signs of stress or 

dissatisfaction, it enables teachers to adjust the complexity of the session or suggest 

assistance. Through individual desires adaptation, this process maximizes education 

and improves motivation, engagement, concentration, and generally educational 

attainment. Figure 1 shows the personalized intelligence education system. 

 

Figure 1. Adaptive intelligent English learning education system. 

Disadvantages of conventional instructional strategies including their inability to 

accommodate learners’ needs, they are impersonal, and do not offer timely feedback. 

Teaching by receiving information diminished participation, and issues with assessing 

mental and emotional states are the effects. In addition, some of these systems 

correctly incorporate contemporary technologies that facilitate effective and long-

lasting adaptive education experiences Yu et al. [7]. The purpose of this research is to 

enhance individualized English instruction biosensor using integrate EEG into smart 

education systems. It generates a progressive cognitive condition to alter contents 

based on the reactions of students and their progress. To improve motivation, 
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engagement, and acquired knowledge, the study proposes a DOO-IGBM model to 

assess the system’s performance. 

Contribution of the study 

An adaptive intelligent education system aims to create personalized education 

experiences by dynamically adjusting content based on student progress and 

engagement. The key contributions of the study are given below. 

1) The purpose of the study is to identify how EEG is used to track a student’s 

cognition while learning English and how that data can be applied to improve an 

adaptive learning system. 

2) The research collected EEG records from a student during the English language 

assessment to determine their cognitive states and association with their 

performance. 

3) The pre-processing begins by highlighting noise reduction as their important 

feature and then using power spectral density techniques for extracting features 

and identifying significant cognitive patterns. The DOO-IGBM model tests the 

effectiveness of modifying content based on real-time EEG feedback for 

individualized education content in real-time. 

4) The use of EEG in incorporating adaptive systems in learning offers benefits that 

are closely aligned with cognition in that students get feedback that is in 

concordance with what they are expected to learn. However, when it is done in 

real-time, content modifications have greater motivational and educational 

impact than traditional methods. 

5) EEG-based adaptive education system that applies technique of real-time 

cognitive state monitoring to enhance education outcomes and learners’ 

attentiveness enhance personal tutorship and, as a consequence, increase 

successful language educational experience. 

The research demonstrates how biosensor technology accompanied by EEG 

helps to enhance adaptive education systems giving individual educational courses and 

future developments in the sphere of languages and other educational disciplines. 

The remainder of the study is organized as follows: Section 2 provides the related 

articles. Section 3 provides the proposed methodology. Section 4 demonstrates the 

study outcomes. Section 5 gives the discussion and conclusion was summarized in 

Section 6.  

2. Related work 

This phase represents the evaluation of personalized education systems that have 

been applied to track cognitive states for improving education outcomes.  

Wan and Yu [8] presented an adaptive education cognitive map technique to 

provide an e-education environment that dynamically modifies education activities 

and resources. The system’s efficacy in individualized education environments was 

validated by a contrast experiment that demonstrated to increase in cognitive load 

while improving students’ educational achievement, satisfaction, acceptance of 

technology, and interaction. 
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Chrysafiadi et al. [9] offered a brand-new adaptive e-assessment method that 

combined cognitive theories and fuzzy logic for customization. Students’ knowledge 

levels were represented as fuzzy sets and education objectives were guided by the 

revised Bloom taxonomy. Based on student needs and test complexity, a fuzzy rule-

based reasoned choice of test items. The evaluation demonstrated that the customized 

test creation was highly accurate. 

Sargazi Moghadam et al. [10] presented an Artificial Intelligence (AI) based 

assessment framework for an online education platform that enhanced mood and 

education performance by using a Genetic Algorithm (GA) to suggest micro-break 

tricks depending on learners’ moods. Findings from tests conducted on 40 English 

language learners demonstrated the framework’s efficacy and usefulness for adaptive 

e-education systems, such as Moodle. 

Liu and Ardakani [11] suggested an e-education platform that allows for material 

customization according to students’ feelings. It used a K-nearest neighbors (KNN) 

algorithm to recognize emotional conditions in concurrent based on the EEG data 

collected from learners. The content was suggested by reinforcement education to 

sustain good emotions. In an evaluation involving 30 students, the accuracy of KNNs 

was 74.3%. 

Boughida et al. [12] investigated the emotion-based adaption system for e-

education that utilized a probability-based algorithm to simulate learner emotions 

based on facial expressions. The methodology suggested customized resources 

according to adaptive standards. Its efficacy was supported by five experiments that 

demonstrated test groups’ increased motivation, engagement, and cognitive levels in 

comparison to control groups. 

Kouahla et al. [13] suggested a technique for identifying education challenges 

through the analysis of emotional states through the identification of vocal and facial 

emotions. A recommendation generator offers educational or psychological remedies. 

Test and control group experiments validate the approach’s efficacy by demonstrating 

that it improved learners’ emotional states, motivation, and engagement. 

Smart integrated learning was introduced by Ciolacu et al. [14] to improve 

student performance. It employed student activity models of real-time data and 

learning analytics to identify potential dropout causes. Using the non-invasive, 

inexpensive, adaptable, and distraction-free embedded biosensors found in wearable 

technology, real-time information might be utilized to promote students’ academic 

performance, overall health, and well-being. According to the initial findings, there 

was a relationship among physiological responses and exam scores. 

A portable, user-generic, low-profile EEG instrumentation equipment with a 

variety of in-ear and on-body biosensor capabilities was demonstrated by Paul et al. 

[15]. The electrodes were dependable and simple to construct for EEG, 

Electroocoulogram (EOG), and electromyogram (EMG) measurements in the 

forehead and the ears. Eye blinks, eye movements, and in-ear EEG waves during an 

alpha-modulated task were among the biosensors recorded by the wireless data 

collection system for electrophysiology (weDAQ) system at a high rate of sampling 

and data quality similar to clinical systems. Furthermore, facial electrodes recorded 

jaw muscle activity and eye movements. WeDAQ devices and electrode sensors were 

also shown to record multiple subjects while engaging in physical exercise. 
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Eltahir and Babiker [16] examined how pre-service student instructors at Ajman 

University perceived and performed academically when using AI-powered tailored 

education tools. AI tools improved performance, information retention, critical 

thinking, motivation, and engagement, according to a quasi-experimental design 

involving 110 students. This underscored AI’s revolutionary potential in teacher 

education. 

Wang et al. [17] offered a paradigm for multimodal evaluation of students’ 

inspiration in online education settings to facilitate tailored interventions. According 

to the study, eye movements and brain activity were utilized to forecast motivational 

elements. Using Machine Learning (ML) classifiers to process EEG and eye gaze data, 

it achieved accuracy ranging from 68.1% to 92.8%.  

Sajja et al. [18] presented a paradigm for individualized education in higher 

education that was powered by AI. AI is used by the system to lower cognitive burden, 

offer individualized support, and improve engagement with interactive features like 

flashcards and quizzes. The results demonstrated how AI-enhanced student 

performance and satisfaction in e-learning settings. 

Wang et al. [19] compared the educational effects of customized adaptive 

education materials to both large- and small-group classroom instructions in China. 

Further research on adaptive education systems in Chinese education is based on the 

findings of two efficacy studies, which demonstrated that eighth-grade students 

utilizing Squirrel AI education fared better than those receiving traditional instruction. 

Megahed and Mohammed [20] suggested an intelligent adaptive e-learning 

strategy that incorporated emotional states and student reactions. It combined a fuzzy 

approach to determine education progression with a convolutional neural network 

(CNN) to recognize facial expressions. The technique demonstrated adaptive 

education patterns and performance monitoring by combining facial expressions and 

using the corpora of 12 students. 

Zammouri et al. [21] introduced a multi-agent-based architecture that used EEG 

to customize educational materials for each student. It calculated cognitive strain using 

the brain rhythms’ PSD and Standardized Euclidean Distance (SED). PSD bands in 

the occipital lobe exactly indicate cognitive load, according to experimental data, 

which helps with educational assessment. 

Liu et al. [22] suggested the inductive cognitive diagnosis model (ICDM) to 

rapidly determine the competence levels of new students in the Whale Optimization-

Inspired Education System (WOIES). It presented a student-centered graph (SCG), 

which updated individual embeddings instead of aggregating the results of nearby 

students. ICDM performed faster and better than transductive approaches, was more 

efficient, and didn’t require retraining. 

Hussain et al. [23] suggested a novel method for annotating unlabeled student 

feedback by utilizing the Felder–Silverman Education Style Model (FSLSM) in 

combination with multi-layer subject modeling. Fuzzy logic, online usage mining, 

Deep Learning (DL), and sentiment analysis were combined to automatically identify 

education styles, improving the delivery of personalized content and surpassing 

current methods. 

Chrysafiadi et al. [24] offered an assessment of an intelligent tutoring system 

(ITS) that educated computer programs using fuzzy logic. Undergraduate students 
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participated in the assessment, which assessed context, accuracy, efficiency, 

effectiveness, usability, motivation, engagement, and satisfaction. According to 

results confirmed by t-tests, the fuzzy mechanism improved engagement, interaction 

effectiveness, learner satisfaction, and knowledge acquisition. 

Ouyang et al. [25] gathered multimodal data and suggested a three-tiered 

architecture that combined education analytics and AI to examine group collaboration 

trends. It found three patterns of collaboration that were connected to performance 

levels. The study provided pedagogical and theoretical insights for Cyber-Physical 

Systems (CPS) research while highlighting the dynamic, multimodal character of 

collaboration. 

Amin et al. [26] suggested a smart e-learning system based on Reinforcement 

Learning (RL) that used Markov Decision Process (MDP) to customize education 

paths. Through the use of Q-education for Sequential Path Recommendation (SPR), 

the framework modified suggestions in response to learner input. Results from 

experiments demonstrated notable enhancements and efficient operation under 

different parameter adjustments. 

Kukkar et al. [27] suggested a new Student Academic Performance Predicting 

(SAPP) method that makes use of Gradient Boosting (GB), Random Forest (RF) and 

a 4-layer stacked Long Short Term Memory (LSTM) approach. With a 96% accuracy 

rate, the system outperformed current prediction models on both self-curated 

emotional datasets. 

3. Methodology 

The study gathers data from language tests and EEG to evaluate cognitive states 

and performance association. A bandpass filter is used to pre-process the EEG data 

and the PSD is used to extract features. Hyper-parameters are optimized for real-time 

adaptive education by DOO-IGBM. Figure 2 shows the methodological flow. 

 

Figure 2. Overview of methodology flow. 

3.1. Data collection 

This dataset combines EEG data and language test scores to explore the 

relationship between learners’ cognitive states and their performance in English 

language testing. The EEG data captures cognitive states such as attention, focus, and 
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relaxation, using time-series data to display real-time cognitive arrangement during 

the test. Language test scores, including accuracy and completion time, are used to 

evaluate learner performance. To enhance the dataset, additional biosensor data, such 

as heart rate variability, galvanic skin response (GSR), and eye-tracking metrics, will 

be integrated. These biosensors provide valuable insights into emotional and 

physiological states, complementing the EEG data for a more comprehensive 

assessment of learner engagement. The combined data will enable the analysis of 

cognitive and physiological factors influencing language performance, offering a basis 

for developing adaptive educational systems that tailor content to the learner’s 

cognitive state in real time, ultimately optimizing educational outcomes. 

3.2. Data preprocessing 

The gathered EEG signal data is preprocessed using a bandpass filter. It 

attenuates wavelengths beyond the specified range while permitting signals within that 

range to flow through. Its transfer function 𝐺(𝑒) is given by Equation (1) 

𝐺(𝑒) =
𝑒ℎ𝑖𝑔ℎ − 𝑒𝑙𝑜𝑤

𝑒2 + (𝑒ℎ𝑖𝑔ℎ + 𝑒𝑙𝑜𝑤)2
 (1) 

where 𝑒ℎ𝑖𝑔ℎ  𝑎𝑛𝑑 𝑒𝑙𝑜𝑤 represent the upper and lower cutoff frequencies, respectively, 

this filter passes frequencies between 𝑒ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝑒𝑙𝑜𝑤 allowing relevant signals to pass 

while blocking unwanted noise. It isolates specific signals and removes irrelevant 

noise or disturbances, improving the quality of data used for further analysis. 

3.3. Feature extraction 

PSD is used to extract the noise-removed features from the data. It is used to 

describe how a signal’s power is distributed across various frequencies. It aids in 

determining the prominent frequency components and offers insight into the 

distribution of a signal’s power as a function of frequency. The average power 𝑃 over 

some time 𝑆 is defined as follows Equation (2) given a signal 𝑦(𝑠). 

𝑃 =
𝑙𝑖𝑚

𝑆 → ∞

1

𝑆
∫ |𝑦(𝑠)|2

𝑆

0

𝑐𝑠 (2) 

Equation (2) calculates the signal’s mean power over an endless amount of time. 

To normalize the signal by the duration of the observation period, the integral divides 

the squared magnitude of the signal over time by 𝑆. The signal is subjected to Fourier 

processing to assess its frequency content. The frequency components of the signal are 

represented by the Fourier transform �̂�(𝑒) of the signal (𝑠). Next, the predicted value 

of the squared magnitude of the Fourier-transformed signal is used to determine the 

PSD is given in Equation (3). 

𝑇𝑦𝑦(𝑒) = lim
𝑆→∞

𝔼|�̂�(𝑒)|2 (3) 

Here, �̂�(𝑒)  represents the signal 𝑦(𝑠)  Fourier transformed, and the 

PSD. 𝑇𝑦𝑦gives the power content at each frequency 𝑒. With the help of the expected 

value 𝔼, which takes into consideration the averaging over time (as 𝑆 → ∞), the power 

distribution of a stationary signal is estimated. The PSD is frequently utilized in 
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domains such as communications, EEG analysis, and signal processing since it is used 

to determine the dominant frequencies in a signal. 

3.4. Evaluate student cognitive state using dynamic osprey optimized 

intelligent gradient boosting machines (DOO-IGBM) 

DOO-IGBM optimizes hyper-parameters to improve predictive accuracy by 

combining the DOO algorithm and IGBM. It enhances biosensor adaptive education 

systems’ ability to analyze EEG data, allowing for real-time content modification for 

more individualized feedback and improved education results. 

3.4.1. Intelligent gradient boosting machines (IGBM) 

Feature-extracted data is evaluated using IGBM. The conventional GBM 

architecture is enhanced by IGBM, which incorporates feature selection and 

sophisticated education techniques while dynamically optimizing parameters. With 

GB, a loss function 𝐾(𝑥, 𝑥) is minimized by iteratively creating models that fix the 

mistakes of the earlier ones. The model prediction at iteration 𝑠, represented as 𝑥 is 

given in Equation (4). 

𝑥𝑠 = 𝑥𝑠−1 + 𝜂 × 𝑒𝑠(𝑦) (4) 

where 𝑥𝑠−1 is the previous iteration’s prediction, 𝜂 is the rate of education. 𝑒𝑠(𝑦)is a 

weak learner fitted to the loss function’s negative gradient. For sample𝑗, the gradient 

of the loss function is given in Equation (5) 

ℎ𝑗 = −
𝜕𝐾(𝑥𝑗 , 𝑥𝑠−1)

𝜕𝑥𝑠−1

 (5) 

First, use a constant model 𝑥0 , reducing the loss, at 0update position using 

Equation (6). 

𝑥0 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑑
∑ 𝐾(𝑥𝑗

𝑚

𝑗=1

, 𝑑) (6) 

Iterative updates: For every iteration 𝑠, calculate the gradients ℎ𝑗 and the sample 

weights 𝑢𝑗. Develop a weak learner 𝑒𝑠(𝑦) to reduce weighted loss (𝑦) using Equation 

(7). 

𝑒𝑠(𝑦) =
arg 𝑚𝑖𝑛

𝑒
∑ 𝑢𝑗

𝑚

𝑗=1

× [ℎ𝑗 − 𝑒(𝑦𝑗)]2 (7) 

Adjusting the education rate dynamically using the education rate 𝜂 in IGBM is 

dynamically modified according to performance parameters using Equation (8). 

𝜂𝑠 =
1

√𝑠+∈
 (8) 

This approach helps achieve a compromise between stability and convergence 

speed, where ∈ is a small constant that prevents division by zero. Feature significance 

scores, or 𝑇𝑖 , are calculated to minimize overfitting and computational expense, 

frequently by using Equation (9). 
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𝑇𝑖 = ∑ 𝐺𝑎𝑖𝑛(𝑒𝑡 , 𝑖)

𝑆

𝑠=1

 (9) 

𝐺𝑎𝑖𝑛(𝑒𝑡, 𝑖)is a boost in the loss unit brought about by splitting on feature 𝑖 in tree 

𝑒𝑡. Features that fall below a predetermined threshold, 𝑇𝑖 < 𝜏, are eliminated. IGBM 

dynamically searches for the best hyper-parameters by using Equation (10). 

𝜃∗ =
𝑎𝑟𝑔 𝑚𝑖𝑛

𝜃
𝐾(𝑥, 𝑥) (10) 

where 𝜃 stands for the set of hyper-parameters, IGBM gives samples weights 𝑢𝑗based 

on their significance or difficulty rather than treating all residuals equally as given in 

Equation (11). 

ℎ𝑗 = −𝑢𝑗 ×
𝜕𝐾(𝑥𝑗, 𝑥𝑠−1)

𝜕𝑥𝑠−1
, 𝑢𝑗 =

1

1 + exp (−𝑙. |𝑞𝑗|
 (11) 

Update predictions using Equation (12). 

𝑥𝑡(𝑦) = 𝑥𝑠−1 + 𝜂𝑠 × 𝑒𝑠(𝑦) (12) 

where 𝑞𝑗 = 𝑥𝑗 − 𝑥𝑠−1  and 𝑙  regulate the sensitivity of weighting. When to stop 

training use Equation (13). 

1

𝑚
∑ 𝐾(𝑥𝑗

𝑚

𝑗=1

, 𝑥𝑠) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (13) 

IGBM handles diverse data with excellent accuracy due to the addition of real-

time optimization, feature selection, and adaptive weights. Because of these 

improvements, it is perfect for uses like personalized education systems, where 

adaptive feedback mechanisms are guided by EEG data, as demonstrated in the 

aforementioned study. 

3.4.2. Dynamic osprey optimization (DOO) 

Evaluated signals are optimized using DOO for increasing accuracy and 

reliability. It is an evolutionary algorithm created to solve dynamic optimization issues, 

drawing inspiration from Ospreys’ hunting and movement patterns. Ospreys are a 

natural metaphor for maximizing functions in changing circumstances due to their 

extraordinary capacity to adjust to changes in their surroundings, such as shifting prey 

behaviors or environmental conditions. Adaptive techniques are incorporated into 

DOO to ensure effective solutions for space exploration and exploitation. There are 2 

stages in the DOO algorithm: local development and global exploration. Similar to 

other meta-heuristic algorithms, the conventional osprey optimization technique 

initializes its population. 

Osprey Population Initialization: The positions of each osprey are used as 

potential solutions to the crisis in the DOO and the initial osprey population is 

represented by the 𝑀 × 𝐶-dimensional matrix, which is made up of the placements of 

𝑀 osprey. Equation (14) is used to initialize each osprey’s position at random. 

𝑊𝑗,𝑖 = 𝐽𝑎𝑖 + 𝑞𝑗,𝑖 × (𝑣𝑎𝑗 − 𝐽𝑎𝑖), 𝑗 = 1,2, … , 𝑀, 𝑖 = 1,2, . . 𝐶 (14) 
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In the 𝑗𝑡ℎ problem variable, 𝐽𝑎𝑖and 𝑣𝑎𝑗 represents the upper and lower bounds, 

respectively and 𝑊𝑗,𝑖 gives the beginning position of the 𝑖𝑡ℎobject in the 𝑗𝑡ℎ dimension. 

The variables 𝑞𝑗,𝑖𝑀, 𝐶 , and 𝑗  represent the dimensions of the issue solution, the 

population number, and the 𝑗𝑡ℎ dimension, respectively. Osprey is considered a 

potential solution to the problem and its suitability is assessed based on the objective 

function 𝐸 fitness value. Equation (15) is utilized in the computation of the fitness 

value. 

𝐸𝑗 = 𝐸(𝑊𝑗), 𝑗 = 1,2, … , 𝑀 (15) 

where 𝑊𝑖 is the current position of the 𝑖𝑡ℎ osprey and𝐸𝑗 is its fitness value. 

Positioning and Fishing (Phase 1): Submerging itself to hunt, the osprey locates 

the fish underwater and proceeds to attack it. As the global exploration step of the 

osprey optimization method, this procedure significantly alters the osprey’s location 

in the exploration space. This process is represented in the DOO, where an underwater 

fish is any osprey that knows where previous ospreys with higher fitness values are 

located in the investigated space. In light of this, Equation (16) displays each osprey’s 

position. 

𝐸𝑂𝑗 = {𝑊𝑙|𝑙 ∈ {1,2, . . 𝑀} ∩ 𝐸𝑙 < 𝐸𝑗} ∪ {𝑊𝑏𝑒𝑠𝑡}, 𝑗 = 1,2, . . 𝑀 (16) 

where 𝐸𝑙 represents the fitness values of the 𝑖𝑡ℎand𝑗𝑡ℎ osprey, correspondingly, 𝑀 is 

the number of ospreys in the population, and 𝐸𝑂𝑗 is the position set of the 𝑖𝑡ℎ 

osprey. 𝑊𝑏𝑒𝑠𝑡is the best osprey’s position. The osprey strikes at a fish randomly within 

the search area that it finds. The location update mechanism that occurs when the 

osprey approaches the fish is simulated using Equation (17): 

𝑊𝑗,𝑖
𝑂1 = 𝑊𝑗,𝑖 + 𝑞𝑗,𝑖 × (𝑇𝐸𝑗,𝑖 − 𝐽𝑗,𝑖. 𝑊𝑗,𝑖), 𝑗 = 1,2, … , 𝑀; 𝑖 = 1,2, … 𝐶 (17) 

where 𝑊𝑖 is the 𝑖𝑡ℎosprey’s initial position and 𝑊𝑗,𝑖 is its𝑗𝑡ℎ dimension; 𝑊𝑗,𝑖
𝑂1 is the 

𝑖𝑡ℎosprey’s new position in stage1 and 𝑊𝑗,𝑖
𝑂1 is its 𝑗𝑡ℎ dimension. The fish selected by 

the first osprey are 𝑇𝐸𝑗,  i, and 𝑇𝐸𝑗,𝑖 is its 𝑗 -dimension. Whereas 𝐽𝑗,𝑖  is randomly 

selected from the set {1,2}, 𝑞𝑗,𝑖  is a random number that belongs to [0, 1], and the 

boundary is handled by Equation (18) if the revised position is outside of it. The value 

of the inferior bound is assigned to the original place if it is smaller than the problem’s 

lower bound. If the new position exceeds the higher bound, the upper bound value is 

assigned. 

𝑊𝑗,𝑖
𝑂1 = {

𝑊𝑗,𝑖
𝑂1, 𝐽𝑎𝑖 ≤ 𝑊𝑗,𝑖

𝑂1 ≤ 𝑣𝑎𝑖

𝐽𝑎𝑖, 𝑊𝑗,𝑖
𝑂1 < 𝐽𝑎𝑖

𝑣𝑎𝑗, 𝑊𝑗,𝑖
𝑂1 > 𝑣𝑎𝑖

 (18) 

The prior position is replaced if the new location’s fitness value, as determined 

by Equations (17) and (18), is greater. Equation (19) illustrates the operation and it is 

from this that the osprey’s new position is determined. 

𝑤𝑗
1 = {

𝑊𝑗
𝑂1 , 𝐸𝑗

𝑂1 < 𝐸𝑗

𝑊𝑗, 𝐸𝑗
𝑂1 ≥ 𝐸𝑗

 (19) 
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𝐸𝑗
𝑂1 is the osprey’s new location among the fitness values of phase 1. After phase 

1, the osprey’s position is indicated by𝑤𝑗
1. 

Bring the angle to the Right Position (Phase 2): The osprey determination 

transports the angle to a location where it believes it is secure to consume the following 

previous stage of fish hunting. This procedure improves the DOO local search 

capabilities while only slightly altering the osprey’s location in the exploration space 

referred to as the local expansion phase. This stage’s position update is completed by 

Equation (20). Equation (21) and other boundary processing procedures performed at 

this level in the same manner as the global exploration stage: 

𝑊𝑗,𝑖
𝑂2 = 𝑊𝑗,𝑖

1 +
𝐽𝑎𝑖 + 𝑞𝑗,𝑖 × (𝑣𝑎𝑗 − 𝐽𝑎𝑖)

𝑠
, 𝑗 = 1,2, . . , 𝑀; 𝑖, . . , 𝐶; 𝑠 = 1,2, … , 𝑆 (20) 

𝑊𝑗,𝑖
𝑂2 = {

𝑊𝑗,𝑖
𝑂2, 𝐽𝑎𝑖 ≤ 𝑊𝑗,𝑖

𝑂2 ≤ 𝑣𝑎𝑖

𝐽𝑎𝑖, 𝑊𝑗,𝑖
𝑂2 < 𝐽𝑎𝑖

𝑣𝑎𝑗, 𝑊𝑗,𝑖
𝑂2 > 𝑣𝑎𝑖

 (21) 

where 𝑠 the current number of algorithm iterations is, 𝑆 is the maximum number of 

iterations, 𝑞𝑗 is a random number falling within [0, 1] and 𝑊𝑗,𝑖
𝑂2is its 𝑗𝑡ℎ dimension. 

𝑊𝑗,𝑖
𝑂2is the new location of the𝑖𝑡ℎ predator in phase 2. The old site will be replaced if, 

as in the global exploration stage, the updated location’s fitness value as determined 

by Equations (20) and (21) is higher. Equation (22), when applied, yields the new 

location of the osprey at this point: 

𝑤𝑗
2 = {

𝑊𝑗
𝑂2 , 𝐸𝑗

𝑂1 < 𝐸𝑗

𝑤𝑗
1, 𝐸𝑗

𝑂2 ≥ 𝐸𝑗
𝑂1  (22) 

where 𝑤𝑗
2 is the osprey’s position following phase 2 and 𝐸𝑗

𝑂2 is the fitness value of 

location𝐸𝑗
𝑂2. After completing the first two steps, until an ideal solution to the problem 

is found, or until the highest number of iterations is reached, the updates to the position 

of each osprey calculate the population iteratively. Through dynamic parameter 

adjustments, DOO improves model performance, ensuring quicker convergence and 

higher accuracy. Adaptive education systems can benefit greatly from their ability to 

overcome local minima, reduce computational complexity, and improve parameter 

tuning. With DOO, individualized and successful cognitive state-based education 

solutions are made possible by accuracy, resilience, and real-time flexibility. 

The study introduces DOO-IGBM to improve adaptive education systems that 

combine DOO and IGBM. DOO improves predictive accuracy by optimizing IGBM 

parameters, such as education rate and tree depth, which are inspired by the hunting 

dynamics of ospreys. To extract features from EEG data and detect important 

cognitive patterns, DOO-IGBM applies power spectral density and noise reduction. 

This enables the educational materials to be instantly modified according to the 

cognitive states of the student, giving them tailored feedback and boosting their 

motivation. DOO-IGBM provides a strong foundation for data-driven, intelligent 

decision-making in individualized education systems due to its accuracy and 

scalability. Algorithm 1 shows the DOO-IGBM algorithm. 
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Algorithm 1 Dynamic Osprey Optimized Intelligent Gradient Boosting Machines (DOO-IGBM) 

1: Start 

2: Step 1: Initialize parameters: Max-iterations, learning rate, feature threshold, max trees, max population, 

bounds, etc. 

3: Step 2: IGBM model initialization (Learning rate, Loss function) 

4:                 Initialize model with initial prediction 𝑥0 for iteration 𝑠 = 1 to max iteration: 

5:                     Calculate the gradient of the loss function: 𝑥0 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑑
∑ 𝐾(𝑥𝑗

𝑚
𝑗=1 , 𝑑) 

6:                         Update model prediction: 𝑥𝑠 = 𝑥𝑠=1 

7:  Calculate feature importance: 𝑇𝑖 

8: Eliminate insignificant features based on 𝑇𝑖 < 𝜏 

9: Update learning rate:𝜂𝑠 =
1

√𝑠+∈
 

10: Step 3: DOO for hyper-parameter optimization for each osprey 𝑗 in the population: 

11:             Compute the fitness of osprey: 𝐸𝑗= Evaluation fitness (𝑊𝑗) 

12: Step 4: Positioning and fishing (Phases 1) 

13: Identify the best position: 𝐸𝑂𝑗 

14: Update position: 𝑊𝑗
𝑂1 

15:                       Check boundaries and correct position  

16:                   Calculate fitness of updated position: 𝐸𝑗
𝑂1 

17: If 𝐸𝑗
𝑂1 < 𝐸𝑗, update 𝑊𝑗 = 𝑊𝑗

𝑂1 

18: Step 5: Bring the angle to the right position (Phase 2) 

19: Update position: 𝑊𝑗
𝑂2 

20:                    Check boundaries and correct position  

21:                Calculate fitness of updated position 𝐸𝑗
𝑂2 

22: If 𝐸𝑗
𝑂2 < 𝐸𝑗

𝑂1, update 𝑊𝑗 = 𝑊𝑗
𝑂2 

23: Step 6: adaptive weighting and learning for each iteration 

24:                       Update sample weights based on the fitness of ospreys 

25:                              Fit weak learner 𝑓𝑡(𝑥) to minimize the weighted loss 

26:                             Adjust learning rate dynamically based on updated weights 

27:  Update prediction: 𝑥𝑡(𝑦) = 𝑥𝑠−1 + 𝜂𝑠 × 𝑒𝑠(𝑦) 

28: Step 7: Training completion check 

29:              If the loss function is below the threshold stop training and output the final IGBM model 

30: Step 8: Output final results 

31:             Return the final trained IGBM model with optimized parameters for a personalized education system. 

32: END 
 

4. Result 

The study used Python 3.10 to create an intelligent, adaptive educational system 

that uses EEG data to customize biosensing educational materials for students. To 

evaluate the model’s performance, the metrics used such as precision, recall, F1-score, 

and accuracy. Logistic Regression (LR) Gupta et al. [28], CNN Jamil and Belkacem 

[29] and Support Vector Machine (SVM) Gupta et al. [28] are the existing techniques 

that are compared. 

Accuracy: It is the proportion of accurate forecasts made out of all the predictions. 

It is computed using Equation (23), in which FN stands for False Negative forecasts, 

TN for True Negative forecasts, FP for False Positive forecasts, and TP for the integer 

of True Positive forecasts. Table 1 and Figure 3 demonstrate the evaluation of 

accuracy rates. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (23) 

Table 1. Estimation of accuracy value for adaptive intelligent education system. 

Method Accuracy (%) 

SVM Gupta et al. [28] 91.68 

LR Gupta et al. [28] 86.20 

CNN Jamil and Belkacem [29] 94 

DOO-IGBM [Proposed] 98.5 

 

Figure 3. Result of accuracy for adaptive intelligent education system. 

The accuracy of several models used to evaluate the effectiveness of English 

language education tools. While the accuracy of the LR is 86.20%, that of the SVM is 

91.68%. With an accuracy of 98.5%, the suggested DOO-IGBM beat all other methods, 

while the CNN achieved 94%. This illustrates DOO-IGBM’s exceptional performance 

in the English language educational adaptive education systems. 

Precision: It is employed to demonstrate the model’s ability to forecast a 

favorable emotional state. It is used to interpret how many instances of good emotions 

are categorized as negative. It is computed using the Equation (24). Table 2 and 

Figure 4 show the outcomes of the precision rate. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (24) 

Table 2. Estimation of precision value for adaptive intelligent education system. 

Method Precision (%) 

SVM Gupta et al. [28] 91.23 

LR Gupta et al. [28] 85.41 

CNN Jamil and Belkacem [29] 94 

DOO-IGBM [Proposed] 97.7 
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Figure 4. Evaluation of precision for adaptive intelligent education system. 

The precision of the SVM is 91.23%, while the LR is 85.41%. The precision of 

CNN is 94%. With a precision of 97.7%, the DOO-IGBM approach beat these models, 

proving to be more efficient biosensing education system in the task. 

Recall: It determines the proportion of TP emotions in the data to all positive 

projected cognitive states. As a result, a model that achieves a higher recall is more 

sensitive. The recall is computed as follows in Equation (25). Table 3 and Figure 5 

denote the estimation of recall value. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (25) 

Table 3. Outcomes of recall value for adaptive intelligent education system. 

Method Recall (%) 

SVM Gupta et al. [28] 92.11 

LR Gupta et al. [28] 87.63 

CNN Jamil and Belkacem [29] 95 

DOO-IGBM [Proposed] 98 

 

Figure 5. Evaluation of recall value for adaptive intelligent education system. 
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The recall is 92.11% for the SVM and 87.63% for the LR. The recall is 95% 

according to CNN. When it comes to accurately evaluating and improving the adaptive 

education system, the DOO-IGBM method performs better than any other method, 

with a 98% recall. 

F1-score: Two structures comprise the F1 Score. Precision comes in second, 

while recall comes first. Using the F1 Score, the precision and recall metrics are 

merged to produce a single score. It’s assessed using Equation (26). Figure 6 and 

Table 4 show the evaluation F1-score. 

F1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (26) 

Table 4. Outcomes of F1-score for adaptive intelligent education system. 

Method F1-score (%) 

SVM Gupta et al. [28] 91.53 

LR Gupta et al. [28] 86.76 

CNN Jamil and Belkacem [29] 97 

DOO-IGBM [Proposed] 98.6 

 

Figure 6. Estimation of F1-Score for the adaptive intelligent education system. 

With an F1-score of 86.76%, the LR model outperformed the SVM model, which 

obtained an F1-score of 91.53%. Although the CNN model scored better at 97%, the 

DOO-IGBM surpassed all other models with an F1-score of 98.6%, indicating that it 

is more effective at the task at dispense. 

Training accuracy: The DOO-IGBM training accuracy demonstrates how the 

model’s accuracy increases during training. As the model learns from the training data, 

the accuracy initially starts lower. The accuracy progressively rises during training, 

showing that the model is a successful alternative to the patterns in the data. The 

model’s capacity to generalize and the training accuracy shows that they performed 

effectively with the training dataset, which stabilizes at a high value by the later epochs. 

Its abrupt learning curve and eventual accuracy plateau show how well the DOO-

IGBM adjusts. Its performance increases over time. Figure 7 shows the training 

accuracy for the suggested method. 
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Figure 7. Training accuracy of the proposed DOO-IGBM model. 

Training Loss: The training loss of the DOO-IGBM model is started with a loss 

of initiation larger than zero due to the random distribution of the parameters. This 

information become less with the increase in the training iteration, illustrating that the 

model is making better prediction towards the next elements of the sequence from the 

input EEG data. This implies that, for sufficient levels, the loss is stable, it is exhibits 

convergence implying that the model can predict accurate cognitive states. The 

declining loss rate depicted below highlights how effectively the model fits the 

adaptive education framework when it comes to offering learning opportunities to 

learners. Figure 8 demonstrates the training loss of the proposed method. 

 

Figure 8. Training loss of proposed DOO-IGBM model. 

5. Discussion 

The valuation of students’ cognitive states in personalized education feedback 

was crucial for improving education involvements since it enables systems to 

dynamically modify information according to every student’s cognitive capacity and 
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stage of engagement, which increases motivation and effects. Despite their usefulness, 

existing techniques like SVM [28], LR [28], and CNN [29] were limited in their ability 

to handle complicated EEG data due to their overfitting susceptibility. Real-time 

adaptation and more precise predictions from EEG data were made possible by the 

DOO-IGBM technique, which uses sophisticated IGBM optimized by DOO 

algorithms to tackle these problems. By doing this, the shortcomings of conventional 

models are overcome and improve student performance is ensured, resulting in a more 

efficient and customized education environment. By providing more individualized, 

effective education pathways, the results demonstrate how EEG-based adaptive 

systems have the potential to completely transform intelligent education systems. 

6. Conclusion 

The potential of an adaptable biosensor intelligent education system to provide 

individualized education experiences based on real-time cognitive states makes it 

significant to measure and improve its efficiency. The purpose of this study was to 

examine how EEG data are used to inform real-time adaption in education systems to 

acquire specific students’ desires to deliver dynamic content related. The outcomes 

show that the use of the DOO-IGBM model is more efficient than original methods, 

achieving 98.5% accuracy, 97.7% precision, 98% recall, and 98.6% F1 score 

providing more accurate predictions and personalized feedback. However, there are 

some limitations such as the complete reliance on the EEG data, which have a lot of 

noise that require preprocessing before using them and the need for large datasets to 

further enhance the model. Future studies focus on improving on the scalability of the 

model to other educational settings, incorporation of more biometric data for analysis, 

and on real time adaption of the model. This strategy creates exciting chances for 

intelligent, flexible educational systems in the future. 
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