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Abstract: Cross-domain EEG signals offer valuable insights into the cortical neuron activity 

patterns and the functional dynamics of the central nervous system (CNS). Within the 

framework of biomechanics, EEG has emerged as a critical tool to investigate the interplay 

between neural control and physical performance. This study explores EEG complexity 

parameters in specific brain regions of 24 elite athletes under three distinct states: Rest, 

unloaded exercise, and loaded exercise. By integrating biomechanical and electrophysiological 

analyses, the study uncovers functional adaptations in the parietal and occipital regions, key 

centers for somatosensory and visual processing, respectively, in high-performance athletes. 

The findings reveal no significant gender differences in EEG complexity under these 

conditions, but highlight the effects of long-term specialized training in enhancing CNS 

adaptability. This adaptation is reflected in a reduced reliance on visual input, a trait 

distinguishing elite athletes from non-athletes. Despite the small sample size, correlations 

between three nonlinear EEG parameters—maximum Lyapunov exponent, approximate 

entropy, and Lempel-Ziv complexity—and CNS fatigue were observed. These parameters 

provide a robust framework for monitoring CNS fatigue and assessing the effects of exercise 

on neural function. This study bridges biomechanics and neural analysis, offering a novel 

perspective on CNS functionality under varying exercise states. The results contribute a 

theoretical foundation for the development of biomechanical guidance systems tailored for 

basketball training, with implications for optimizing athletic performance and promoting CNS 

health. 

Keywords: cross-domain EEG; biomechanics; basketball training; nonlinear dynamics; CNS 

fatigue; physical performance 

1. Introduction 

Modern competitive sports have evolved from recreational activities into 

professional and specialized training systems. Prolonged high-intensity physical 

training imposes significant demands on the body, often resulting in physical fatigue 

and inhibition of central nervous system (CNS) functionality, which in turn affects 

overall athletic performance [1]. The mechanisms underlying CNS fatigue involve a 

complex interplay of neural, biochemical, and biomechanical factors [2]. This study 

builds on previous research in Olympic science and technology by employing 

advanced cross-domain EEG nonlinear dynamic analyses and ultra-slow brainwave 

fluctuation parameter techniques. These methods, applied during systematic, long-

term training programs for Olympic athletes, aim to uncover key insights into CNS 

adaptations and enhance performance during high-stakes competitions. Such 

investigations deepen our understanding of the fundamental biomechanics and 

CITATION 

Tian J, Ran P. Biomechanical 

assistance for basketball training 

movements based on cross-domain 

EEG physical fitness classification. 

Molecular & Cellular Biomechanics. 

2025; 22(1): 903.  

https://doi.org/10.62617/mcb903 

ARTICLE INFO 

Received: 25 November 2024 

Accepted: 2 January 2025 

Available online: 13 January 2025 

COPYRIGHT 

 
Copyright © 2025 by author(s). 

Molecular & Cellular Biomechanics 

is published by Sin-Chn Scientific 

Press Pte. Ltd. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Molecular & Cellular Biomechanics 2025, 22(1), 903.  

2 

neurophysiological processes in elite athletes and contribute to more refined, 

evidence-based sports training methodologies [3–5]. 

Electroencephalography (EEG) technologies have become a cornerstone of CNS 

analysis, transforming complex brainwave data into interpretable visualizations 

through computational processing. This approach, rooted in the principles of 

biological cybernetics, offers a powerful tool to study the CNS’s interactions with 

musculoskeletal and sensory systems. EEG applications span multiple domains, 

including biomedicine, aerospace, military medicine, and sports science [6]. However, 

despite decades of EEG use in sports, its potential to fully meet the nuanced demands 

of modern athletic training remains underexplored [7]. For example, elite shooting 

athletes often rely on a range of sports science technologies to enhance precision and 

consistency during competition. Among these, bioelectric monitoring technologies, 

including EEG, are increasingly recognized as critical tools for tracking athletes’ 

physical and neural functions [8,9]. 

With advancements in CNS biomechanics and electrophysiological monitoring, 

evaluating the impact of training on neural function is now more feasible than ever. 

Cutting-edge algorithms and nonlinear mathematical models enable a quantitative 

analysis of CNS activity in elite athletes, offering novel insights into brain dynamics 

under training and competition conditions. This interdisciplinary approach has paved 

the way for the development of precise biomechanical systems for performance 

evaluation and optimization, bridging molecular and system-level understanding of 

CNS functions [10]. 

Previous studies have underscored the importance of cross-domain EEG analysis 

in understanding CNS fatigue and neuroplasticity. For instance, Huo [11] analyzed 

EEG characteristics of elite track-and-field athletes across various states, including 

rest, imagined competition, and massage-based recovery, revealing specific CNS 

adaptations to different stimuli. Pan [12] investigated EEG changes under high-

altitude hypoxia and overtraining syndrome, highlighting significant CNS stress in 

elite marathon runners. These studies demonstrated that intense physical exertion 

imposes substantial biomechanical and neural strain, emphasizing the need for 

effective CNS fatigue monitoring to prevent overtraining. 

Vasiljevic [13] conducted a comparative EEG study on overtrained and healthy 

athletes, identifying marked differences in brainwave dynamics. In healthy athletes, 

alpha wave amplitudes increased significantly after 15 s of high-intensity stimulation, 

whereas overtrained athletes showed either no change or reduced amplitudes. 

Moreover, during resting-state tests, overtrained athletes exhibited higher percentages 

of slow-wave activity, particularly in the parieto-occipital regions, which were further 

exacerbated after load stimulation. Similarly, Peterson [14] observed significant slow-

wave frequency increases in overtrained athletes during and after hyperventilation 

tests, identifying this as a marker of CNS dysfunction. 

Beyond traditional analyses, Kim [15] introduced bispectral EEG analysis to 

study nonlinear brain activity, distinguishing between resting states and active 

cognitive tasks such as mental arithmetic. These analyses revealed distinct nonlinear 

phase coherence patterns, which reflect increased neural organization during active 

states [16–18]. Studies of 40 Hz EEG signals have further highlighted asymmetric 
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fractal dynamics between the left and right hemispheres during cognitive tasks, 

revealing a biomechanical basis for functional lateralization in the brain [19–21]. 

This study investigates the dynamic interplay between EEG complexity and 

athletic performance during specific training conditions, focusing on parieto-occipital 

brain regions as key centers for sensory and motor integration. Through real-time EEG 

data analysis of 24 athletes, findings reveal significant changes in alpha-band activity 

in the bilateral occipital regions during handstand training. Additionally, EEG 

complexity parameters varied between athletes of different skill levels and training 

intensities, particularly during tasks involving visual information processing. The 

observed reductions in EEG complexity in specific brain regions, correlated with 

performance outcomes, highlight the biomechanical implications of CNS function 

during elite training. These results emphasize the value of integrating cross-domain 

EEG analysis into sports biomechanics to optimize CNS fatigue management, enhance 

training outcomes, and refine performance strategies. 

2. Construction of a sports training action assisted guidance model 

based on physical strength classification of cross-domain EEG 

2.1. Cross-domain EEG level distribution 

The bioelectric current generated during brain activity is very weak. It must 

undergo amplification and electromagnetic induction to convert the pulsed direct 

current drawn from the scalp electrodes into alternating current. After multi-stage 

amplification, the electrical energy is converted into mechanical energy output. 

Therefore, we see EEG is an indirect image of brain electrical activity. Figure 1 shows 

the cross-domain EEG hierarchy topology. 
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Figure 1. Cross-domain EEG hierarchy topology. 



Molecular & Cellular Biomechanics 2025, 22(1), 903.  

4 

EEG activity is generated by the sum of the vertical pyramidal neuron and the 

postsynaptic potential of their apical dendrites. Since the dendrites of the pyramidal 

cells extend almost to all layers of the cerebral cortex, the currents generated by the 

PSPs (postsynaptic potentials) that guide the cell bodies in the deep layers of the cortex 

and the dendrites located on the more surface layers through the full thickness of the 

cortex, these neurons are tightly connected. The parallel arrangement facilitates the 

spatial summation of the current generated by each neuron. These neuron groups 

receive the same afferent impulse and hedging action and have the same direction and 

potential change. The sum of the currents generated by these neurons is in the 

extracellular space. 

𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) (1) 

Most of the current is confined to the cortex, and a small part passes through the 

meninges, cerebrospinal fluid and the skull to reach the top, causing different potential 

levels in different parts of the scalp. The amplitude between these potential differences 

is 10–1 Hv, which can be recorded between two electrodes to obtain EEG. Human 

EEG often contains rhythmic electrical potential changes in an awake and quiet state. 

These are EEG’s d, e, a, and b rhythms. 

𝑃(𝑆(𝑖), 𝑆(𝑗), . . . , 𝑆(𝑘)|𝑇(𝑡)) = 𝑃(𝑆(𝑖)|𝑇(𝑡))𝑃(𝑆(𝑗), . . . , 𝑆(𝑘)|𝑇(𝑡)) (2) 

𝐸(𝑓(𝑥)) = ∑𝑤(𝑡)*𝑓(𝑥(𝑡))/∑𝑤(𝑡)

𝑛

𝑖=1

𝑛

𝑖=1

 (3) 

Unlike previous complexity algorithms, Lempel-Ziv complexity reflects the rate 

of change of new data patterns in one dimension as the length of the sequence 

increases. In other words, a data sequence that develops over time varies with the 

amount of data. Increase the rate at which the new mode changes. The performance of 

EEG data is complex, and its complexity reflects its degree of randomness, which 

determines the scale of the amount of information in this segment of the EEG data 

sequence. 

|𝑥(1) − 𝑓(𝑥)| + |𝑥(2) − 𝑓(𝑥)|+. . . +|𝑥(𝑛) − 𝑓(𝑥)| = 𝑛*𝑓(𝑥) (4) 

𝑔(𝑥) − ∑(𝑠(1, 𝑖) + 𝑠(2, 𝑖)+. . . +𝑠(𝑗, 𝑖)

𝑛

𝑖,𝑗=1

)/𝑠(𝑖, 𝑗) = 0 (5) 

At the same time, it also reflects the orderly degree of information-processing 

activities of brain neurons. Therefore, some researchers use this algorithm to analyze 

EEG data. The amount of information contained in the EEG data sequence is closely 

related to the complexity parameter of this piece of data. For example, the higher the 

complexity of the EEG signal is, the higher the degree of randomness of its 

performance is, and the greater the amount of brain information reflected. 

2.2. Fusion of physical strength classification indicators 

The physical strength classification index quantitatively reflects the chaotic state 

of data in the phase space, making it an important metric for non-linear analysis. As 
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the dimensionality of the data in the phase space increases, the likelihood of new 

patterns emerging in the time series also rises, resulting in a corresponding increase in 

approximate entropy. A key advantage of this indicator in non-linear analysis is that it 

requires relatively small datasets to calculate stable estimates, with only 100–5000 

data points needed for reliable computation. 

The physiological significance of brain waves lies in their frequency and 

amplitude characteristics. Brain wave frequencies typically range between 8–13 Hz, 

with amplitudes spanning from 20–100 µV. In a calm and peaceful state, brain waves 

are most prominently observed in the parietal, occipital, and central regions of the 

brain. When the eyes are closed and external stimulation is absent, their frequency 

remains relatively constant, and the amplitude of brain waves is symmetrical across 

the left and right hemispheres. While symmetry is the norm, individual variations in 

left-right amplitude differences do exist. The amplitude range of brain waves generally 

falls between 5–100 µV, with an average of 20–100 µV. These waves are easier to 

observe when the eyes are closed and tend to disappear quickly in response to external 

stimuli. For instance, when the eyes are opened, the rhythm of brain waves diminishes, 

indicating a strong relationship between internal suppression and brain wave activity. 

Brain waves also play a significant role in the establishment of conditioned 

reflexes, which are closely tied to their rhythmic activity. As a result, brain wave 

dynamics are often used in cross-domain EEG analysis to study advanced neural 

activity. Figure 2 illustrates the histogram of the intensity distribution of brain wave 

amplitudes. Brain waves act as a bridge between the subconscious mind and conscious 

thought, serving as an effective medium for accessing the subconscious. They have 

been shown to enhance inspiration, improve information processing, and bolster stress 

resilience. 

 

Figure 2. The histogram of the amplitude range and intensity of brain waves. 

The three aspects of sports quality are related and different between reaction, 

movement, and displacement speeds. Therefore, the ways and methods to improve 

speed quality are also different. 1) Reaction speed exercises: Quick-response games 

can cultivate the practitioner’s ability to respond quickly to various signal stimuli; 2) 

Movement speed practice: The key to improving movement speed is to deal with the 
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relationship between movement proficiency and brain excitability. Continuous 

repetitive exercises and perfect movement techniques can improve movement speed; 

3) Displacement speed practice: The moving speed of an organism in a unit of time. 

The step frequency and step length determine the displacement speed. According to 

the movement state shown by the organism during exercise, it can be divided into 

reaction speed, that is, the ability to respond quickly to various external stimuli, and 

movement speed, that is, the length of time required to complete a single action; 

displacement speed, that is, the length of time to pass a certain distance in periodic 

motion. 

2.3. Analysis of sports training factors 

During physical training, the nervousness of cerebral cortex neurons decreases, 

and the neuronal metabolism level declines. It is due to inhibitory activities taking the 

initiative. The degree of inhibition depends on its initial state, that is, the activity level 

of the cerebral cortex before physical exercise. The higher the degree of excitement is, 

the deeper the degree of inhibition after sports are. The changes in the activity level of 

cerebral cortex neurons caused by sports are not a simple inhibitory process but to 

actively adjust the cerebral cortex to an appropriate degree of excitement so that the 

brain generates electricity. The process of orderly strengthening of activities, due to 

the different levels of cerebral cortex excitement in the initial state, leads to differences 

in the degree of inhibition of neuron electrical activity during sports. Relaxation after 

sports exercises can deepen the active inhibition of the cerebral cortex, and sports 

make the brain electrical activities. It is an alternating process of excitement-

inhibition-excitement. Figure 3 shows the index fitting of the speed quality of sports. 

 

Figure 3. Fitting of index scores of sports speed quality. 

Through cross-domain EEG analysis, we can observe the electrical activity of 

cerebral cortex neurons, which largely reflects the functional state of the central 

nervous system (CNS). This is crucial because the CNS plays a significant role in 

determining speed qualities—defined as the human body’s ability to move quickly or 

complete an action in the shortest possible time. The functional state of the CNS, 

serving as the physiological foundation of speed qualities, greatly influences an 
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individual’s speed performance, especially during developmental stages. Children in 

these periods exhibit higher neural excitability and faster reaction times, making it a 

golden period for developing speed and agility. 

Strength, on the other hand, refers to the muscles’ ability to overcome internal 

and external resistance during work. It is classified in detail based on specific 

meanings, exercise qualities, muscle working methods, muscle contraction forms, and 

physical implications. Strength qualities can be divided into absolute strength, relative 

strength, speed strength, and strength endurance. As one of the most fundamental 

attributes of the human body, strength significantly affects other physical qualities 

such as speed and flexibility. Therefore, the level of strength is a critical indicator of 

an individual’s training level. 

2.4. Auxiliary guidance weight update 

The ability of high-level athletes to concentrate their attention when performing 

sports appearances can be reflected by the degree of inhibition of brain electricity 

alpha waves. Significant differences exist in the degree of inhibition of alpha waves 

of athletes of different sports levels (P < 0.001). Athletes’ stress levels to training load 

can be evaluated by their EEG power spectrum value. Different levels of high-level 

athletes have different abilities to withstand exercise load during training, and this 

difference is significant (P < 0.001). Imagery activity will increase the number of 

neurons involved in the activity and the brain’s overall power. At the same time, it will 

easily lead to fatigue in the nervous center. Too much use of imagery exercises will 

make athletes feel anxious and nervous. Also, in the pre-match appearance tasks, the 

brain waves still increase in fast waves, which proves that the excitement of athletes 

in the pre-match state increases, or the desire to participate in the game is generated, 

which will inevitably produce a certain degree of tension. 

Figure 4 illustrates the composition of additional guidance factors in sports 

performance. Among the biological factors influencing muscle strength, the following 

are key: The cross-sectional area of muscle fibers, muscle fiber types and motor units, 

the number of muscle fibers recruited during contraction, and the functional state of 

the nervous system. These factors, including the contractile force of muscle fibers and 

nervous system functionality, can be significantly enhanced through systematic 

training. Thus, improving both the contractility of individual muscle fibers and the 

functional state of the nervous system is a primary pathway for increasing overall 

strength. While childhood may not be the most sensitive period for strength 

development, targeted exercises can still effectively enhance strength quality during 

this phase. 



Molecular & Cellular Biomechanics 2025, 22(1), 903.  

8 

Dataflow

D
ev

el
o
p
m

en
t 

Performing Excitement Training Training 

Performing Excitement 

Significant 

Training Training 

Significant 

Performing 

Performing 

Auxiliary 

guidance
Auxiliary 

guidance

The composition of sports auxiliary guidance factors

Frequency 

Frequency 

Frequency 

Function 

Function 

Function 

D
ev

el
o
p
m

en
t 

Inhibition 

Inhibition 

Inhibition 

Quality 

Quality 

Quality 
Dataflow

D
ataflo

w

D
ataflo

w

 

Figure 4. The composition of sports auxiliary guidance factors. 

Speed quality, on the other hand, depends on several physiological foundations, 

including the energy supply system, muscle fibers, body structure, and the nervous 

system. Among these, the development and functionality of the nervous system play 

a pivotal role in determining speed quality. The nervous system controls muscle 

activity, ensuring the coordinated functioning of various muscle groups and reducing 

resistance caused by muscle antagonism. The frequency of alternating excitation and 

inhibition within the nervous system directly influences the speed of movement. Only 

a well-coordinated nervous system can synchronize muscle excitation and contraction 

frequency to achieve faster movement. 

Because the nervous system is central to speed quality, improving its 

functionality is the most critical factor in enhancing speed performance. Childhood 

training is particularly effective in this regard, as it can strengthen the nervous system’s 

ability to alternate between states of excitation and inhibition, thereby laying a strong 

foundation for speed development. 

3. Application and analysis of sports training action auxiliary 

guidance model based on cross-domain EEG physical strength 

classification 

3.1. Cross-domain EEG data extraction 

We place the dense mesh electrode cap in a 3% potassium chloride (Kc l) solution 

for 1 min so that the solution completely penetrates the electrode. We connect the GE 

lead conventional EG (Electroglottography) system to the laptop via USB. This 

connection Power can be obtained while transmitting data to start EEG analysis 

software on standby. In order to reduce the artefacts caused by various interferences, 
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the portable computer and the conventional EEG system only use the DC (Direct 

Current) power supply that the portable computer is equipped with. This study selected 

athletes from sports colleges, 30 sports practitioners were subjects, and the 

experimental group members were ten blank groups, 10 A members, and 10 B 

members. The prescribed exercise poses were performed at a fixed practice time, and 

the experimental group was tested. Compared with the control group and the two 

control groups, there are 5 EEG physiological indicators of a peaceful state, hatha 

sports and B, concentration, and exercise. The power spectrum value and frequency 

percentage of waves one and two are statistically analyzed in each lead. 

Figure 5 shows the broken line graph of the spectrum value of EEG physiological 

indicators. Comparing the wave rate of the athletes in the quiet and the apparent state, 

it can be seen that the wave rate in the apparent state is slightly higher than that in the 

quiet state, and the difference is significant. Imagine that after the start of the 

imagining exercise, from the first period to the second period, that is, the EEG power 

value of the imagination exercises to 1 min generally decreases, then rises and 

maintains at a certain level. The P 0.05 of each area is not statistically significant by 

the non-parametric related sample test K Related Samples. Sexual differences suggest 

that the wave activity is relatively stable during the imagining exercise, and the 

excitement and inhibition changes are not obvious. Among them, the difference in 

changes in the bilateral central area (C3, C4), bilateral parietal area (P3, P4), and 

bilateral occipital area are very significant (p < 0.05), the difference in apex (PZ) is 

very significant (p < 0.01). Compared with the untrained group, the left frontal delta 

wave changes significantly in group A, and the right temporal delta wave changes 

significantly. The delta wave changes very significantly, showing an upward trend. 

The right temporal delta wave has a very significant change, and the right temporal 

delta wave very significant change. This shows that the effect of improving delta wave 

B is significantly better than that of sports A. Because people only have delta waves 

during sleep, they will be a hundred times more energetic the next day. Therefore, if 

you want to improve the quality of deep sleep, you should use sports B. 

 

Figure 5. Line graph of spectrum values of EEG physiological indicators. 
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3.2. Auxiliary simulation of sports training actions 

The EEG testing instrument is a portable GES (General Electric System) 120 32-

lead conventional EEG system produced in the United States, which can collect EEG 

data in an unshielded environment. The lead Hyde dense mesh electrode cap is easy 

to wear, and the test electrode is positioned accurately. It conforms to the 10–20 

electrode placement method recommended by the International 

Electroencephalography Society; the sampling recording computer is an IBM 

(International Business Machines) portable notebook computer based on the Windows 

operating system Neurotrave l (version 2.4.01) EEG analysis software. During the test, 

it is safe and harmless to the subjects, and it is easier for athletes to accept than certain 

physiological and biochemical indicators. The EEG power spectrum energy reflects 

the athlete’s ability to adapt to the training intensity. When the EEG arousal level is 

between 38% and 3% and the EEG power spectrum energy is between 0.9 and 1.50, 

the competitive state is the best, except for the evaluation of brain function. In addition 

to the athlete’s competitive state, it can be used as an objective indicator to evaluate 

sports fatigue. 

Figure 6 illustrates the intensity results of the information entropy of the brain 

wave function. It is uncommon to use the REST-76 scale to evaluate athletes’ mental 

and emotional states prior to a competition. However, in this study, athletes 

independently completed the REST-76 scale during the training period (one month 

before the competition) and again the day before the competition. The data were input 

into Excel 2013 for analysis, and a template-based evaluation was conducted. The 

scale consists of 76 questions covering 19 subcategories of physical and psychological 

evaluation, with each item scored on a scale of 0 to 6, where 6 is the maximum and 0 

is the minimum. Statistical analysis of the results revealed no significant difference in 

the overall scores between the evaluations conducted one month prior and the day 

before the competition. However, an increase in social support showed a statistically 

significant difference, along with notable trends of overall physical condition 

deterioration and a decline in self-regulation ability. 

 

Figure 6. The intensity result of the information entropy of the brain wave function. 

On the day before the competition, the balance of alpha-wave energy percentages 

in each brain region was observed under a resting state. Results indicated a gradual 
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increase in the alpha-wave energy percentage from the frontal to the occipital regions. 

When comparing the two hemispheres, the left hemisphere exhibited a stronger energy 

advantage in the central, parietal, and cingulate areas, whereas the right hemisphere 

showed a higher energy percentage in the occipital region. In the frontal region, energy 

performance was similar between both hemispheres. Statistically, significant 

differences (p < 0.05) were observed in the occipital region, while no significant 

differences were noted in other brain areas. 

3.3. Example application and analysis 

The tested athlete took a sitting position, relaxed their hands, and naturally placed 

them on the thighs. The tester asked the athlete to close his eyes and be quiet. The test 

instrument traced the spontaneous EEG for 70 to 90 s, and then the tester instructed 

the athlete to visualize the sports movement from the start of the preparation to the end 

of the firing. As a signal, the tester immediately marked the segment and proceeded 

34 times in a row. The evoked EEG was traced for 10 s, and the test was over. The 

rest-76 scale is used to measure tension and functional recovery. During the training 

period (1 month from the competition) and the day before the competition, the athletes 

fill in independently and enter the data obtained. With form software, according to the 

processing of the result evaluation template, out of a total of 76 questions, 19 small 

items of physical condition and nervousness evaluation results were obtained. The data 

is automatically analyzed by rest-76 processing software, and the results are obtained. 

Figure 7 shows sports’ function recovery scoring results based on brain waves. 

 

Figure 7. The function recovery scoring results of sports based on brain waves. 

The results and statistically significant data are processed and statistically 

analyzed using the SPSS (Statistical Package for the Social Sciences) version of 

statistical processing software. Paired T-test was used for intra-group comparison, and 

unpaired independent sample T-test, correlation coefficient analysis and other 

statistical methods were used to compare groups. It can be seen intuitively that 

compared with the state of appearance before the game, the percentage of the power 

of the wave has been suppressed to a greater extent, from the original average value 

of 64.8% to 52.6%, which shows a significant difference. The ratio of low-frequency 

d and e waves has mostly stayed the same. The average power percentages of high-

frequency B and down waves have increased from 8.2% and 8.6% at a quiet time to 
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9.6% and 16.8%, respectively. The power value of the right EEG after imagining 

exercises is reduced by 17% compared to before imagining exercises. The central area 

is reduced by 13%, the frontal area by 13%, and the temporal area by 37%. Non-

parametric test 2 related samples have statistically significant differences suggesting 

the imagination exercise. The inhibition of the right frontal and right temporal areas 

in the right central area was significantly weakened. The parietal area was reduced by 

27%, and the occipital area was reduced by 0.3%. The non-parametric test 2 showed 

no statistically significant difference, suggesting that after imagining exercises, the 

inhibition of the right parietal and occipital areas was weakened, but there was no 

significant change. 

Figure 8 presents the fan chart of the information entropy of brain wave function. 

Significant changes were observed in the theta waves of different brain regions when 

comparing trained and untrained groups. In particular, Group A showed notable 

changes in left and right temporal waves compared to the untrained group. Group B, 

when compared to Group A, exhibited very significant changes in the right parietal 

waves. Additionally, while the left and right temporal wave changes remained 

significant between the two groups, no other differences were detected. The upward 

trend in theta wave results indicates that Group B demonstrates a more pronounced 

improvement in theta wave activity than Group A, suggesting that the interventions in 

Group B are more effective for enhancing theta wave activity. This enhancement 

facilitates achieving an optimal learning state more effectively. 

 

Figure 8. Fan chart of information entropy ratio of brain wave function. 

Using EEG compression spectrum technology to compare brain function in high-

level swimmers before and after altitude training, it was found that the main brain 

sequence parameters underwent significant changes during the first ten days of 

training at high altitudes. This period was marked by substantial increases in the level 

of information entropy and a noticeable trend toward greater information dispersion. 

These changes suggest that improper pre-competition training intensity and content 

can disrupt the synaptic function matrix coordination in the brain, leading to structural 

changes in brain function. This disruption manifests as increased information 

dispersion, with primary sequence parameters becoming more discrete or shifting to 

the right. Such shifts are associated with a decline in athletes’ competitive abilities. 

3.26%

19.57%

22.83%

8.7%

45.65%

 Signal 1

 Signal 2

 Signal 3

 Signal 4

 Signal 5

 

 



Molecular & Cellular Biomechanics 2025, 22(1), 903.  

13 

It is important to note that in the training of high-level athletes, traditional 

monitoring indicators such as physiological and biochemical markers only partially 

reflect athletes’ functional status. These indicators often fail to accurately capture their 

competitive status. By incorporating advanced EEG technologies, we can gain a 

deeper understanding of the neural mechanisms underlying performance and develop 

more effective strategies to optimize training and competition preparation for elite 

athletes. 

4. Conclusion 

This study leverages EEG technology to investigate the dynamic changes in brain 

activity among athletes during training, providing a theoretical foundation for 

scientifically structuring physical education programs and optimizing sports activities. 

By employing modern scientific methods, this research validates the use of brainwave 

testing to explore the neural characteristics of athletes in different exercise states. The 

findings reveal patterns of cortical electrical activity during physical training and 

underscore the positive effects of exercise on the nervous system. These insights 

contribute to the development of scientific approaches for guiding athletic training and 

enhancing central nervous system (CNS) function. Through the analysis of three 

nonlinear EEG parameters—maximum Lyapunov index, approximate entropy, and 

Lempel-Ziv complexity—among 12 national team athletes during game preparation, 

this study introduces a novel method for studying advanced brain functions. The 

results demonstrate that regular training enhances self-regulation, alleviates anxiety 

and depression, and improves sleep quality, suggesting that training-induced 

improvements in brain function contribute to better autonomic nervous system 

regulation. Furthermore, these improvements help athletes overcome negative 

emotions, enhance psychological well-being, and strengthen their ability to handle 

training challenges and stress, effectively preventing CNS fatigue. 

The findings also highlight that there is no significant gender difference in 

nonlinear EEG parameters among elite athletes. Notably, Lempel-Ziv complexity 

proves to be a sensitive indicator for identifying CNS fatigue in athletes, while 

approximate entropy reflects variations in training load and intensity during 

preparation phases. These nonlinear EEG parameters provide valuable tools for 

monitoring the functional state of the CNS, optimizing training regimens, and 

supporting elite athletes’ mental and physical performance during intense preparation 

periods. 

In summary, this study emphasizes the critical role of cross-domain EEG analysis 

in understanding brain activity under various exercise conditions. The results provide 

theoretical insights and practical guidance for enhancing training outcomes, improving 

mental and physical resilience, and preventing CNS fatigue in elite athletes. 
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