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Abstract: Background: Metabolomics can offer vital information into a cancer’s condition. 

Despite its potential, research on the metabolites linked to colorectal cancer (CRC) remains 

limited. From a cell molecular biomechanics perspective, understanding these metabolite 

associations can offer a deeper understanding of the disease’s underlying mechanisms. We 

performed Mendelian randomisation (MR) analyses to investigate causal associations 

between 486 blood metabolites and CRC. Methods: Data on blood metabolites were derived 

from a Genome-wide association study (GWAS) involving 7824 Europeans. Additionally, 

summary statistics for CRC were sourced from the FinnGen consortium database. To explore 

the causal relationship between CRC and blood metabolites, we primarily utilized the inverse 

variance weighted (IVW) analysis. Supplementary analyses incorporated MR-Egger and 

weighted median methods to ensure the robustness of our findings. The potential for 

pleiotropic effects was evaluated using the Cochran’s Q test and the MR-Egger intercept test. 

Furthermore, colocalization analyses were performed to ascertain whether the observed 

associations were influenced by specific genetic loci within the genomic region. Results: The 

results of this study indicated significant associations between eight metabolites: 

Indolelactate (OR = 2.62, 95% confidence interval (CI): 0.26–1.66, p = 0.007), 1-

heptadecanoylglycerophosphocholine (OR = 1.37, 95% CI: 0.10–0.54, p = 0.005), 1-

stearoylglycerophosphocholine (OR = 3.47, 95% CI: 0.65–1.84, p = 0.00005) , X-11792 (OR 

= 0.57, 95% CI: −0.94–−0.17, p = 0.005), X-12038 (OR = 0.44, 95% CI: −1.50–−0. 12, p = 

0.021), X-12212 (OR = 1.96, 95% CI: 0.10–1.25, p = 0. 022), X-14056 (OR = 0.50, 95% CI: 

−1.28–−0.12, p = 0.018) , X-14745 (OR 0.41, 95% CI: −1.48–−0.31, p = 0.003) and CRC. 
These metabolites might play roles in altering the mechanical properties of cells in the colon. 

They could potentially affect the cytoskeletal structure, cell membrane fluidity, or the way 

cells interact with the extracellular matrix. Conclusion: The eight identified blood 

metabolites with causative influence on CRC provide valuable clues for understanding CRC 

from a cell molecular biomechanics angle, which can further aid in its screening, prevention, 

and treatment strategies. 

Keywords: blood metabolites; cell molecular biomechanics; colocalization analysis; 

colorectal cancer; Mendelian randomization 

1. Introduction 

Previous research indicates that cancer constitutes 21% of all deaths worldwide, 

placing colorectal cancer (CRC) as the second leading cause of mortality due to 

cancer [1]. Early-stage CRC patients have a five-year survival rate of about 90%, 
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which significantly diminishes to under 10% in cases of patients presenting with 

distant metastasis [2]. Therefore, enhancing early screening for CRC is crucial in 

preventing the progression of cancer. Despite studies exploring the metabolic 

pathways involved in colorectal carcinogenesis and progression [3], there is a lack of 

research on metabolic alterations in CRC. Investigating the connection between CRC 

and blood metabolites associated with CRC will be beneficial for the early detection, 

prevention, and treatment of CRC. 

Metabolomics is a comprehensive examination of small molecule metabolites 

that can offer vital information into a cancer’s condition. Specifically, changes in 

metabolite levels can be utilized to assist determine which modifications at the DNA, 

RNA, and protein levels lead to functional changes in cellular activity since they 

represent the activity of metabolic enzymes in cancer cells [4]. There is growing 

evidence that metabolic reprogramming, a key feature of cancer, is the outcome of 

numerous and frequently intricate interactions between signaling and metabolic 

pathways [4,5]. In addition, a growing area of research is that the selection of 

targeted medicines to meet the metabolic dependence of the cancer can be made 

more sensible with the use of metabolomics. This is exemplified by the fact that the 

oncometabolite D-2-hydroxyglutarate modifies the activity of chromatin-modifying 

enzymes. This was demonstrated to be significantly elevated in cells expressing 

isocitrate dehydrogenase mutations associated with cancer, and it was further 

demonstrated to be elevated in cells, tissues, and plasma from cancers containing 

somatic isocitrate dehydrogenase mutations [6–8]. Thus, metabolomics offers 

valuable insights for cancer screening, diagnosis, and treatment. However, little 

research has been conducted on CRC and metabolites linked to CRC. 

Existing studies indicate that there is a positive correlation between metabolic 

syndrome, characterized by elevated levels of glucose in the bloodstream, and an 

increased likelihood of developing CRC [9]. Leucine, serotonin, imidazole 

propionate, and 2-linoleoylglycerol (18:2) are metabolites associated with CRC [10]. 

However, no overall association between serum metabolites and CRC was observed 

in the study by Amanda et al. [11]. The above phenomenon may be caused by 

factors, for instance, changes in metabolite content may occur in cancer patients after 

treatment, or patients may have other pre-existing diseases and have been taking 

medication for a long time before being diagnosed with cancer. Additionally, the 

presence of a tumor can also cause changes in metabolite content. These factors can 

result in an inaccurate relationship between CRC and metabolites, necessitating 

further research and evidence. 

MR is a statistical technique that use SNPs as IVs to establish causal 

relationships between modifiable exposures and outcomes using non-experimental 

data. The alleles of a certain SNP are allocated to gametes during meiosis in a 

random manner. As a result, they are not often affected by reverse causality or 

residual confounding. This random assignment is comparable to how exposure is 

assigned in the population [12]. Consequently, MR has become an essential tool for 

scientists to explore causal links between risk variables and outcomes using 

observational data [13]. 

This study primarily use MR and colocalization analysis to examine the causal 

association between 486 blood metabolites and CRC. Ultimately, it identifies 8 
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blood metabolites that have a causative link with CRC, which has implications for 

the prevention and screening of CRC. 

2. Materials and methods 

2.1. Study design and date source 

For a robust MR study, it is essential to meet three fundamental assumptions: 

(1) The instrumental variables must exhibit a solid link to the exposures under 

investigation; (2) These variables must be impervious to the effects of confounding 

elements; (3) The instrumental variables should exert their influence on outcomes 

exclusively through the exposures, excluding any immediate connection. In the 

present study, the MR analyses were methodically executed with R software (version 

4.2.1), leveraging the TwoSampleMR and coloc packages to ensure the integrity of 

our findings. 

In the current research, we leveraged the blood metabolite data provided by 

Shin and colleagues [14]. Access to comprehensive summary statistics was granted 

through the Metabolomics GWAS Server (https://metabolomics.helmholtz-

muenchen.de/gwas/). Our cohort encompassed a total of 7824 European participants, 

with 1768 individuals sourced from the KORA F4 study and an additional 6056 from 

the UK Twin Study. Post-quality assurance procedures, we conducted an analysis 

encompassing 486 metabolites, which included both 309 identified and 177 yet-to-

be-identified metabolites, as referenced in Supplementary materials Table S1. The 

unidentified metabolites are labeled with an “X” to signify their obscure chemical 

attributes. The screening basis of 486 metabolites is as follows: (1) Involvement in 

specific metabolic pathways. Tryptophan metabolic pathway. Tryptophan 

metabolites such as indole lactic acid and indole-3-lactic acid have been widely 

studied and are related to inflammation and oxidative stress in CRC. Phospholipid 

metabolic pathway. Lysophosphatidylcholine (LPC) and its isomers, such as LPC 

(17:0) and LPC (18:0), are involved in cell membrane fluidity and signal 

transduction and are closely related to the risk of CRC. Amino acid metabolism. 

Amino acids such as leucine and glutamine play an important role in tumor 

metabolism and affect cell proliferation and energy metabolism [3]. Lipid metabolism. 

Lipid metabolites such as linoleic acid and eicosapentaenoic acid (EPA) are related to 

inflammation and oxidative stress and affect the development of CRC [10]; (2) Related 

to tumor metabolic reprogramming. Glycolysis. Tumor cells often obtain energy 

through the glycolysis pathway, even in the presence of sufficient oxygen. Related 

metabolites such as lactate and pyruvate may be related to the risk of CRC [8]. Fatty 

acid metabolism: Tumor cells require a large amount of fatty acids to support cell 

membrane synthesis and energy metabolism. Related metabolites such as palmitic 

acid and stearic acid may affect the risk of CRC [9]. Amino acid metabolism: Tumor 

cells have an increased demand for certain amino acids, such as glutamine and 

leucine. Changes in the levels of these metabolites may reflect the metabolic 

reprogramming of CRC [10]; (3) Literature support: According to previous studies, some 

metabolites have been reported to be associated with the risk of CRC. For example, 

metabolites such as leucine, serotonin, imidazole propionate, and 2-linoleoylglycerol 

(18:2) are associated with the occurrence and development of CRC [10]. Although the 
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specific functions of some unknown metabolites are unclear, they have been found to be 

associated with disease risk in other types of cancer, suggesting that they may also 

play an important role in CRC [11]. 

A set of summary-level statistics on CRC was obtained from the FinnGen 

consortium database (R9 release) [15], which included 6509 cases and 287,137 

controls. The identification method of CRC cases in the FinnGen database is as 

follows: CRC cases are identified by International Classification of Diseases (ICD) 

codes, mainly using ICD-10 codes C18–C20 (colon cancer, rectal cancer, and 

colorectal cancer). The diagnosis of the case is confirmed by hospital records, 

pathology reports, and clinician’s diagnosis. The FinnGen project works closely with 

the Finnish National Health Information System to ensure the accuracy and 

completeness of the data. The follow-up period of the study subjects was from 1 

January 1987 to 31 December 2018, covering a follow-up period of up to 32 years. 

The follow-up data includes patients’ medical records, pathology reports, and death 

registration information, ensuring comprehensive tracking of CRC cases. 

2.2. IVs selection 

To satisfy the three hypotheses of MR studies, we performed a rigorous 

screening of IVs related to blood metabolites from multiple perspectives. First, we 

identified several single nucleotide polymorphisms (SNPs) that were significantly 

associated (p < 1 × 10−5) with blood metabolites; secondly, we prune by eliminating 

linkage disequilibrium (LD), setting a threshold of R2 < 0.01 and within 10,000 kb, 

to obtain independent SNPs. This step is to ensure the independence between the 

selected IVs and avoid false positive results due to LD; third, in order to ensure that 

the selected IVs have sufficient strength, we performed a test using the F statistic, 

and selected SNPs with an F statistic greater than 10 to mitigate possible bias due to 

the weak testing power of the tool [16]. The F statistic is an indicator of the 

effectiveness of instrumental variables. A low F statistic may mean that the 

instrumental variables are not strong enough, resulting in less accurate estimation 

results. Subsequently, we reconciled the exposure and outcome data to ensure that 

the IV effects on exposure and outcomes corresponded to the same allele. In 

addition, we removed SNPs that exhibited palindromic effects and allelic 

discordance. Finally, we extracted SNPs associated with blood metabolites from the 

obtained results and eliminated SNPs significantly associated with outcomes (p < 1 × 

10−5) to avoid potential confounding factors affecting the results of MR analysis. 

Through this series of screening steps, we ensured the quality and suitability of the 

selected IVs, laying a solid foundation for subsequent MR analysis. 

2.3. Statistical analysis and sensitivity analysis 

In this research, we deployed the Inverse Variance Weighted (IVW), Weighted 

Median (WM), and MR-Egger approaches from the TwoSampleMR suite to appraise 

the causal relationship between blood metabolites and the development of Colorectal 

Cancer (CRC), with a focus on counteracting the pleiotropic influences of genetic 

variation. At the outset, the IVW technique was engaged as our principal analytical 

instrument, amalgamating the Wald ratio estimates of each SNP in relation to the 



Molecular & Cellular Biomechanics 2025, 22(3), 867.  

5 

outcome to produce an aggregated causal estimate, thereby enhancing statistical 

strength [17]. The data obtained were instrumental in conducting a preliminary 

evaluation of the causal influence that blood metabolites exert on CRC. 

Supplementary analyses were executed using the WM and MR-Egger methodologies 

to probe for biases that might arise from substandard IVs and horizontal pleiotropy 

effects [17,18]. 

To substantiate the dependability of our conclusions, we initiated sensitivity 

analyses through two distinct analytical strategies: The Cochran’s Q test and the 

MR-Egger intercept examination [19]. The Cochran’s Q test is instrumental in 

evaluating the variability in the magnitude of effects among the instruments within 

correlated samples, thereby informing the decision between a fixed or random-

effects IVW approach. A significant Cochran’s Q test result, indicated by a p value 

below 0.05, points to the presence of heterogeneity. Furthermore, the MR-Egger 

intercept examination is utilized to detect any directional pleiotropy and bias that 

could result from the use of invalid IVs. 

2.4. Colocalization analysis 

Utilizing the coloc R package, we performed colocalization analysis to delve 

deeper into the possibility that the interactions of identified metabolites with 

Colorectal Cancer (CRC) might be dictated by genetic loci within specific genomic 

zones [20]. Data from the eQTLGen Consortium, which includes comprehensive cis-

expression quantitative trait loci (eQTL) for blood-based gene expression across 

31,684 samples (https://www.eqtlgen.org/), was leveraged. The genetic predictions’ 

correlation for both phenotypes can be interpreted through one of five plausible 

models: H0 signifies no relationship of the SNP within the locus to any phenotype; 

H1 and H2 suggest a singular relationship of the SNP to a single phenotype; H3 

indicates a connection of the SNP to both phenotypes, albeit without a relationship 

between the phenotypes themselves; H4 denotes a shared SNP linking both 

phenotypes and the SNP in question. The colocalization analysis is particularly 

focused on evaluating the posterior probability of model H4. 

3. Results 

3.1. Causal association of blood metabolites with CRC 

In this study, we conducted a comprehensive assessment of 486 serum 

metabolites in relation to CRC risk using a rigorous MR design. The filtered IVs 

contained between 3 and 502 SNPs. All SNPs linked to metabolites had F statistics 

more than 10, indicating the substantial power of IVs (Supplementary materials 

Table S2). Next, based on the results of the IVW analysis, 29 metabolites were 

identified, 16 of which have a known chemical identity and the other 13 of which 

have an unknown chemical identity, that may have causative impacts on CRC 

(Supplementary materials Table S3). The known metabolites are classified as amino 

acids, cofactors and vitamins, lipids, and xenobiotics. 

Following a consolidation of supplementary and sensitivity evaluations, our 

analysis pinpointed nine blood metabolites that adhered to rigorous selection 
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parameters (as depicted in Figure 1). To be precise, augmented concentrations of 

indolelactate (OR = 2.62, 95% CI: 0.26−1.66, p = 0.007), 1-

heptadecanoylglycerophosphocholine (OR = 1.37, 95% CI: 0.10−0.54, p = 0.005), 1-

stearoylglycerophosphocholine (OR = 3.47, 95% CI: 0.65−1.84, p = 0.0005), and the 

metabolite X-12212 (OR = 1.96, 95% CI: 0.10−1.25, p = 0.022) were linked to an 

increased propensity for developing Colorectal Cancer (CRC). In contrast, increased 

levels of X-11792 (OR = 0.57, 95% CI: −0.94 to −0.17, p = 0.005), X-12038 (OR = 

0.44, 95% CI: −1.50 to −0.12, p = 0.021), X-14056 (OR = 0.50, 95% CI: −1.28 to 

−0.12, p = 0.018), and X-14745 (OR = 0.41, 95% CI: −1.48 to −0.31, p = 0.003) 

were associated with a diminished risk of CRC (for details, refer to Table 1). 

 
Figure 1. Forest plot for the causality of blood metabolites on colorectal cancer. 

Table 1. MR analysis for causality from blood metabolites on colorectal cancer. 

Metabolites N 
MR analysis Heterogeneity Pleiotropy 

Methods OR (95% CI) p Q p p 

indolelactate 21 

IVW 2.62 (0.26–1.66) 0.007 17.70 0.41  

ME 2.25 (−2.40–4.02) 0.600 17.69 0.34 0.92 

WM 5.18 (0.64–2.65) 0.001    

1-heptadecanoylglycerophosphocholine 13 

IVW 1.37 (0.10–0.54) 0.005 9.64 0.56  

ME 1.81 (−0.58–1.77) 0.286 9.37 0.50 0.60 

WM 1.49 (0.09–0.71) 0.011    

1-stearoylglycerophosphocholine 51 

IVW 3.47 (0.65–1.84) 0.00005 23.12 0.10  

ME 6.87 (−1.57–5.43) 0.280 22.97 0.10 0.70 

WM 2.99 (0.27–1.91) 0.009    
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Table 1. (Continued). 

Metabolites N 
MR analysis Heterogeneity Pleiotropy 

Methods OR (95% CI) p Q p p 

X-11792 10 

IVW 0.57 (−0.94–−0.17) 0.005 5.63 0.78  

ME 0.76 (−1.42–0.88) 0.645 5.36 0.72 0.60 

WM 0.56 (−1.09–−0.06) 0.030    

X-12038 10 

IVW 0.44 (−1.50–−0.12) 0.021 3.06 0.93  

ME 0.55 (−2.85–1.67) 0.608 3.02 0.88 0.84 

WM 0.37 (−1.89–−0.11) 0.028    

X-12212 14 

IVW 1.96 (0.10–1.25) 0. 022 13.97 0.30  

ME 3.52 (−0.19–2.71) 0.083 12.76 0.31 0.33 

WM 2.56 (0.06–1.82) 0.036    

X-14056 10 

IVW 0.50 (−1.28–−0.12) 0.018 7.36 0.50  

ME 0.48 (−2.34–0.89) 0.323 7.35 0.39 0.97 

WM 0.39 (−1.72–−0.16) 0.018    

X-14745 14 

IVW 0.41 (−1.48–−0.31) 0.003 12.79 0.38  

ME 1.01 (−3.80–3.81) 0.997 12.47 0.33 0.61 

WM 0.41 (−1.78–−0.10) 0.028    

Abbreviations: CI, confidence interval; IVW, inverse variance weighted; ME, MR‐Egger; N, number of 

single nucleotide polymorphisms; OR, odds ratio; WM, weighted median. 

 
Figure 2. Scatterplot of significantly associated (IVW derived p  <  0.05) and directionally consistent estimates. SNP, 

single nucleotide polymorphisms. 
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Figure 3. Funnel plot to assess heterogeneity. The red line represents the inverse-variance weighted estimate. 

Conclusively, the IVW estimates demonstrate statistical significance (p < 0.05), 

and there is a concordance in the directionality and magnitude between IVW and 

WM estimates, thereby bolstering confidence in the stability of the causal nexus (as 

depicted in Figure 2). In contrast, the MR-Egger examination failed to establish a 

causal connection between blood metabolites and Colorectal Cancer (CRC) (p > 

0.05; for details, see Table 1). The MR analysis outcomes potentially indicate a 

causal relationship between blood metabolites and CRC, given that the weighted 

median approach to estimation surpasses the MR-Egger analysis in terms of 

precision [21]. Significantly, neither the MR-Egger intercept test (p > 0.05) nor 

Cochran’s Q test (p > 0.05) uncovered any signs of pleiotropic influences or 

variability in genetic effect sizes, which robustly underscores the reliability of our 

analytical approach (as detailed in Table 1). While the funnel plot’s symmetry could 

imply a risk of horizontal pleiotropy that might skew MR methodologies, it is 

notable that the plot did not exhibit any asymmetry (as illustrated in Figure 3). 

3.2. Colocalization analysis 

After confirming the potential causal relationships between the above eight 

blood metabolites and CRC, we performed a co-localisation analysis to validate 

whether the genetic association between metabolites and CRC was due to shared 

causal genetic variants. The results of the co-localisation analysis showed no 

evidence of common localisation between the eight blood metabolites and the CRC 

association (PP4 < 80%), suggesting that the observed associations are unlikely to be 

due to confounding effects of common causal SNPs (Supplementary materials Table 

S4). 

4. Discussion 

For the present research, we amalgamated two extensive Genome-Wide 
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Association Study (GWAS) datasets to delve into the causal implications of 486 

blood metabolites on Colorectal Cancer (CRC) through a Mendelian Randomization 

(MR) approach that focused on Inverse Variance Weighted (IVW), MR-Egger, and 

Weighted Median methodologies. Our findings revealed that indolelactate, as 

dictated by genetics, along with 1-heptadecanoylglycerophosphocholine (LPC 

(17:0)), 1-stearoylglycerophosphocholine (LPC (18:0)), and X-12212 are correlated 

with a higher propensity for CRC. In contrast, X-11792, X-12038, X-14056, and X-

14745 are associated with a diminished risk for CRC. 

The surge in both the incidence and fatality of Colorectal Cancer (CRC) in 

recent times has cast a heavy shadow over global well-being [22], underscoring an 

urgent call for the creation of accessible and powerful biomarkers. The visual 

representation of biological processes through blood metabolites is akin to a 

snapshot, encapsulating the interplay of internal and external factors [22]. A wealth 

of emerging research points to the involvement of blood metabolites in the biological 

underpinnings of CRC, though a concrete causal link remains to be firmly 

established. In light of this, our team embarked on a Mendelian Randomization (MR) 

study focusing on the Finnish demographic, with the ambition of decoding the causal 

ties between blood metabolites and CRC, and by extension, charting a course for 

future screening and treatment protocols for CRC. 

Indolelactate, a tryptophan metabolite, is found in human plasma, serum, and 

urine [23]. Tryptophan is metabolized by indoles and kynurenine pathways. 

Biomarkers are usually measured in serum or urine but may be limited by their 

distance from the intestinal mucosa where CRC develops. Fecal metabolomics might 

be more effective due to their proximity to the colorectal mucosa and interaction 

with the microbiota [24]. Fecal [24] and mucosal [25] metabolomic analyses 

detected tryptophan and N-acetyltryptophan, linked to CRC risk. We hypothesized 

that tryptophan mediates indolelactate to promote CRC. In the context of CRC, 

abnormal activation of the tryptophan metabolic pathway may lead to an aggravated 

inflammatory response in the intestinal microenvironment, because tryptophan 

metabolites can directly or indirectly activate immune cells, leading to the release of 

proinflammatory cytokines, thereby promoting the formation of a chronic 

inflammatory state. This chronic inflammatory environment provides favorable 

conditions for the growth and invasion of tumor cells [23]. In addition, abnormal 

activation of the tryptophan metabolic pathway may also increase the level of 

oxidative stress. Oxidative stress refers to the imbalance between the excessive 

production of reactive oxygen species (ROS) in cells and the antioxidant defense 

mechanism [25]. In CRC, oxidative stress can lead to DNA damage, oxidative 

modification of proteins and lipids, and these changes may promote cell 

transformation and tumor progression. Indole lactic acid, as a tryptophan metabolite, 

may directly participate in the development of CRC by affecting the function of 

intestinal epithelial cells, including the integrity of the intestinal barrier and the 

regulation of cell proliferation [22]. Impairment of intestinal barrier function may 

lead to the translocation of bacteria and toxins, further aggravating the inflammatory 

response and oxidative stress, while uncontrolled cell proliferation may lead to tumor 

formation and growth [24,25]. Therefore, regulation of the tryptophan metabolic 

pathway may become a potential target for the prevention and treatment of CRC. 
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However, an animal study [26] found that indole-3-lactate (ILA), structurally similar 

to indolelactate, reduces colorectal tumorigenesis by enhancing CD8+ T cells’ 

antitumor immunity [26]. Most of these studies were based on metabolite levels in 

serum or urine, which may be affected by confounding factors, such as patients’ 

dietary habits, lifestyles, and medication use. Our MR analysis reduced the effects of 

reverse causality and confounding factors by using genetic instrumental variables, 

thus providing stronger evidence that indole lactic acid is associated with a higher 

risk of CRC. This finding is different from the results of previous observational 

studies, suggesting that the role of indole lactic acid in CRC may be more complex 

and requires further research to verify. 

LPC is a metabolite of phosphatidylcholine and is involved in inflammation and 

cell signaling. LPC (17:0) and LPC (18:0) are isoforms of lysophosphatidylcholine 

(LPC) differing only at the C-1 position, with heptadecanoic acid and stearic acid 

chains, respectively. The distinct mechanisms and effects of these isoforms in 

colorectal cancer (CRC) are not well-studied. Studies have shown that LPC (17:0) 

and LPC (18:0) may affect cell proliferation and apoptosis by affecting cell 

membrane fluidity and signal transduction pathways, such as G protein-coupled 

receptors. These metabolites may also increase the risk of CRC by promoting 

inflammatory responses and oxidative stress [27]. LPC is a biologically active lipid 

metabolite of phosphatidylcholine, primarily produced by secretory phospholipase 

A2, HDL-associated lecithin-cholesterol acyltransferase, hepatic and endothelial 

lipases, and during lipoprotein oxidation [27]. The major types of LPC—LPC (16:0), 

LPC (18:1), LPC (20:4), and LPC (22:6)—account for 90% of total plasma LPC 

levels [28]. In cells, LPC concentrations are lower than their corresponding 

phospholipids due to active acyl chain doping by lysophosphoryltransferases [28]. In 

contrast, LPC is abundant in tissue fluid and plasma [28]. Plasma LPC is mainly 

secreted by the liver and exists largely in a less active albumin-bound form, with its 

secretion mechanisms still uncharacterized [28]. 

The physiological actions of LPC are mediated through S1P2 and S1P3 

receptors coupled to Gi, Gq, and G12/13 proteins, activating PLCs and increasing 

intracellular Ca2+, which stimulates ERK, Rho, and Rac [29]. The LPA-GPCR, 

LPA1, LPA2, and LPA3 receptors also link to these signaling pathways, promoting 

cell survival via Akt [29]. LPC’s effects vary with its biochemical structure: 

Saturated LPC (16:0) and LPC (18:0) and monounsaturated LPC (18:1) are pro-

inflammatory, inducing monocyte chemotaxis and macrophage production of pro-

inflammatory cytokines, while unsaturated LPC (22:4) and LPC (22:6) are anti-

inflammatory [28]. LPC (18:0) is a CRC risk factor, but the effects of LPC could 

also stem from its metabolites [28]. 

Few studies address LPC’s impact on intestinal tissue. Some findings suggest 

LPC damages ileum mucosa cells [30] and promotes pro-inflammatory cytokine 

release in colon tissue, damaging the epithelial barrier [31]. A lipidomic analysis of 

CRC patients showed significant differences in glycerophospholipids, particularly 

LPC, compared to normal tissues [32]. A CRC animal study indicated that high-fat 

diets (HFD) alter glycerophospholipid metabolism, upregulating LPC and 

lysophosphatidic acid (LPA) [33]. Elevated LPA promotes CRC by accelerating the 

cell cycle and compromising the intestinal barrier, suggesting LPC may contribute to 
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CRC through conversion to LPA [28]. Our MR analysis provided the first evidence 

of a causal relationship between these unknown metabolites and CRC risk. Although 

the specific mechanisms of these metabolites require further study, this finding 

provides a new direction for future metabolomics research. X-11792 and X-12038 

may reduce CRC risk by regulating the cell cycle and inhibiting cell proliferation, 

while X-12212 may increase CRC risk by promoting cell proliferation and inhibiting 

apoptosis. X-14056 and X-14745 may reduce CRC risk by regulating immune 

responses and the production of inflammatory mediators. 

Recent studies, however, link lower LPC plasma levels to unfavorable disease 

outcomes, showing that LPC substances (16:0, 18:0, and 18:1) inhibit reactive 

oxygen species production, neutrophil activation, and histamine release, acting as 

membrane stabilizers [27]. This contradicts earlier findings, highlighting LPC’s 

complex roles in CRC, which may vary by subtype and tumor microenvironment. 

LPC (17:0) has been less studied, with one study indicating it stimulates 

intestinal receptors that activate GLP-1, promoting insulin secretion and reducing 

metabolic disorders [34]. This suggests LPC (17:0) could be an important CRC 

biomarker, but further studies are needed. 

Upstream, lecithin (PC) influences cancer cell signaling. LPCAT1 increases 

saturated PC in membranes, enhancing proliferative signals, while LPCAT3 reduces 

saturated PC to mitigate tumor outcomes [35]. Different LPCATs thus control 

membrane structure and signaling activity by modulating PC saturation, adding to 

LPC’s complexity in cancer. Saturated PCs are linked to aggressive histology and 

poor outcomes in breast cancer patients [36], but their connection to CRC is under-

researched. Given conflicting data on LPC’s role in CRC, investigating its upstream 

and downstream pathways is essential for understanding its role in cancer. 

For unknown metabolites such as X-11792, X-12038, X-12212, X-14056, and 

X-14745, the potential mechanism between them and CRC is difficult to determine 

due to the lack of specific chemical structure and biological function information. 

However, some hypotheses can be put forward that the two metabolites X-11792 and 

X-12038 may be associated with a reduced risk of CRC. They may be involved in 

regulating the cell cycle, inhibiting cell proliferation, or promoting cell apoptosis, 

thereby slowing down tumor development. X-12212 is associated with an increased 

risk of CRC and may act by promoting cell proliferation, inhibiting apoptosis, or 

affecting DNA repair mechanisms. The two metabolites X-14056 and X-14745 may 

reduce the risk of CRC by regulating immune responses, affecting the production of 

inflammatory mediators, or changing the composition of the intestinal microbiota. 

For unknown metabolites, further research is needed to determine their chemical 

structure and biological function. This may include metabolite identification using 

mass spectrometry, gene expression analysis to explore their potential roles in cells, 

and animal models and in vitro cell experiments to study their effects on tumor 

development. In addition, studying the expression patterns of these metabolites in 

CRC patients and healthy people, as well as their interactions with known CRC risk 

factors (such as dietary habits, genetic factors, and lifestyle) are also important 

directions for future research. Through these studies, we can better understand the 

role of these metabolites in the development of CRC and provide new targets for the 

prevention and treatment of CRC. 
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According to the above studies, many metabolites affect the risk of CRC by 

regulating inflammatory responses. For example, indole lactic acid and indole-3-

lactic acid can enhance the anti-tumor activity of immune cells and reduce chronic 

inflammatory states, thereby reducing the risk of CRC [26]. Based on the metabolite 

levels in serum or urine, it was found that ILA can enhance the anti-tumor immunity 

of CD8+ T cells, thereby reducing the risk of CRC. I3LA has also been reported to 

be negatively correlated with CRC risk, which may play a role by regulating 

intestinal microbiota and reducing inflammatory responses [27]. Studies have found 

that LPC (17:0) levels are positively correlated with CRC risk, especially in people 

with a high-fat diet [33]. LPC (17:0) may increase the risk of CRC by affecting cell 

membrane fluidity and signal transduction pathways such as G protein-coupled 

receptors (GPCRs), promoting inflammatory responses and oxidative stress. LPC 

(18:0) is also positively correlated with CRC risk, and its mechanism may be similar 

to that of LPC (17:0) [34]. Leucine is one of the branched-chain amino acids and has 

been reported to be associated with an increased risk of CRC [35]. Leucine may 

increase the risk of CRC by activating the mTOR signaling pathway, promoting cell 

proliferation and inhibiting cell apoptosis. Glutamine is an important energy source 

for tumor cells, and its elevated level may be associated with the development of 

CRC [36]. Metabolites such as linoleic acid and EPA affect the development of CRC 

by affecting the level of oxidative stress in cells, thereby affecting DNA damage and 

cell apoptosis [37]. EPA is an omega-3 fatty acid that has been reported to be 

associated with a lower risk of CRC, possibly by reducing inflammatory responses 

and inhibiting cell proliferation [38]. In addition, metabolic reprogramming is an 

important feature of CRC, and many metabolites support tumor growth and survival 

by affecting cell energy metabolism and material metabolism. 

Although previous observational studies and mechanistic studies have provided 

rich evidence, most of these studies are based on cross-sectional or prospective 

cohort designs, with potential confounding factors and reverse causality, and cannot 

provide strong causal evidence. This study used a Mendelian randomization (MR) 

design and genetic instrumental variables to reduce the impact of confounding 

factors and reverse causality, providing stronger evidence for the causal relationship 

between metabolites and CRC. The innovation of this study is that it is the first time 

to use MR design to systematically explore the causal relationship between 486 

blood metabolites and CRC through genetic instrumental variables. This provides a 

new perspective for understanding the role of metabolites in the occurrence of CRC. 

In addition, two large-scale GWAS data, including blood metabolite data provided 

by Shin et al. and CRC data in the FinnGen Alliance database, were integrated to 

ensure the sample size and statistical power of the study. This study not only focuses 

on known metabolites, but also explores the potential role of unknown metabolites in 

CRC, providing new directions for future research. 

This MR analysis offers several advantages. First, MR can assess the causal 

impact of risk factors on outcomes using genetic IVs, reducing confounding and 

reverse causation [37,38]. Second, this study is comprehensive, analyzing 486 blood 

metabolites for their causal relationship with CRC. Third, we used LDSC to assess 

heritability and genetic correlation, enhancing the robustness of MR estimates. We 

also conducted co-localization analyses to link GWAS signals to disease processes in 
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CRC. Limitations include the finite number of SNPs, potential racial differences as 

the study used FinnGen data, and the need for larger sample sizes and further 

validation. Findings should be confirmed by RCTs and basic research. 

5. Conclusion 

Eight genetically proxied blood metabolites were found to have a causative 

influence on CRC in this MR study. Notably, Indolelactate, LPC (17:0), and LPC 

(18:0) warrant additional research as possible treatment targets for colorectal cancer. 

The identification of these serum metabolites offers important new information for 

the planning of upcoming clinical trials as well as for the early detection, prevention, 

and treatment of colorectal cancer. Furthermore, this MR analysis that combines 

metabolomics and genomes offers a guide for investigating the pathophysiology and 

etiology of CRC. 

Supplementary materials: Table S1 covers 486 metabolites that we analyzed. 

Table S2 shows the data results of 8 different analyses of the causal relationship 

between 486 blood metabolites and CRC by MR analysis. Table S3 presents the 

results of IVW analysis of causality between 486 blood metabolites and CRC. Table 

S4 shows the data results of co-localization analysis of 8 blood metabolites and 

CRC. 
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