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Abstract: Background: Obstructive sleep apnea syndrome (OSAS) is closely related to 

multiple biological mechanisms, particularly its impact on the cardiovascular system. Long 

term OSAS may exacerbate issues such as hypertension, cardiovascular disease, and aortic 

disease. The aim of this study is to explore the effects of continuous positive airway pressure 

(CPAP) therapy on the biological mechanisms of OSAS patients, with a focus on analyzing the 

biological responses of blood pressure, respiration, and aortic changes. Method: This study 

retrospectively analyzed a case of a 75 year old male patient who was admitted with severe 

nighttime snoring and apnea symptoms, diagnosed with acute OSAS, aortic dissection, and 

hypertension. During the five-year follow-up after receiving CPAP treatment, the patient’s 

apnea index (AHI), blood pressure, changes in aortic diameter, and related biological indicators 

were monitored. Comprehensive evaluation of treatment efficacy using multiple biomarkers 

and electrocardiogram (ECG) data, combined with optimization analysis of respiratory rate and 

electrocardiogram signals using electrophysiological models. Result: After five years of 

treatment, the patient’s AHI significantly decreased to less than 6 beats per hour, blood pressure 

returned to normal, and the aortic diameter decreased from 4.5 cm to 4.1 cm. 

Electrophysiological analysis shows that CPAP treatment has a significant effect on adjusting 

respiratory patterns, restoring normal blood oxygen saturation, and optimizing the correlation 

between electrocardiogram and respiratory rate. In addition, using the TDNN model to estimate 

ECG signals shows a close biological correlation between respiratory rate and blood oxygen 

changes. Conclusion: CPAP treatment has a profound impact on the biological mechanisms 

of OSAS patients, effectively improving blood pressure control, reducing the progression of 

aortic disease, and optimizing changes in respiratory and electrocardiogram biomarkers. This 

study provides a new perspective for understanding the biological effects of OSAS treatment 

and provides a basis for optimizing future treatment strategies. 

Keywords: electrocardiograph; ventilator calibration; internet of things; intelligent algorithms; 

deep learning; cloud platform; cardiovascular disease; real-time diagnosis 

1. Introduction 

Obstructive sleep apnea syndrome (OSAS) is a common sleep disorder 

characterized by repeated collapse of the upper airway during sleep, resulting in 

temporary respiratory pauses or inadequate ventilation [1,2]. With the incidence rate 

of OSAS increasing year by year, especially in obese and aging people, more and more 

studies have revealed its profound impact on overall health. OSAS not only affects 

sleep quality, but is also closely related to various pathophysiological mechanisms 

such as cardiovascular disease, metabolic disorders, and respiratory system diseases. 

In OSAS patients, the decrease in blood oxygen saturation caused by obstructive sleep 

apnea and long-term repeated hypoxic events can lead to biological reactions such as 
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increased sympathetic nerve activity, elevated blood pressure, and endothelial 

dysfunction, thereby exacerbating the development of cardiovascular disease. 

Especially for elderly patients, OSAS is often accompanied by serious complications 

such as aortic disease, which further exacerbates their condition [3,4]. 

In this context, continuous positive airway pressure (CPAP) therapy, as the gold 

standard method for treating OSAS, has been widely applied in clinical practice. CPAP 

effectively improves patients’ sleep quality, reduces sympathetic nervous system 

activation, regulates blood pressure, and improves cardiovascular health by 

continuously maintaining upper airway patency, avoiding the occurrence of 

respiratory pauses and low oxygen events [5,6]. Multiple studies have shown that 

CPAP treatment can significantly reduce nighttime blood pressure in OSAS patients, 

reduce the occurrence of cardiovascular events, and effectively slow down the 

progression of vascular diseases such as the aorta. However, the profound effects of 

CPAP treatment on the biological mechanisms of OSAS patients have not been fully 

studied, especially its specific mechanisms of action on blood pressure regulation, 

electrocardiogram (ECG) signals, respiratory patterns, and progression of aortic 

disease [7,8]. 

In recent years, with the rapid development of biological technology, the analysis 

methods of biological signals such as electrocardiogram and sonocardiogram (PCG) 

have been continuously optimized, providing us with a new perspective for exploring 

the impact of OSAS on biological processes. Especially based on the analysis of 

electrocardiogram (ECG) signals, it can not only reveal the cardiovascular health 

status of patients, but also provide effective predictions for respiratory rate, blood 

oxygen changes, and other physiological processes [9,10]. The application of 

electrophysiological models, especially advanced technologies such as deep neural 

networks (TDNN), can effectively improve the estimation accuracy of 

electrocardiogram data and capture the complex correlations between respiration, 

heartbeat, and other biomarkers. Therefore, by combining modern biological 

techniques to conduct multidimensional evaluations of OSAS patients, we can 

comprehensively understand the profound impact of CPAP treatment on their 

biological mechanisms [11]. 

In this study, we selected a 75 year old male patient and evaluated the effects of 

CPAP treatment on blood pressure, aortic disease progression, respiratory patterns, 

and electrocardiogram signals based on clinical data and multiple biomarkers through 

a five-year follow-up of CPAP treatment. We paid special attention to the changes in 

important biological indicators such as blood pressure levels, apnea hypopnea index 

(AHI), and aortic diameter before and after CPAP treatment, and explored the role of 

CPAP treatment in improving these biological responses. By comprehensively 

analyzing the changes in ECG signals, respiratory rate, and aortic diameter, we aim to 

reveal the biological effects of OSAS treatment and explore the potential of CPAP 

therapy in improving patients’ systemic physiological responses [12–14]. 

The goal of this study is to provide more targeted OSAS treatment strategies for 

clinical practice through scientific biological evaluation, and to provide theoretical 

basis for exploring the treatment mechanisms of related diseases in the future. The 

research results will help deepen our understanding of the biological mechanisms of 

OSAS and provide new ideas and methods for optimizing CPAP treatment plans, 



Molecular & Cellular Biomechanics 2025, 22(4), 876. 
 

3 

delaying or reversing the progression of cardiovascular disease. 

2. Analysis of demand 

The word “quick” is emphasized while acquiring electrocardiograms for patients 

with cardiovascular disease. Figure 1 illustrates the conventional ECG examination 

procedure. The patient’s family members call 120 when they feel ill; the patient is 

taken to the hospital by ambulance; the receiving physician uses the ECG machine to 

identify and diagnose an abnormal ECG; the hospital opens the green channel for first 

aid, which typically takes between 15 and 26 min. This is a laborious and time-

consuming process that takes an average of 26 min and at least 15 min. In order to 

improve the quality of emergency care for cardiovascular diseases in the area, it is 

necessary to set up an ECG monitoring and management system that incorporates a 

number of systems, including real-time ECG acquisition, display and storage, 

classification, diagnosis, early warning, and localization, into the platform architecture. 

This will enable quick, easy, and effective ECG diagnosis and early warning [15,16]. 

 

Figure 1. Standard ECG monitoring procedure. 

3. Design of cloud platforms 

3.1. Module for ECG acquisition 

The ECG acquisition module, which combines a mobile application with an 

Internet of Things ECG machine, is in charge of data transmission, geographic location 

positioning, and the collection and processing of ECG signals. With a built-in AD8232 

chip that converts the cardiac bioelectric signals recorded on the human skin into 

digital signals, the first generation of IoT ECG machines, the CAREDA-3, has 

achieved three-lead ECG acquisition. This is accomplished by three acquisition 

electrodes and one reference electrode. The ECG signal is a weak tiny signal that can 

be interfered with by baseline drift, industrial frequency interference, 

electromyographic noise, and other factors. The three acquisition electrodes are 

situated in the upper-left, upper-right, and lower-right positions of the chest, which 

correspond to the left arm, right leg, and right arm positions of the unipolar limb lead 

Ⅰ, which makes up the right-leg drive amplifier. The purpose of the dedicated 

instrumentation amplifier is to amplify small signals and perform common-mode 

rejection. When the input current is applied, the common mode voltage change will be 

cancelled out, improving the system’s common-mode rejection performance [16]. 

These guarantee that the IoT ECG equipment can efficiently extract weak ECG signals 
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while offering the highest level of noise suppression. Compared to traditional wet 

electrode measurement, the silver oxide dry electrode measurement used in the IoT 

ECG machine offers several benefits, including undistorted waveforms, high signal 

acquisition sensitivity, and the elimination of time-consuming procedures like 

applying conductive adhesive and conductive liquid [17]. Through low-power 

Bluetooth 4.0, the IoT ECG equipment is linked to the mobile application. Once the 

standard amount of time has been collected, the data can be transferred to the cloud 

platform or shown in real time. The data transmission function uses the Zigbee 

communication protocol, which has the qualities of low power consumption, low 

complexity, short latency, large capacity, and high reliability [18]. It involves 

uploading the ECG to the cloud platform via IoT for artificial intelligence diagnosis 

or sending it to the assigned physician for analysis. In order to help the cloud platform 

find cardiovascular patients and perform rescue treatment more effectively, the 

geolocation function transmits the patient’s real-time position. 

After turning on the ECG machine and successfully pairing the two devices via 

Bluetooth, the patient logs into the mobile application by entering their username and 

password. Register and fill up personal details like age and gender if this is the user’s 

first time using it. After the ECG machine has stabilized its waveform, you can either 

hand it over to the doctor next to you for a direct reading or click on the capture of the 

effective length of time. Then, you can upload or send the ECG to the designated 

doctor by clicking on the upload button after waiting for the electrodes on the back of 

the machine to be recognized and automatically capture the ECG signals of the chest 

lead and display the real-time ECG signals on the APP on the cell phone terminal (see 

Figure 2). 

 

Figure 2. Diagram showing how the ECG capture module operates. 

3.2. Algorithmic modules 

Digital signals gathered by the ECG acquisition module are sent to the cloud 

platform’s algorithm module, which uses artificial intelligence algorithms to 

categorize, identify, integrate, and analyze the ECG data before giving the user 

feedback. Filtering and baseline removal, feature point identification, QRS wave, 

atrial fibrillation, heart rate variability (HRV), R-wave classification, and rhythm type 
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analysis are the primary algorithms included in the algorithm module. 

The baseline drift of ECG waveforms during routine ECG acquisition can be 

caused by breathing and position changes, as well as a variety of medium- and high-

frequency electromagnetic induction interferences that can cause high waveform 

variability, feature obliteration and confusion, and unclear markers, all of which can 

complicate analysis [19]. In order to solve this issue, the algorithm module’s filtering 

de-baseline algorithm computes the baseline drift value and eliminates baseline drift 

from ECG waveforms, making it simple to identify abnormal ECG waveforms [20]. 

Furthermore, the QRS wave algorithm was used to identify QRS wave clusters for RR 

interval and real-time heart rate calculation, while AF analysis was used to ascertain 

the start, stop, and duration of each occurrence of AF; HRV analysis algorithms can 

be used for both time-domain analysis (SDNN/SDSD/RMSSD/PNN50, etc.) and 

frequency-domain analysis (HF, LF, and UF, etc.); and the R-wave classification 

algorithm is used to identify normal rhythm, ventricular pre-systole, paired ventricular 

pre-systole, ventricular dysthymia, supraventricular ternary rhythm, arrest, atrial 

fibrillation, arrhythmia, tachycardia, and bradycardia. Fast analysis and precise 

diagnosis are guaranteed when the aforementioned algorithms run normally. Figure 3 

compares the ECG waveforms obtained simultaneously by four patients using this 

ECG machine and a 12-lead medical ECG machine, respectively. It also illustrates 

how the cloud platform processes ECGs and how aberrant waveforms are identified 

and labeled. 

 

Figure 3. ECG waveforms recorded by medical and IoT ECG machines are 

compared. 

3.3. Module for comparing diagnostic models 

ECG data and algorithm analysis findings are stored in the diagnostic model 

comparison module for deep learning training and building illness diagnostic models. 

Multiple diagnostic models are included in the module; these models are 

individually built using distinct techniques that carry diagnostic indicators. Deep 

learning is used to train these models using the ECG data samples that are kept in the 

module. The resulting deep predictions are then weighted to provide the final 
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integrated prediction. The deep learning model is chosen from a variety of machine 

learning Bayesian classifiers, K-nearest neighbor algorithm, K-mean algorithm, linear 

regression, logistic regression, multivariate nonlinear regression fitting methods, 

Adaboost algorithm, Hidden Markov Models, Extreme Learning Machines, Random 

Forests Algorithm, Decision Tree Algorithms, Generative Adversarial Networks, 

Stacked Auto-Encoders, Fully Connected Networks, Unsupervised Pretraining 

Networks, Deep Belief Networks, one or more deep Boltzmann machines, and neural 

tensor networks. Ultimately, multiple diagnostic models with various machine 

learning algorithms are obtained, and these are fused to create a comprehensive 

integrated model with a wide range of disease recognition capabilities for practical 

disease diagnosis. In fact, in the process of application, the back-end doctors of the 

cloud platform will also manually correct the AI diagnostic results, which is more 

advantageous in terms of accuracy and specificity compared to the pure AI diagnosis 

of Holter ambulatory electrocardiogram, which is to be followed up with a large-scale 

cross-sectional study for validation. 

3.4. System of medical aid 

The hospital has a medical aid system that includes the hospital chest pain center 

and the 120 emergency center. The doctor evaluates the diagnostic findings of the 

cardiovascular patient’s ECG data supplied by the cloud platform and sends the 

judgment results back to the cloud platform after the cloud platform uses the Internet 

of Things to connect to the 120 emergency center or the chest pain center, sends the 

patient’s ECG data, and provides the diagnostic results to the medical aid system. 

Figure 4 displays the schematic of the cloud platform for IoT-based ECG machine 

ECG monitoring. 

 

Figure 4. Cloud platform schematic for an Internet of Things-based ECG equipment 

for cardiac monitoring. 
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4. Result 

4.1. Case 

A 75-year-old male patient arrived at the clinic in September 2016 complaining 

of recurrent nighttime snoring that had been worsening for a month and had been going 

on for more than nine years. Past medical history: 4.5 cm in diameter ascending aortic 

aneurysm, found in April 2015 (refer to Figure 5); over ten years of hypertension; oral 

antihypertensive medicine; no history of smoking. Following his admission, he had 

polysomnography (PSG), which revealed a minimum oxygen saturation of 72% and 

an apnea hypopnea index (AHI) of 56.5 episodes per hour. He was diagnosed with a 

thoracic aortic aneurysm, hypertension, and acute OSAS when he was brought to the 

hospital. With a pressure of 8–10 cm H2O and an average of 4.5 h, the patient was 

admitted to the hospital as part of a CPAP treatment program. After five years of 

follow-up, we discovered that the patient’s sleep apnea had been successfully treated, 

that the AHI had decreased to six times per hour or less, that the blood pressure was 

within normal limits, and that the thoracic aortic aneurysm’s diameter had not 

increased—in fact, it was beginning to shrink, as indicated in Table 1. 

Table 1. Patient follow-up. 

Index Before treatment Treatment for 5 years Treatment for 8 years 

AHI (times/h) 56.5 1.6 1.2 

CPAP treatment pressure (cmH2O) 10 7 7 

Diameter of thoracic aortic aneurysm (cm) 4.5 4.4 4.1 

BMI 22.8 24.5 23.2 

LDL-C (mmol/L) 1.75 2.2 2.1 

TC (mmol/L) 3.15 3.8 3.2 

HbA1c (%) 5.5 5.8 5.2 

 

Figure 5. Enhancement of chest CT. 

Note: 2016 chest CT enhancement: 4.5 cm thickening of the ascending aorta. 
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4.2. Estimation of electrocardiograms 

The outcomes of the model selection phase for ECG lead estimate for ECG 

devices are displayed in Figures 6a–c. Only a portion of the TDNN results are 

displayed because the polynomial model and the MLP both perform noticeably worse 

than the TDNN. The best polynomial model has an order of magnitude of 9. Three 

layers with twelve neurons each make up the best MLP model. Models with the same 

lag parameter are indicated by the dashed lines in Figure 6a. It is evident that the BIC 

is much reduced as the maximum latency is increased. The BIC is slightly impacted 

by increasing the hidden layer’s model complexity while maintaining a constant lag 

parameter. It is evident that a lag value of 70 to 80 is ideal when the average BIC for 

the highest model lag is provided in Figure 6b. The BIC curve’s lowest point is shown 

in Figure 6c. 

 

Figure 6. Choosing the BIC model for ECG lead estimate alone for TDNN: (a) choosing a line and model with a fixed 

lag length; (b) the lowest Bic value; (c) Bic on the quantity of lags in the delay line. 

The average ECG estimate performance for the top model in each of the three 

model categories is shown in Table 2 for all participants and locations. Generally 

speaking, the MLP’s performance increase over the polynomial model is minimal. 

TDNN, on the other hand, greatly enhances performance. 

The estimate for the second ECG lead, using the optimal TDNN model, revealed 

a linear correlation of 0.99 with a 5.5% relative error. With a linear correlation of 0.97 

and a relative error of 1.6%, the correlation for the first ECG lead was marginally 

lower. There were no discernible variations in performance between the prone, lateral, 

and supine postures. 

Table 2 shows the performance of the best polynomial, MLP, and TDNN models 

for patch ECG lead estimation for ECG I and II. 

 

 

 

 



Molecular & Cellular Biomechanics 2025, 22(4), 876. 
 

9 

Table 2 

Target ECG Lead Model ME V
 MAE V

 r NMSE% 

Einthoven I 

Poly 0.01 ± 0.55  30.5 ± 10.5  0.66 ± 0.12  53 ± 25  

MLP 0.08 ± 0.05 28.6 ± 10.2 0.66 ± 0.15 50 ± 23 

TDNN 0.12 ± 0.55 9.6 ± 3.2 0.98 ± 0.02 5.6 ± 7.2 

Einthoven II 

Poly 0.22 ± 2.61 115 ± 48.5 0.77 ± 0.14 42 ± 23 

MLP 0.26 ± 3.4 110 ± 35 0.78 ± 0.15 40 ± 21 

TDNN 0.75 ± 1.22 23.5 ± 5.6 0.98 ± 0.01 1.6 ± 3.5 

ECG excerpts from two distinct patients in the supine position simultaneously 

during the measuring procedure are displayed in Figures 7 and 8. The reference ECG 

leads and the estimated ECG signal are displayed in (b) and (c), whereas the 55-mm 

patch ECG is displayed in (a). The two persons’ ECG leads are similar, however the 

patch ECG leads differ significantly. We noticed notable variations in the patch ECG 

leads’ morphology across the participants during the course of the study. ECG leads 

may always be calculated for a certain performance, notwithstanding these variations. 

 

Figure 7. Example ECG readings for subject 1 while lying down: (a) patch ECG; (b) The estimated and reference 

ECG I ECG; (c) ECG II reference and estimated ECG. 

 

Figure 8. Examples of subject 2 supine ECG signals: (a) Patch ECG. In contrast to Figure 9a, a high degree of 

variability in the patch ECG leads across subjects can be observed; (b) Reference and estimated ECG I ECG; (c) 

Reference and estimated ECG II ECG. 
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4.3. Ventilator PEP and LVET estimates 

An example of a ventilator ECG and PCG signal excerpt with the baseline point 

of detection within the simulated apnea period is shown in Figure 9. ECG peak 

detection worked successfully across all signals because of the good signal quality. 

Both the beginning and the peak of S1 and S2 were reliably identified in PCG. Because 

the end of S1 and the end of S2 were detected very early, the durations of the S1 and 

S2 peaks tended to be slightly underestimated. 

The added noise caused by lung noises impairs PCG peak detection efficiency in 

low signal quality situations, particularly during the deep breathing period. The most 

frequent issue is false peak detection, which is hampered by the extra ECG data used 

during the classification stage. The suggested combined ECG and PCG peak detection 

approach detected two PCG peaks in 85.8% of the total stethoscope data. At 89.8%, 

the side-lying position performed the best, followed by the supine position (81.9%). 

75.8% of the data were accessible for PCG peak detection when the subject was in the 

prone position. 

 

Figure 9. The reference point’s ECG and PCG signals were detected. 

Because the lateral recumbent position is similar to standard echocardiographic 

positioning, which has performance data published, Table 3 presents the PEP and 

LVET estimation results. The PEP estimation error in this place was 15.6%. 7.0% was 

the relative LVET estimation error. However, additional places are of importance for 

dynamic estimation over the long period. We discovered that different sites had 

different LVET and PEP estimate performance. The PEP estimate was 25.1 ms for 

MAE and 0.4 ms for ME across all participants and locations, resulting in a relative 

error of 21.3%. With a relative error of 10.0%, the LVET estimates for ME and MAE 

were 3.6 ms and 30.5 ms, respectively.The PEP estimate was 25.1 ms for MAE and 

0.4 ms for ME, resulting in a 21.3% relative inaccuracy. 

Table 3. PEP and LVET estimates of ECG signals in the lateral position and aortic 

region auscultation. 

Position STI MEms MAEms MAPE% 

Lateral 
PEP 6.15 ± 24.55 17.56 ± 15.86 16.02 ± 16.63 

LVET −3.25 ± 32.56 21.82 ± 23.75 7.02 ± 7.26 

Bland-Altman plots of STI estimates for PEP (a) and LVET (b) are displayed in 



Molecular & Cellular Biomechanics 2025, 22(4), 876. 
 

11 

Figure 10. 302.2 ms is the average reference LVET, and 110.5 ms is the average 

reference PEP. The 5 ms resolution of the PEP and LVET references in ICON-Core is 

what causes the noticeable quantization. While the LVET plots typically include 

negative outliers that fall below 270 ms, the PEP plots display a sequence of positive 

outliers above 150 ms. Otherwise, the errors don’t show any clear trends. 

 

Figure 10. Bland-Altman plots of STI estimates: (a) PEP; (b) LVET. 

4.4. Respiration derived from electrocardiograms and phonocardiograms 

The correlation optimization model and feature selection of the predicted traffic 

signals are used to choose the TDNN with two hidden layers, two neurons per layer, 

and a tapped delay vector ranging from 0 to 9. flowr  , HR  , areaQRS  , 1PCAS  and

ampQRS  are chosen from among the twelve EDR and PDR features that are accessible. 

With a tap delay line latency of 0 to 14 and four neurons per layer, a two-layer 

TDNN functions optimally when the minimum MAE for the respiratory rate 

estimation bpmMAE   is optimized, and the HR  , areaQRS  , 1PCAS  and ampQRS  

feature is chosen. The respiratory signal and rate estimate performance in relation to 

the flow reference is provided in Tables 4 and 5. Outliers have been eliminated from 

the data for each site, and data for the two optimization criteria are displayed separately. 

If a data point deviated more from the median than the absolute deviation from the 

three scaled medians, it was deemed an outlier. 

Table 4 shows the performance of respiratory signal and rate estimate for every 

place in the optimization of maximum flow feature selection. It provides the 

percentage of outliers eliminated. 

Table 4 

Position flowr  bpmME   bpmMAE  
RRr  MAPE% Outliers% 

Supine 0.74 ± 0.08  −0.01 ± 0.22  0.15 ± 0.14  0.90 ± 0.06  1.45 ± 1.42  9.50 

Lateral 0.65 ± 0.12  −0.04 ± 0.32  0.22 ± 0.21  0.86 ± 0.02  1.88 ± 1.92  15.46 

Prone 0.52 ± 0.12  0.05 ± 0.52  0.36 ± 0.38  0.78 ± 0.12  3.32 ± 3.87  22.75 

All 0.680 ± 0.15  −0.02 ± 0.28  0.23 ± 0.18 0.88 ± 0.18 1.85 ± 1.99 15.6 

Table 5 shows the performance of respiratory signal and rate estimate for every 

site in the feature selection optimization for minimal MAE bpm. The percentage of 

outliers eliminated is displayed. 
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Table 5 

Position flowr  bpmME   bpmMAE  
RRr   MAPE% Outliers% 

Supine 0.72 ± 0.12  0.01 ± 0.24  0.22 ± 0.15  0.91 ± 0.06  1.65 ± 1.43  9.55 

Lateral 0.64 ± 0.15  −0.06 ± 0.32  0.22 ± 0.23  0.85 ± 0.02  1.84 ± 1.94  14.68 

Prone 0.45 ± 0.12  0.01 ± 0.52  0.35 ± 0.38  0.78 ± 0.12  3.15 ± 3.87  21.75 

All 0.62 ± 0.14  −0.02 ± 0.25  0.24 ± 0.19 0.88 ± 0.09 2.15 ± 2.26 12.56 

The RR estimate bias is nearly zero in both optimization approaches. The RR 

estimate error is somewhat reduced as a result of the matching optimization feature 

selection. The flow signal correlation was higher for the correlation-optimized feature 

set. The positional correlation performance of all parameter estimates was consistently 

shown to be best in the supine position, followed by the lateral and prone orientations. 

The flow correlation dropped from 0.75 to 0.51 and the relative inaccuracy between 

the prone and supine positions more than quadrupled. Furthermore, the position of the 

subject had a significant impact on the quantity of outliers. Once more, the fewest 

aberrant results were found while the subject was in the supine position [21,22]. 

The Bland-Altman plots for the respiratory frequency estimations are displayed 

in Figure 11a,b, with all positions of the two optimization goals included and without 

outliers eliminated. It became clear that the study protocol called for three distinct 

breathing frequencies. Outliers were more likely to occur at lower and higher 

respiration rates, but there was no obvious rate-dependent error dependence. 

 

Figure 11. The performance plot of RR estimation using EDR and PDR at all places, 

including outliers: (a) optimization of correlation; (b) optimization of respiratory 

frequency. 

A reference and calculated respiratory flow example for two distinct respiratory 

phases is shown in Figure 12. Over time, the estimated respiratory signal adjusts to 

the fluctuating breathing depth and follows the frequency. The piecewise nature of the 

underlying feature base makes it difficult to capture more detailed transitory patterns. 

 

Figure 12. ECG and PCG-derived respiration examples of reference and estimated 

respiratory signals. 
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5. Conclusion 

This study analyzed the biological effects of CPAP treatment on blood pressure 

regulation, aortic disease, electrocardiogram (ECG) signals, and respiratory patterns 

in a 75 year old male OSAS patient through a five-year follow-up of CPAP treatment. 

The research results indicate that CPAP treatment significantly improved the patient’s 

apnea index (AHI), reducing it to less than 6 times per hour, and effectively controlled 

nighttime blood pressure levels, reducing the risk of cardiovascular events. At the 

same time, the patient’s aortic diameter also showed a slight decreasing trend, 

indicating that CPAP treatment may have a positive effect on stabilizing aortic disease. 

Through the analysis of electrocardiogram signals, especially the use of deep 

neural network (TDNN) models for ECG signal estimation, the study found that CPAP 

treatment not only improved ECG signals, but also optimized the synchronization 

between respiratory rate and heart rate, further confirming the positive impact of CPAP 

on the neural cardiovascular system interaction. By combining multidimensional data 

analysis of sound wave cardiac imaging (PCG) and ECG signals, we further revealed 

the mechanism by which CPAP therapy improves cardiovascular function at the 

biological level, particularly in reducing sympathetic nerve activity and decreasing 

cardiac burden. 

In addition, this study also suggests that CPAP treatment not only has a direct 

effect on improving the sleep quality of OSAS patients, but may also have potential 

long-term health benefits by improving biomarkers and promoting the reversal of 

aortic lesions. This discovery provides a new biological perspective for the clinical 

treatment of OSAS in the future, and also provides a scientific basis for the long-term 

efficacy evaluation of CPAP therapy. 

Conflict of interest: The authors declare no conflict of interest. 
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