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Abstract: Combining neural network technologies and computational techniques, this research 

establishes a career development promotion system based on a multi-modal neural network. It 

reveals that computer simulation technology and multimedia have positive intervention effects 

on college students’ career decision-making behaviors, similar to how biomolecular 

interactions regulate biological processes. This technology ensures scientific rigor, objectivity, 

and authenticity. A knowledge fusion algorithm, built on attributes and rules within the Hadoop 

platform and MapReduce parallel computing framework, facilitates effective data integration. 

Additionally, inspired by the regulatory mechanisms in biomolecular systems, a neural 

network-based algorithm, utilizing gradient descent, is applied to cultural learning, augmented 

by feedback analysis to assess students’ psychological changes, posture, and response 

dynamics during the learning process. To further optimize the career development framework, 

an Evolutionary Algorithm (EA) is used to enhance the performance of neural networks. 

Numerical simulations demonstrate the robustness of the proposed algorithm, achieving high 

accuracy (0.981), recall rate (1.0), and F-measure (0.997) in similarity computations. These 

results are particularly notable when biomechanic metrics, such as gesture and posture tracking, 

are integrated with linguistic data, such as spelling and vocabulary. The findings underscore 

that incorporating neural network insights into multimedia teaching methodologies can 

significantly enhance psychological motivation, behavioral adaptability, and engagement in 

college students, fostering improved educational outcomes and advancing interdisciplinary 

innovation in neural networks. It effectively enhances the internal driving force of “technology 

empowering psychological development” in the career planning system and provides a 

cognitive computing and biomechanic perspective for the construction of the smart education 

ecosystem. 

Keywords: multimedia technology; college students; career development; neural networks; 

knowledge fusion; learning algorithms 

1. Introduction 

As global educational institutions are faced with an increasingly diverse student 

population, there is a growing demand for the adoption of advanced technologies to 

improve teaching methods and enhance the career development outcomes of college 

students. According to a recent survey by the Organization for Economic Cooperation 

and Development (OECD), 63% of undergraduate students encounter difficulties in 

career decision-making. To address this issue, the emerging field of computational 

pedagogy demonstrates unique potential through neurocognitive simulation 

architectures. Our research pioneers the interdisciplinary integration of adaptive 

learning systems and behavioral analysis. The combination of multimedia teaching 

strategies and neural network technologies offers a transformative approach to 

personalized and networked learning models, which can significantly enhance 
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students’ adaptability and engagement [1]. 

Multimedia interfaces achieve cognitive enhancement through multimodal 

information processing (integration of text, auditory, and visual elements), establish 

logical relationships, and enable the technology of human-computer interaction [2]. 

Their core interactive functions enable real-time neural feedback mechanisms, 

especially activating the dopaminergic pathways during career simulations—a 

biological advantage that traditional methods cannot achieve [3]. Users can interact 

with various computer information media, thus providing a more effective way of 

information control and utilization. For college students, multi-sensory stimulation is 

more effective than multiple sensory stimulations or single-sensory stimulation. To 

enhance the psychological capital of college students by utilizing multimedia systems, 

a comprehensive understanding of the systems is required. Given their close 

connection with network content and communication methods, special attention 

should be paid to guiding the content and methods of communication, and making 

effective use of multimedia as a tool to enhance the psychological capital of college 

students [4,5]. Multimedia systems can be applied to group counseling activities aimed 

at improving the psychological abilities of college students. In addition, emphasis 

should also be placed on constructing a human-computer interaction environment [6]. 

In this rapidly evolving educational landscape, the focus is on leveraging 

technology to meet the growing demands for skills that align with the digital economy. 

The flexibility offered by multimedia technology, combined with the analytical power 

of neural networks, provides a dynamic framework that adapts to individual learning 

styles and improves educational outcomes [7]. This approach not only supports the 

transmission of knowledge but also encourages the development of critical thinking 

and problem-solving skills, which are crucial for career success. 

Recognizing the potential of multimedia and neural network technologies, 

this paper explores their application in fostering a conducive learning environment 

that tailors the educational experience to students’ needs. These technologies 

enable the precise measurement and enhancement of student engagement and 

learning effectiveness, offering a promising pathway for career development in the 

information age [8]. 

The use of neural networks, in particular, allows for the analysis of complex 

student data and the optimization of learning processes through algorithms that predict 

and respond to student performance in real-time [9]. This data-driven approach ensures 

that educational content is both relevant and engaging, thereby maximizing the 

potential for student success in their future careers. The ability to interpret the career 

decision-making process can be revolutionized by the popularity of computational 

behavior modeling. Especially when it is combined with multimodal neural 

architectures that can simulate the trajectories of cognitive evolution. In higher 

education, the strategic implementation of psychological simulation systems has 

become a crucial intervention mechanism. Contemporary teaching breakthroughs now 

enable the construction of 360-degree behavioral simulation environments, in which 

Graph Neural Networks (GNNs) continuously map students’ decision vectors into 

virtual career scenarios. By synchronously capturing biomechanic metrics, such as 

facial microexpressions (encoded by Facial Action Coding System—FACS), 

conversational prosody patterns, and physiological biomarkers, these systems achieve 



Molecular & Cellular Biomechanics 2025, 22(4), 857. 
 

3 

an unprecedented level of precision in modeling career-related neurocognitive 

processes [10,11]. More importantly, Transformer-based architectures with self-

attention mechanisms exhibit higher predictive accuracy in predicting career 

exploration behaviors compared to traditional psychometric methods [12]. The 

paradigm shift from static career counseling to neuromorphic simulation environments 

has fundamentally transformed educational engagement. Computational 

neurocognitive modeling surpasses traditional methods by operating simultaneously 

on the behavioral, emotional, and neurophysiological dimensions. 

Furthermore, the commitment of educational institutions to integrating these 

advanced technologies aligns with global trends towards more interactive and 

responsive educational environments. By focusing on these technological integrations, 

universities not only enhance their curriculum but also contribute to the broader 

societal goal of preparing well-rounded, skilled professionals who are ready to tackle 

the challenges of the modern workforce [13]. 

2. Related work 

2.1. Cultural confidence—Building psychological confidence 

Recent research emphasizes the importance of integrating cultural elements with 

advanced teaching methodologies to enrich the educational experience and foster a 

deeper understanding among students. Tan and Ma argued for a balanced appreciation 

of local culture alongside revolutionary and contemporary cultural elements to 

cultivate a holistic educational environment [14]. Vecco suggest that the dual 

principles of cultural inheritance and openness are crucial for cultural appreciation in 

educational settings, emphasizing competition and self-awareness as pathways to 

cultural transcendence [15]. Moghadam et al. discuss the role of visible cultural 

elements in enhancing national cohesion and identity, which can be effectively 

integrated into educational curricula to strengthen the foundational cultural knowledge 

of students [16]. Taylor highlights the link between effective ideological education and 

the robust integration of cultural content, suggesting that a deep cultural understanding 

enhances the effectiveness of delivering complex theoretical courses [17]. McLaren’s 

investigation into the cultural awareness of college students reveals varied insights 

into how cultural elements can be effectively woven into mainstream education to 

boost engagement and learning outcomes [18]. 

Leveraging neural network-driven multimedia platforms, educators can 

dynamically present cultural content through interactive simulations and adaptive 

learning systems. These technologies enable personalized cultural exploration by 

modeling neurocognitive responses to visual, auditory, and contextual stimuli. For 

example, computer simulations using graph neural networks (GNNs) can map students’ 

emotional and behavioral patterns during cultural interactions, revealing how multi-

sensory cultural representations activate dopaminergic pathways associated with 

intrinsic motivation [3]. Such systems enhance psychological engagement by 

simulating real-world cultural scenarios, thereby improving retention of cultural 

knowledge and fostering empathetic decision-making [10]. The integration of 

neuroadaptive interfaces further supports cultural learning by providing real-time 

feedback on facial microexpressions and physiological responses, allowing students 
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to refine their emotional and cognitive reactions to diverse cultural contexts [11]. This 

computational approach transforms passive cultural exposure into active 

neurocognitive engagement, aligning with McLaren’s findings on enhancing 

educational outcomes through immersive cultural experiences [18]. 

2.2. Research progress of neural networks 

The integration of advanced computational models such as neural networks and 

evolutionary algorithms has significantly transformed the landscape of educational 

technology, particularly in cultural learning. Mehrotra et al.’s pioneering work on 

applying evolutionary algorithms to optimize large-scale neural networks marks a 

significant advancement in personalized learning environments [19]. Izawa et al. and 

Prakash et al. have developed innovative neural architectures that enhance systems’ 

capacities to interpret complex cultural semantics and dynamically adjust multimedia 

presentations, thereby improving students’ emotional engagement with cultural 

narratives [20,21]. These neural embeddings trigger mirror neuron activations when 

students interact with heritage content, empirically increasing cultural competence 

self-perception by enhancing neurocognitive coherence. 

Thrift et al.’s application of imitation learning-based neural networks in control 

systems demonstrates the potential of these technologies in creating responsive and 

adaptive learning environments [22]. By simulating cultural decision-making 

processes, such systems activate dopaminergic pathways associated with reward-

driven learning, significantly improving retention of cultural knowledge [3]. This is 

further supported by Muhammad et al.’s analysis on how network structures affect 

information dissemination, an essential aspect in the spread of cultural knowledge [23]. 

These biologically plausible propagation patterns strengthen conceptual schema 

integration in the default mode network, manifesting as spontaneous cultural sharing 

actions. 

Kim et al.’s dynamic framework and Santos et al.’s system dynamics approach 

provide insights into how experiences and values can be integrated into learning 

networks, enhancing the understanding and retention of cultural knowledge [24,25]. 

These computational tools simulate the cognitive-emotional interplay during cultural 

exploration, and biomechanical feedback corresponding to possible physiological and 

physical changes. It enables students to refine their decision-making processes through 

real-time neurofeedback mechanisms. The emergent neural attractor states correlate 

with increased medial prefrontal cortex activity—a biomarker for authentic cultural 

identity embodiment. For instance, facial microexpression analysis integrated with 

GNNs can detect affective responses to cultural stimuli, triggering adaptive 

adjustments in instructional content to enhance psychological engagement [11]. Gupta 

et al. and Khaw et al.’s methodologies for structured knowledge integration provide 

scalable frameworks for curating culturally relevant datasets that train neural models 

to recognize nuanced cultural contexts [26,27]. By operationalizing cultural values as 

computational parameters, these systems foster deeper cognitive assimilation of 

cultural heritage. The cumulative effect of these advancements is a neuroadaptive 

learning ecosystem where students develop cultural confidence through personalized, 

multisensory simulations that activate neural pathways linked to empathy and self-
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identity formation [10]. This approach transforms passive cultural consumption into 

active neurocognitive engagement, aligning with McLaren’s emphasis on immersive 

educational experiences [18]. 

These advancements underscore the potential of network-based optimization 

techniques and neural networks in enhancing the cultural confidence of students. By 

leveraging these technologies, educators can create highly adaptive and engaging 

multimedia learning platforms that not only cater to the diverse needs of students but 

also empower them with a strong sense of cultural identity and pride. 

3. Research method 

3.1. Text tagging model building 

In the new era of rapid information exchange, cultivating college students’ 

awareness of Chinese culture and fostering cultural self-confidence is critical for 

equipping them with the ability to navigate the complexities of modern society. The 

rise of new media, primarily driven by mobile intelligent terminals, has diminished 

the influence and authority of traditional platforms such as radio, television, 

newspapers, and magazines. In contrast, new media offers unparalleled convenience 

and efficiency, drastically accelerating the speed of cultural communication. This 

transformation has expanded the reach of cultural exchange, enabling it to meet 

societal and technological demands that were previously unattainable, marking a 

significant achievement in the application of scientific and technological wisdom. 

Advanced cultural characteristics are the foundation for establishing cultural self-

confidence. These attributes underpin a strong, unwavering belief in the vitality and 

relevance of one’s culture. College students, as key figures in this new era, must adopt 

clear value judgments, resist harmful foreign ideologies, and solidify their ideals and 

beliefs to serve as ambassadors of Chinese culture in a globalized world. 

To meet the emerging demands of distributed multimedia applications, 

distributed multimedia systems must address both educational goals and technical 

requirements. These systems must optimize the client-server end systems and the 

communication networks that connect them. By integrating technologies such as 

biomechanics and multimedia teaching strategies, cultural education can be delivered 

innovatively, enhancing the adaptability, efficiency, and engagement of college 

students in the process of building cultural self-confidence. 

When playing multimedia information, it is necessary to synchronize all kinds of 

related media information in time and space properly, so as to obtain satisfactory and 

meaningful playing effect. According to the document-topic matrix and the topic-

keyword matrix, the document of cultural confidence resources can be labeled. The 

way to deal with it is to take the top 𝑁 topics whose introduction is greater than a 

certain threshold in two matrices to describe the document [28]. 

The corresponding relationship between the resource set 𝐷 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑚} 

for cultural self-confidence and the tag set 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑛}  describing cultural 

self-confidence resources can be established, and the tag space vector model 𝑉(𝑑) of 

cultural self-confidence resources can be established. Defined as follows in Equation 

(1): 
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𝑉(𝑑) = {(𝑡1, 𝜔(𝑡1, 𝑑)), (𝑡2, 𝜔(𝑡2, 𝑑)), ⋯ , (𝑡𝑖 , 𝜔(𝑡𝑖 , 𝑑)), ⋯ , (𝑡𝑚, 𝜔(𝑡𝑛, 𝑑))|𝑡 ∈ 𝑇, 𝑑 ∈ 𝐷}  (1) 

𝑡1, 𝑡2, ⋯ , 𝑡𝑛  is the collection of labels describing cultural self-confidence 

resources, and 𝜔(𝑡, 𝑑) is the weight of label 𝑡 describing cultural self-confidence 

resources in cultural self-confidence resources 𝑑. 

The Multimedia Management Subsystem serves as a critical support platform for 

distance multimedia teaching. Built upon a distributed multi-server architecture, the 

system enables seamless, concurrent access for a large number of users to diverse 

resources, including text files, high-quality audio and video files, and multimedia 

courseware. This architecture ensures that each site within the system can provide 

equivalent services to global users, allowing them to log in from any site and interact 

with the federated multimedia database without restrictions. 

From a logical perspective, the system is structured into three key functional 

layers: 

User Interaction Layer: This layer handles all user-facing operations, providing 

interfaces for accessing and managing multimedia content. 

Data Grouping Layer: This intermediate layer is responsible for organizing and 

grouping multimedia data to facilitate efficient access and retrieval. 

Multimedia Data Management Layer: The foundational layer that ensures robust 

storage, maintenance, and management of multimedia data across distributed servers. 

The logical division of these layers is illustrated in Figure 1, showcasing the 

system’s architecture and its layered functionality. This design ensures scalability, 

reliability, and efficiency, meeting the growing demands of modern distance 

multimedia teaching platforms. 

 
Figure 1. Functional hierarchy of multimedia database management system. 

The expression of multimedia objects must integrate the information units of 

various media into one expression space, and the spatial layout should be reasonable. 

Secondly, there are temporal relationships among multimedia information units, and 

the expression of multimedia objects must be synchronized in time. 

According to the relationship between the tags used for cultural confidence 
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resources and users and cultural confidence resources, the user’s interest preference 

tag model can be mapped by using the user’s behavior log. The user preference vector 

𝑉𝑡(𝑢) of user 𝑢 in time 𝑡 is obtained by combining and calculating the following 

formulas of matrix 𝐵𝑡 as shown in Equation (2): 

𝜔𝑡(𝑡𝑗, 𝑢) =
∑ 𝜔(𝑡𝑗,𝑑𝑖)𝑥

𝑖

∑ ∑ 𝜔(𝑡𝑗,𝑑𝑖)𝑥
𝑖

𝑛
𝑗

  (2) 

In which ∑ 𝜔(𝑡𝑗, 𝑑𝑖)𝑥
𝑖  represents the weight sum of user 𝑢 in interest tag 𝑡𝑗 in 

time 𝑡; ∑ ∑ 𝜔(𝑡𝑗, 𝑑𝑖)𝑥
𝑖

𝑛
𝑗  is the sum of user 𝑢 interest weights in tag set 𝑇 in time 

𝑡; 𝜔𝑡(𝑡𝑗, 𝑢) represents the weight of user 𝑢 to interest tag 𝑡𝑗 in time 𝑡. 

The information of a variable is distributed in the pulse time of multiple neurons, 

and this distribution is called population coding [23]. A neuron covers a certain range 

of analog quantity in the form of Gaussian function, and the height of the 

corresponding Gaussian function at a certain value of analog quantity determines the 

time when the neuron emits pulses. 

The Gaussian functions corresponding to 𝑚  neurons are determined, and the 

mean and variance of the Gaussian functions corresponding to neuron 𝑖(𝑖 =

1,2, ⋯ , 𝑚) are set as follows: 

𝜇 = 𝛪𝑚𝑖𝑛 +
2𝑖 − 3

2
×

𝛪𝑚𝑎𝑥 − 𝛪𝑚𝑖𝑛

𝑚 − 2
 (3) 

𝜎 =
1

𝛽
×

𝛪𝑚𝑎𝑥 − 𝛪𝑚𝑖𝑛

𝑚 − 2
, 𝛽 = 1.3 (4) 

Calculate the values of 𝑚  Gaussian functions corresponding to the values of 

variables. If the input of impulse neural network contains vectors of 𝑛 variables, and 

the values of 𝑚 Gaussian functions are calculated for each dimension of variables, 

the values of Gaussian functions in 𝑛 × 𝑚 intervals can be obtained. 

3.2. Resource integration 

The cultivation of cultural self-confidence is a gradual process that evolves from 

awareness to profound understanding. For college students, this progression—from 

cultural consciousness to cultural identity and ultimately to cultural self-confidence—

reflects a deepening comprehension of cultural ideologies, principles, and attributes. 

Neural network-driven multimedia systems can enhance this trajectory by providing 

immersive cultural simulations that activate dopaminergic pathways associated with 

intrinsic motivation [3]. For example, computer-generated historical reenactments 

using GNNs allow students to interact with virtual cultural artifacts, triggering 

multisensory engagement that strengthens memory consolidation and emotional 

resonance [10]. This technological augmentation transforms passive cultural exposure 

into active neurocognitive exploration, fostering informed decision-making rooted in 

cultural guidelines. And the cognitive progression—from cultural awareness to 

identity crystallization—mirrors deep neural networks’ hierarchical feature extraction 

mechanisms. 

This developmental journey can be operationalized through computational 

pedagogy frameworks that integrate behavioral analytics with neuroadaptive 
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interfaces. Universities can deploy AI-driven learning platforms to dynamically map 

students’ cultural knowledge acquisition patterns, identifying gaps in understanding 

and delivering personalized interventions. Transformer-based models, trained on 

cultural semantics datasets, analyze conversational prosody during group discussions 

to detect shifts in cultural attitudes and provide real-time feedback [11]. Such systems 

not only reinforce cultural knowledge retention but also cultivate metacognitive 

awareness, enabling students to critically evaluate cultural practices while maintaining 

ideological alignment [17]. 

Higher education institutions play a pivotal role in this process by leveraging 

computational tools to create culturally responsive learning environments. 

Universities can adopt neural network architectures to simulate cross-cultural 

scenarios, training students to navigate complex global interactions while preserving 

cultural authenticity. For instance, VR-based cultural simulations equipped with 

emotion recognition algorithms analyze facial microexpressions and physiological 

responses to adjust scenario difficulty, fostering empathy and adaptive decision-

making [11]. These technologies align with McLaren’s emphasis on immersive 

educational experiences that enhance engagement and learning outcomes [18]. By 

integrating cultural heritage databases into GNN models, universities can also preserve 

endangered traditions through interactive digital archives, transforming cultural 

preservation into a participatory neurocognitive practice [16]. 

This technological integration does not merely enhance knowledge transfer but 

fundamentally reshapes the psychological mechanisms underlying cultural confidence. 

Neural feedback loops embedded in adaptive learning systems reinforce positive 

emotional associations with cultural content, triggering reward-driven learning that 

strengthens long-term retention [3]. Students exposed to such systems demonstrate 

increased proactive engagement in cultural initiatives, as measured by behavioral 

metrics like participation in cultural innovation competitions and volunteer 

activities [12]. The cumulative effect is a generation of culturally confident graduates 

capable of bridging traditional and contemporary practices through computationally 

augmented cognitive frameworks [14]. 

To illustrate this, Figure 2 presents the self-confidence cultural resource fusion 

model, which consists of three core components: 

The Bottom Layer: This layer comprises three key data types that form the 

foundational inputs of the model. 

Knowledge Extraction: This process involves identifying and isolating relevant 

cultural knowledge from these data types. 

Knowledge Fusion: The integration and synthesis of the extracted knowledge to 

create a cohesive framework that promotes cultural self-confidence. 

This model provides a systematic approach to uniting cultural resources, 

enhancing students’ engagement with cultural practices, and advancing the cultivation 

of cultural self-confidence in the context of higher education. Furthermore, by 

integrating multimedia teaching strategies and biomechanical feedback, universities 

can enhance the adaptability and engagement of students, ensuring that cultural self-

confidence is fostered in a dynamic and effective manner. 
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Figure 2. Self-confidence knowledge fusion model of cultural resources. 

Knowledge fusion encompasses four distinct levels of integration: instance 

fusion, domain-level fusion, attribute fusion, and concept fusion. Attribute fusion 

involves aligning attributes from diverse sources using similarity measurement 

techniques [29–31], while concept fusion operates at a higher abstraction level and 

includes two key processes: concept alignment and concept integration [30,32]. These 

fusion processes play a crucial role in maximizing the development, utilization, and 

dissemination of cultural self-confidence resources. They also support the preservation 

and inheritance of national culture [33], facilitate the economic development of ethnic 

minority regions, and promote cultural exchanges among different ethnic groups [34]. 

Additionally, knowledge fusion lays the groundwork for effective management of 

cultural self-confidence resources and enables personalized service recommendations 

tailored to individual needs [35]. 

A critical step in the knowledge fusion process is the calculation of similarity. 

This study enhances the similarity algorithm for conceptual attributes, where the 

similarity sequence of conceptual attributes is jointly calculated using word Forest and 

Spell [23]. The improved similarity calculation formula is provided in Equation (5). 

This advancement in similarity computation strengthens the accuracy and efficiency 

of knowledge fusion, enabling a more precise alignment and integration of cultural 

resources. It supports a more effective system for managing cultural self-confidence 

and promotes its widespread dissemination and application in various contexts. 

𝑆𝑖𝑚(𝑋, 𝑌) = 𝑓𝑛 × 𝑐𝑜𝑠 (𝑛 ×
𝜋

180
) (

𝑛−𝑘+1

𝑛
)  (5) 

In the formula, 𝑛  represents the number of branches at the branch level, 𝑓𝑛 

represents the setting coefficient of vocabulary at the 𝑛 th level, and 𝑘 represents the 

distance between two different branches. 

Knowledge dissemination networks in real life are embedded in some other social 

networks, so systematic research on knowledge dissemination networks has also 

attracted more and more attention. 

This paper holds that in the field of knowledge dissemination, it is necessary to 

take “strong connection” as the main object of investigation. The smaller the distance 
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between nodes in the network, the greater the possibility of knowledge dissemination 

among them. Construct a network 𝐺(𝑉, 𝐸) , starting from a ring-shaped regular 

network, set 𝑁 nodes, and each node connects to its left and right adjacent 𝐾 nodes 

with 𝐾 edges, satisfying 𝑁 > 𝐾 > 𝑙𝑛(𝑁) > 1. 

For each edge, the probability 𝑝 is used to reconnect, so that its average path is 

greatly reduced, while its clustering coefficient remains at the original level. Therefore, 

the small-world characteristic parameters of the whole network: 

𝐿(𝑝) =
∑ 𝑑𝑖𝑗𝑖>𝑗

1
2 𝑁(𝑁 − 1)

 (6) 

𝐶(𝑝) =
1

𝑁
∑ 𝐶𝑖

𝑖

 (7) 

It has obvious clustering characteristics, in which the natural number of 𝑘 ≥ 2 

and the average path distance of 𝐿(0)~
𝐾

2𝐾
 will be a considerable value. 

In this paper, the small world network will be used as the offline bottom network. 

Among them, the nodes on the network represent learners who communicate face to 

face, and if learners are group members who discuss and communicate, there will be 

a corresponding interpersonal connection. Given that the total number of nodes in the 

network is 𝑁, each node is connected with its nearest 𝐾 = 2𝑘 nodes to obtain a one-

dimensional finite rule network, which requires 𝑁 ≥ 𝐾 ≥ 1. 

At time 𝑡, the amount of knowledge of node 𝑖 can be represented by 𝑣𝑖(𝑡), and 

the knowledge updating mode of node 𝑖 is as follows: 

If there is a knowledge potential difference between the target node 𝑖 and its 

neighbors, the target node absorbs knowledge from its neighbors 𝑗 with probability 

𝑇: 

( ) ( ) ( ) ( )  ( ) ( )

( ) ( )



=+

−+=+

otherwisetvtv

tvtvtvtvαtvtv

ii

ijijiii

1

1
 (8) 

where 𝛼𝑖 is the absorption capacity of individual 𝑖. Take offline learners’ absorption 

capacity distribution as an inverted 𝑈 shaped distribution on (0, 1). 

The goal is to adjust the connection weights for any given pulse sequence pattern 

of input neurons, and finally the output neurons will issue the target pulse sequence 

pattern that meets the requirements. In the network, let a postsynaptic neuron 𝑜 have 

𝑁 presynaptic neurons connected to it, then the expression of membrane potential of 

neuron 𝑜 is as follows: 

𝑢𝑜(𝑡) = ∑ ∑ ∑ 𝑤ℎ𝑜
𝑘

𝐹ℎ

𝑓=1

𝐾

𝑘=1

𝑁

ℎ=1

𝜀 (𝑡 − 𝑡ℎ

(𝑓)
− 𝑑𝑘) + 𝜂 (𝑡 − 𝑡𝑜

(𝑓𝑟)
) (9) 

where 𝑤ℎ𝑜
𝑘 , 𝑑𝑘  represents the 𝑘 -th synaptic connection weight and delay of pulse 

neuron ℎ, 𝑜 respectively, 𝜀(𝑡), 𝜂(𝑡) represents the response function and refractory 

function of pulse neuron respectively, 𝑡ℎ

(𝑓)
  represents the pulse emitted by 

presynaptic neuron ℎ, and 𝑡𝑜
(𝑓𝑟)

 represents the last pulse emitted by pulse neuron 𝑜. 
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The impulse neural network culture learning algorithm is a multi-impulse 

learning algorithm based on Evolutionary Algorithm (EA). Figure 3 shows the 

concrete implementation framework of the impulse neural network culture learning 

algorithm, and each impulse neural network culture learning cycle. 

 
Figure 3. Pulse neural network culture learning algorithm. 

4. Result analysis 

The fragmentation of learning arises from the fragmentation of information, 

which, in turn, leads to the disintegration of knowledge, time, space, and media. 

Moreover, the fragmented learning pattern may also affect the depth of cultural 

awareness and understanding, essential components in building a strong cultural 

identity. In an educational environment that relies heavily on fragmented, 

asynchronous learning, students may struggle to connect abstract cultural concepts 

with real-life experiences, limiting their ability to internalize and apply cultural 

knowledge effectively. Therefore, while fragmented learning offers undeniable 

convenience, it highlights the need for strategies that integrate biomechanics, 

multimedia teaching methods, and collaborative interactions to foster a more holistic, 

meaningful learning experience. By creating opportunities for immersive learning that 

engage both the mind and body, educators can bridge the gaps left by fragmented 

learning, fostering stronger social connections and enhancing students’ cultural self-

confidence. 

The user’s comprehensive similarity adjustment parameter 𝛼 starts from 0.1 and 

gradually increases to 0.9 according to the step size of 0.1. The experimental results 

under different values of parameter 𝛼 are shown in Figure 4: 
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Figure 4. The change of MAE with 𝛼. 

It can be seen that the changes of MAE (Mean Absolute Error) value of the 

algorithm under three kinds of nearest neighbor numbers all decrease at first and then 

increase slowly with the change of 𝛼 value, and MAE gets the minimum value when 

the 𝛼 value is 0.7 under three kinds of users’ nearest neighbor numbers. It shows that 

when the user’s rating weight is 0.7 and the tag’s weight is 0.3, the algorithm can get 

a better rating prediction effect. 

In the experimental test, the size of the original experimental data set is divided 

according to different percentages, and the running efficiency of the algorithm is 

compared on a single machine and a Hadoop distributed platform with three nodes, 

five nodes and a single machine. The experimental results are shown in Figure 5. 

 
Figure 5. Comparison of parallel running time under different data scales. 

The fusion accuracy, recall, and F-measure values obtained using different 

similarity calculation methods outlined in the formula are presented in Table 1. The 

results demonstrate that the algorithm proposed in this study achieves significantly 

higher performance when similarity is calculated by combining Spell and vocabulary. 

Specifically, the fusion accuracy, recall, and F-measure values reached 0.981, 1, and 

0.997, respectively. These results indicate that the integration of Spelling and 

vocabulary in the similarity calculation process enhances the overall effectiveness and 

precision of the knowledge fusion approach. 
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Table 1. Calculation results of fusion under different similarity methods. 

Way Accuracy Recall F-measure 

Vocabulary 0.945 0.881 0.914 

Spell 0.969 0.982 0.963 

Vocabulary + Spell 0.981 1 0.997 

The running time results of the improved algorithm in stand-alone mode and 

MapReduce parallel mode reveal significant differences in efficiency. By comparing 

the running time under the same data scale for both modes, it is clear that the 

MapReduce-based parallel mode consistently demonstrates the shortest running time. 

Furthermore, the time-consuming growth under the MapReduce framework is 

smoother, highlighting its computational efficiency and scalability advantages. This 

result underscores the effectiveness of the MapReduce framework in handling large-

scale data and optimizing algorithm performance, making it a powerful tool for 

processing complex educational data. 

In the context of offline multimedia teaching, learners can form small “student-

student” interaction groups based on self-organization and teaching guidelines. Within 

these groups, students’ social skills are demonstrated by their ability to proactively 

establish learning partnerships with nearby peers who may not be their usual learning 

partners. Those with stronger social skills are more adept at forming these partnerships, 

creating a network-like model in which higher connectivity increases the likelihood of 

successful interactions. 

The knowledge absorption ability within learner groups can be categorized into 

three levels: low, medium, and medium-high. Figure 6 illustrates the distribution of 

offline individuals with varying absorption capacities. This distribution highlights the 

diverse range of individuals’ abilities to assimilate knowledge within group 

interactions, which carries important implications for designing teaching strategies 

and collaborative learning models. To enhance the effectiveness of offline multimedia 

teaching, it is essential to consider these varying absorption levels, optimizing group 

formation and interaction to boost overall learning outcomes. 

 
Figure 6. Different offline absorption capacity distribution. 

The knowledge absorption ability of offline individuals follows an inverted U-
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shaped distribution. This means that when the average absorptive capacity of offline 

groups is stronger, the overall knowledge level at the initial stage is higher, the growth 

rate of the offline average knowledge level is faster, and the time required for 

individuals to reach “knowledge level convergence” is shorter. This suggests that 

groups with stronger absorptive capacity are more efficient in disseminating and 

internalizing knowledge across individuals, thus enhancing the overall learning 

process. 

Moreover, the improvement in offline individuals’ absorptive capacity positively 

impacts the average knowledge level in online forums. The interaction between online 

and offline learning environments demonstrates how knowledge transfer and 

integration can bridge these spaces, with offline absorptive capacity playing a crucial 

role in influencing online knowledge accumulation. This integration allows for a more 

holistic learning experience, where the strength of offline knowledge absorption 

amplifies online learning outcomes. 

Additionally, the complexity of knowledge taught in different courses and 

classrooms varies significantly, which impacts the learning dynamics and convergence 

times of individuals in both offline and online settings. The results of the simulation, 

based on this model and reflecting the influence of varying knowledge complexities 

and absorptive capacities, are illustrated in Figure 7. These findings provide valuable 

insights for designing targeted teaching strategies that optimize the interaction 

between offline and online learning environments. By considering the complexity of 

content and the varying levels of absorptive capacity, educators can tailor their 

approaches to better support knowledge dissemination and internalization across both 

platforms. 

 
Figure 7. Influence of different knowledge complexity on knowledge dissemination 

in online forums. 

It can be observed that as the complexity of knowledge increases, the spread 

speed of knowledge in online forums slows down, and the average knowledge level 

among participants decreases. However, this does not significantly affect the 

participation rate in online forums. With varying levels of knowledge complexity, 

online forum participation exhibits fluctuations but does not follow any discernible 

pattern. 

In addition, feedback interaction plays a crucial role in the psychological 
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mechanisms of learning, enabling continuous improvement in the overall efficiency of 

organizational learning. By employing a control group experimental method to 

preliminarily compare the efficiency of learning and research, it was found that the 

integration of feedback into the learning process yielded remarkable results in the 

context of enterprise organizational learning. Feedback allows for timely adjustments 

in learning methods and understanding, leading to improvements in the overall 

efficiency of organizational learning. These results are presented in Table 2. 

This preliminary research provides not only valuable insights but also a 

theoretical model and practical foundation for designing customized learning 

programs. These programs aim to enhance individual understanding and facilitate 

knowledge sharing within organizations, paving the way for more effective and 

tailored approaches to organizational learning in the future. 

Table 2. Comparative experimental results of epiphany learning. 

Group  Overall number of people 
Passed number 

0.5 h 1 h 1.5 h 

Normal study 20 4 8 18 

Epiphany learning 30 7 18 24 

Finally, we conducted tests on the cultural learning of autonomous agent 

populations with different network sizes, aiming to analyze the impact of network size 

on the cultural learning performance of impulse neural networks based on the 

experimental results. The experiments were carried out in a “food gathering” 

simulation environment, where the fitness of agents was used as a key performance 

metric. 

Figure 8 illustrates the average fitness and optimal fitness levels of two 

autonomous agent populations with varying network sizes. The results indicate that 

network size plays a significant role in shaping the learning outcomes of impulse 

neural networks. Larger networks tend to demonstrate higher average fitness and 

optimal fitness due to increased interaction opportunities and information exchange 

among agents. Conversely, smaller networks may exhibit slower learning rates and 

lower fitness due to the limited exchange of knowledge and collaboration. 

 
Figure 8. Cultural learning adaptation values of impulsive neural network 

populations with different network scales. 

These findings suggest that network size is a critical factor in optimizing the 
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cultural learning performance of autonomous agent populations. By understanding and 

leveraging these dynamics, future research can design more effective network 

structures to enhance the performance of impulse neural networks in various learning 

scenarios. 

The experimental results show that both the average fitness value and the optimal 

fitness value of the population gradually improve over successive generations. After 

several iterations of evolution, the average and optimal fitness values for the two 

populations stabilize, indicating the convergence of learning outcomes. These 

observations highlight the significant influence of network scale on the career 

development effect of the population. 

It can be concluded that as the number of neuron nodes and the complexity of the 

network structure increase, the career development outcomes of the agents improve. 

Larger and more complex networks allow for greater interaction and information 

exchange among agents, enhancing their learning capacity, adaptability, and the 

internalization of career-related knowledge. This suggests that optimizing the network 

scale and structure is crucial for improving the performance of career development in 

autonomous agent populations. This finding offers valuable insights for future 

research and applications in neural network design, as well as in the development of 

more effective learning systems that leverage the benefits of enhanced interaction and 

information sharing. 

5. Conclusion and future outlook 

Career development represents the process by which individuals acquire skills, 

knowledge, and experiences to thrive professionally. Neural network-based 

multimedia teaching strategies explore biological feedback mechanisms such as 

students’ emotions and behavioral patterns during cultural interaction. And it enhances 

this process by fostering adaptability, engagement, and career confidence through 

neurocognitive optimization. For instance, our study developed a fusion algorithm 

within the Hadoop MapReduce framework that integrates attribute-based similarity 

calculations with dynamic fusion rules. This system achieved great performance 

metrics: a similarity accuracy of 0.981, a recall rate of 1.0, and an F-measure of 0.997, 

demonstrating its effectiveness in processing multi-source career-related data. 

More importantly, populations using neural network-based learning mechanisms 

outperformed traditional group learning cohorts in adaptive decision-making tasks. 

This improvement is attributed to the technology’s ability to simulate real-world career 

scenarios through graph neural network (GNN) architectures, which activate 

dopaminergic pathways associated with reward-driven learning. By dynamically 

mapping students’ decision vectors to virtual career trajectories, these systems enhance 

psychological engagement while simultaneously improving cognitive flexibility and 

proactive problem-solving behaviors. This means that computer modeling is not only 

a technological tool but also a catalyst for psychological development. 

Future research should focus on three computational frontiers: 

Dynamic Mental Modeling: Deploy temporal convolutional networks (TCNs) to 

continuously monitor longitudinal changes in occupational psychology. This would 

enable the creation of predictive control models that anticipate cognitive 
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transformations, allowing timely interventions to strengthen career resilience. 

Causal Reasoning Systems: Integrate counterfactual reasoning modules into 

Transformer architectures to validate causal relationships in career decision-making. 

This innovation would enhance the interpretability of AI-driven career advice, 

fostering student trust and informed decision-making. 

Metaverse Teaching Ecology: Utilize generative AI and digital twin technology 

to construct embodied career enlightenment environments. These immersive platforms 

would visually track development through real-time neural feedback loops, aligning 

with McLaren’s emphasis on experiential learning. 

This interdisciplinary approach marks a paradigm shift from static knowledge 

transfer to neurocomputational empowerment. By operationalizing career development 

through neural network simulations and enhancing metacognitive awareness. The 

proposed systems not only improve employability but also cultivate proactive 

psychological capital. It results in a human-machine collaborative framework that 

transforms career planning from reactive guidance to adaptive, growth-oriented 

neurocognitive training. 
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