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Abstract: Intelligent classrooms have demonstrated significant promise in enhancing 

learning efficiency as a result of the quick development of big data and artificial intelligence 

technologies. This study proposes a text semantic matching model (OM) that combines deep 

learning and K-means clustering algorithm, aiming to optimize vocabulary. Importantly, it 

delves into the biomechanical aspects of learning by considering how physical and 

physiological processes interact with language acquisition. By mimicking the learning 

mechanism of biological neural networks and further exploring the biomechanical correlates 

of neural activity during learning, such as the muscle tensions and postural changes 

associated with cognitive efforts, this model simulates how the brain processes and stores 

language information. These biomechanical factors can have an impact on concentration and 

fatigue levels, which in turn affect semantic understanding and memory performance during 

the learning process. The experimental results indicate that this method not only improves 

teaching effectiveness, but also provides a solid foundation for future research on intelligent 

language learning environments, taking into account the biomechanical underpinnings of 

learning. 

Keywords: biological, smart classroom; artificial intelligence; k-means clustering; text 

semantic matching; biomechanical 

1. Introduction 

Big data technology and artificial intelligence (AI) have emerged as the main 

drivers of change in the educational landscape due to the quick advancement of 

technology. In this context, the construction of intelligent classrooms has become an 

important means to enhance educational effectiveness. Especially in English 

education, smart classrooms can not only promote the improvement of students’ 

learning efficiency, but also optimize the teaching process through personalized 

learning paths and real-time feedback. However, despite the changes brought about 

by modern educational technology, traditional English teaching still faces many 

challenges, especially the difficulty of vocabulary learning. Traditional vocabulary 

teaching methods mostly rely on teachers’ explanations and students’ memorization. 

Although this method can improve students’ memory ability to a certain extent, it 

often overlooks their understanding and application of vocabulary in practical 

contexts. Therefore, how to apply advanced technological means to English 

vocabulary teaching and enhance students’ language cognitive ability has become a 

key issue in current education reform [1–3]. 

Language learning, as a complex cognitive process, involves the brain’s 

processing and integration of various information such as speech, vocabulary, 

grammar, etc. In recent years, neuroscience research has revealed the deep 
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mechanisms of language learning, especially in the process of vocabulary learning 

and memory, how different regions of the brain work together, and how 

reinforcement learning promotes long-term memory and contextual application of 

vocabulary [4–7]. Therefore, deep learning models based on neural networks that 

simulate the multi-level information processing of the brain in language processing 

have become important tools for improving language learning effectiveness. This 

process not only involves understanding vocabulary, but also involves semantic 

reasoning and association, especially in the challenges of semantic matching and 

vocabulary classification for English vocabulary. Therefore, how to simulate this 

cognitive process through intelligent systems and optimize language learning 

outcomes is an important direction in current research on intelligent education [8,9]. 

The construction of intelligent classrooms, combined with artificial intelligence 

and big data technology, can help teachers achieve personalized teaching and 

provide students with customized learning resources and feedback. Through big data 

analysis, the system can accurately understand the weak links in students’ 

vocabulary learning process, and adjust teaching content and methods in real time 

according to students’ learning situation. Artificial intelligence, on the other hand, 

uses technologies such as deep learning and semantic matching to achieve semantic 

classification and clustering analysis of vocabulary, helping students better 

understand and apply English vocabulary in different contexts. This intelligent 

teaching based on cognitive processes can not only improve students’ memory 

effectiveness, but also help them enhance their vocabulary application ability, 

thereby achieving the goal of language learning [10]. 

The intelligent classroom design proposed in this article combines deep neural 

networks (DNN) and K-means clustering algorithm, aiming to optimize the semantic 

matching process in English vocabulary teaching through advanced semantic 

matching models and data analysis methods. This model utilizes DNN model for 

deep semantic matching, and combines K-means clustering method to classify and 

match different lexical semantics. This method can better simulate the human brain’s 

processing and classification of vocabulary during language learning, providing 

students with a more personalized and accurate learning experience. 

2. The method 

One of the current research hotspots is the development of an intelligent 

university English classroom using artificial intelligence and big data. The suggested 

AI technique matches different kinds of numerical information in English using 

distinct lexical information by utilizing a deep neural network text semantic 

matching model (OM). In the meantime, the semantic information of various words 

is matched using the k-means clustering algorithm. 

3. Original model (OM) for text semantic matching in deep neural 

networks 

In order to gather the interaction information of sequence transitions between 

sentence pairs, a self-supervised learning model is presented based on the current 

deep text semantic matching model. It then uses a multi-task learning approach to 
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dynamically incorporate this interaction information into the deep text semantic 

matching task. The structure of this paper is made up of the self-supervised model 

(SSM) and the original model (OM) (Figure 1). To create the link between the two 

components of the model, the overall framework uses the multi-task learning hard 

parameter sharing technique. 

 

Figure 1. Structure of the model. 

Discover how to obtain two phrases’ feature interaction vector, Vector_E. This 

is how Vector_E is computed: 

(1) A dataset of n sentence pairs is created by taking two sentence sets, 𝐴 =

{𝑎1, 𝑎2, . . . , 𝑎𝑛} and𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛} , each containing n sentences. In the 𝑖 -th 

sentence pair, indicate the A sentence with𝑎𝑖 = {𝜔1
𝑎𝑖 , 𝜔2

𝑎𝑖 , . . . , 𝜔𝑚
𝑎𝑖}, and the x-th 

character or word of the sentence 𝑎𝑖  with𝜔𝑥
𝑎𝑖(𝑥 ∈ [1,𝑚]). (characters for Chinese 

text, words for English text). In Figure 1, m stands for MaxLen, or the sentence 

sequence’s maximum length. Similarly, there is 𝑏𝑖 = {𝜔1
𝑏𝑖 , 𝜔2

𝑏𝑖 , . . . , 𝜔𝑚
𝑏𝑖}, 𝜔𝑥

𝑏𝑖(𝑥 ∈

[1,𝑚]). 

(2) In the experiment, the embedding layer’s dimension, or dim, is set at 300. 

To create the embedded representation, the TSSM embedding layer retrieves the two 

sentences, ai and bi, of the sentence pair, that is, the matrices 𝐸𝑚𝑏𝑒𝑑_𝑎𝑖 ∈

𝑅𝑚×𝐷𝑖𝑚and 𝐸𝑚𝑏𝑒𝑑_𝑏𝑖 ∈ 𝑅𝑚×𝐷𝑖𝑚  

(3) Enter the embedding representation of the two sentences in sentence pair I 

into TSSM to get _ iVector E : 

𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖 = 𝑇𝑆𝑀𝑀𝑖(𝐸𝑚𝑏𝑒𝑑_𝑎𝑖, 𝐸𝑚𝑏𝑒𝑑_𝑏𝑖) (1) 

(4) Using the Sigmoid function as the activation function, enter 𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖 into 

the fully connected layer to obtain the two phrases’ 𝑆𝑖𝑚𝑖similarity score: 

𝑆𝑖𝑚𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑𝑖(𝑊𝑜𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖 + 𝑏𝑜) (2) 

The parameters that can be learned and changed are 𝑊𝑜 and 𝑏𝑜. 

Assign the label of the sentence pair to𝐿 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, where 𝑦𝑖(𝑖 ∈ [1, 𝑛]) 

is the label of the 𝑖 -th sentence pair. Use binary cross-entropy as the loss function. 

𝐿𝑂𝑆𝑆𝑂𝑀 = −(𝐿 ⋅ 𝑙𝑜𝑔( 𝑆𝑖𝑚𝑖) + (1 − 𝐿) ⋅ 𝑙𝑜𝑔( 1 − 𝑆𝑖𝑚𝑖)) (3) 
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To address the text semantic matching problem, self-supervised modeling (SSM) 

extracts the interaction information of sentence pair vector matrices through 

sequence creation. The pre-training challenge for SSM is to generate sentence pairs 

with mutual sequences. This is the exact algorithm. 

(1) SM input design: two sentences 𝑎𝑖and 𝑏𝑖 in the sentence pair 𝑖 are trained 

using Skip-gram algorithm to generate Word2Vec [11] vector representation, i.e., 

denotes the length of the sentence sequence and Dim denotes the vector dimension, 

which is spliced to obtain matrix 𝑊2𝑉_𝐴𝐵𝑖 ∈ 𝑅2𝑚×Dim. 

𝑊2𝑉_𝐴𝐵𝑖 = [
𝑊𝑎𝑖

𝑊𝑏𝑖
] (4) 

(2) SSM output design:  

𝑊2𝑉_𝐵𝐴𝑖 = [
𝑊𝑏𝑖

𝑊𝑎𝑖
] (5) 

SSM takes the sentence pair matrix 𝑊2𝑉−𝐴𝐵𝑖 ∈ 𝑅2𝑚×𝑑𝑖𝑚

 
as the input and 

labels it as 𝑊2𝑉−𝐵𝐴𝑖 ∈ 𝑅2𝑚×𝑑𝑖𝑚.  

(3) Convolutional Layer Feature Extraction: a CC-layer one-dimensional 

convolutional layer (Conv1D) is used to construct a multi-CNN network to extract 

the n-tuple features of 𝑊2𝑉_𝐴𝐵𝑖 and combine them into a matrix 𝑁𝑔 ∈ 𝑅2𝑚×256𝐶. 

𝑈𝑘 = 𝐶𝑜𝑛𝑣1𝐷𝑘
𝑘+1(𝑊2𝑉_𝐴𝐵𝑖), 𝑘 ∈ [1, 𝐶] (6) 

𝑁𝑔 = [𝑈1, 𝑈2, . . . , 𝑈𝐶] (7) 

The convolution kernel sizes for the multi-CNN configuration are 2, 3, 4, and 5 

for extracting binary, ternary, quaternary, and quintuple features while accounting 

for multi-character combinations. For Chinese text, (C) is set to 4. In order to extract 

binary, ternary, and quaternary characteristics from English text, (C) is set to 3, and 

the convolution kernel sizes are 2, 3, and 4. 

(4) Sequence feature extraction and model output: In order to extract the N-

element sequence features and ensure that each node’s output has complete sequence 

information, the multilayer convolutional network’s output from step 3 is input into 

the self-attention mechanism. Following the normalized attention mechanism, the 

temporal fully connected network generates the SSM output, which is then processed 

by the Softmax activation function. 

𝐵𝑁 = 𝐵𝑎𝑡𝑐ℎ_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑆𝑒𝑙𝑓_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑁𝑔))  (8) 

𝑊2𝑉_𝐵𝐴𝑖
∧

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑠 ⋅ 𝐵𝑁 + 𝑏𝑠)  (9) 

Of these, 𝑊𝑠and Bs are learnable and modifiable parameters. 

The resemblance between the generated and real vectors is assessed using 

cosine similarity, which concentrates on the angle between the vectors. However, 

MAE (Mean Absolute Error) and MSE (Mean Square Error) do not directly show 

similarity; rather, they concentrate on the difference between the actual and projected 

values.Cosine similarity serves as the loss function in SSM. 
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𝐿𝑜𝑠𝑠𝑆𝑆𝑀 = −𝑐𝑜𝑠 𝑖 𝑛𝑒𝑖(𝑊2𝑉_𝐵𝐴𝑖 ,𝑊2𝑉_𝐵𝐴𝑖
∧

) (10) 

The basic downstream task (i.e., the original model) receives text interaction 

data produced by self-supervised learning as part of the multi-task learning 

framework (OM + SSM) presented in this research. In particular, the vector vector_F 

is produced by averaging and adding the normalized interaction information (BN) 

that was taken out of the pooling layer. 

𝑉𝑒𝑐𝑡𝑜𝑟_𝐹𝑖 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝑖(𝐵𝑁) (11) 

The similarity score Sim_Scorei is then obtained by feeding the vector 

𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖  of the original model into a fully connected layer that employs the 

Sigmoid function as an activation function. This is done by splicing the vector 

𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖 with the vector 𝑉𝑒𝑐𝑡𝑜𝑟_𝐹𝑖 of the interaction information. 

𝑆𝑖𝑚_𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑚[𝑉𝑒𝑐𝑡𝑜𝑟_𝐸𝑖 , 𝑉𝑒𝑐𝑡𝑜𝑟_𝐹𝑖] + 𝑏𝑚) (12) 

𝐿𝑜𝑠𝑠𝑀𝐿 = 𝐿𝑜𝑠𝑠𝑂𝑀 + 𝜆𝐿𝑜𝑠𝑠𝑆𝑆𝑀 (13) 

Table 1 Enumerates the SSM parameters. Each multi-CNN layer has 256 self-

attention neurons, with Relu serving as the activation function. 

Table 1. Parameters of neural networks. 

data set length of the series Batch Size Embedding OM SSM Input SSM Output Multi-CNN 

MSRP 35 60 (32,100) (33,200) (67,200) 2,3,4,5 

CCKS18-T3 39 60 (41,200) (41,200) (81,400) 2,3,4, 

TCA120 19 60 (20,200) (20,200) (41,400) 2,3,4,5 

GAIIC21-T3 38 60 (35,200) (34,100) (75,200) 2,3,4, 

GAIIC21-T3M 29 60 (31,100) (32,100) (66,200) 2,3,4,5 

To calculate similarity scores for sentence pairings in this work, two models 

were developed: a decomposition model and a multi-task model that included SSM. 

In light of this, this research also develops a multi-task SA + SSM model, which 

weights and adds the loss functions of the SSM and SA decomposition models to 

determine the multi-task model’s anticipated sentence pair similarity. In OM + SSM 

multitask learning, the weighting is identical to the loss function, where λ takes on a 

value of 0.5 [12–14]. 

3.1. The K-means clustering approach correlates various lexical semantic 

data 

Finding the constant K, or the final number of cluster categories, is the first step 

in the K-means process. Next, using a random selection process, find the centroid by 

calculating the similarity between each sample and the centroid (in this case, the 

Euclidean distance); assign the sample points to the class that is most similar to the 

centroid; recalculate the centroid of each class (i.e., the class center); repeat this 

process until the centroid stays constant; and lastly, identify the class to which each 

sample belongs to and the centroid of each class. Because the similarity between 
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each sample and each centroid is calculated each time, the K-Means algorithm’s 

convergence speed is relatively slow on large data sets. 

The main difference between the classification algorithm and the clustering 

algorithm is that the latter is a supervised learning method with the aim of 

determining the result, whilst the former is an unsupervised learning process. The 

clustering algorithm divides the samples into various groups based on how similar 

they are to one another. Clustering results will vary depending on the method used to 

calculate similarity. The Euclidean distance approach is the most often used method 

for calculating similarity. 

After determining each point’s distance from every centroid, the nearest 

centroid is chosen, and the point is then allocated to the appropriate cluster. Each 

cluster’s centroid is recalculated after one iteration, and the nearest centroid is once 

more determined for every point. After two repetitions, this process is continued 

until the clusters no longer change [15,16].  

First, a class named k-means must be defined in order for the k-means algorithm 

to read and store external data. Then, create a container vector with the data type 

structure st_point that contains the class’s char type ID and 3D coordinates. Next, 

declare the necessary functions. Figure 2 displays the flow chart. 

 

Figure 2. Fundamental program structure and related features. 

In k-means, the specific provision of different functions of the public function, 

as shown in Figure 2, the function is more complete, easy to follow the expansion of 

the application. More specific clustering function “clustering” strictly follow the 

basic principles of k-means [17]. 

The k-means algorithm works like this: 

1) Select the number of clusters (k); only the maximum k value should be 

chosen when passing hyperparameters. 

2) Either create k centers directly or produce k clusters at random and identify 

the initial cluster centers. 

3) The nearest clustering center should be assigned to each point. 

4) Check for consistency between the sample points’ categories before and after 

clustering. The algorithm ends if it is consistent; if not, move on to step 5. 
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5) Determine the sample points’ center point for each category, use that as the 

new center point, and then go to step 2. 

3.2. Constructing an Enlightened classroom to teach college English 

terminology 

3.2.1. Pre-class warm-up 

Pre-lesson vocabulary warm-ups are designed to help students master the basics 

of the words they are learning, such as pronunciation, word sense identification, 

synonym analysis, lexical properties, and grammatical functions, thus laying the 

groundwork for extended vocabulary explanations and practical use in the classroom. 

The pre-class warm-up is usually divided into three parts: 

1) Information pushing: Teachers can push videos, audios, pictures, 

memorization methods and word explanations to students through Dingding platform, 

WeChat groups, emails and other online platforms to help students clarify the 

learning objectives and key points of the words.  

2) Vocabulary tests: Teachers design tests based on teaching objectives to 

assess students’ mastery of vocabulary and set targeted themes. For example, 

students can be asked to upload audio files and take dictation, or they can be tested 

on their understanding of word classes, grammar and word meanings through 

multiple choice fill-in-the-blank questions. Through these tests, students will be able 

to get a clear picture of their strengths and weaknesses in word mastery and be 

prepared for classroom learning. 

Implications for Teachers: Teachers can use online assessments to learn more 

about their students’ vocabulary mastery, gather firsthand information, and compile a 

list of the words that pupils have mastered and those that still require improvement. 

Teachers can provide more exercises and explanations for language that students are 

struggling with in the classroom. To maximize and standardize vocabulary 

instruction, teachers should simultaneously keep updating materials for vocabulary 

explanations and investigate more efficient teaching strategies. 

3.2.2. Cooperation in the classroom 

In order to assist students feel and experience language at a higher level and 

gain a deeper understanding of its nature, the class largely focuses on collaboration 

and interaction between teachers and students, with a particular emphasis on 

vocabulary output. The pre-class warm-up is expanded upon, and pupils’ vocabulary 

is significantly improved. Level 2 testing, student contact, and teacher-student 

interaction are all elements of the classroom. 

3.2.3. After-class comments 

After the session, the teacher records the students’ learning and assists them in 

reviewing, which is known as post-lesson feedback. Teachers can assign pupils to 

one of three grades—excellent, average, or poor—based on the outcomes of their 

second vocabulary test. Teachers at different grade levels will use different ways, 

degrees and contents of tracking depending on the students.  

For top students, they have mastered and flexibly used the vocabulary they have 

learned, thoroughly internalizing it. Intermediate students, on the other hand, have 
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mainly mastered the pronunciation, lexical properties, and meaning of vocabulary, 

but have difficulty with practical applications, such as sentence formation, 

conversation, or writing. Lower-advanced students have greater problems with basic 

vocabulary skills, and teachers should pay more attention to and help them, 

especially in the reinforcement of basic knowledge. 

4. Search and examination 

Our method combines neural networks with dictionary classification models, 

which includes the following steps:  

1) auxiliary dictionary construction: constructing multiple dictionaries, 

including entity linking dictionary, participle dictionary, Participle and word 

frequency computation using a dictionary of words and attributes.  

2) Identification of entities and attribute values: Determine the values of entities 

and attributes. Because the problem’s attribute values are less standardized, they can 

contain lengthy word sequences or not be able to directly match knowledge base 

items. Some of the entities in the split-word dictionary can be disregarded.  

3) entity linking and filtering: compute features for each entity and perform 

linking and filtering.  

4) Generate Candidate Query Paths: perform text matching to generate 

candidate query paths.  

5) entity splicing and answer retrieval: complete entity splicing and retrieve 

answers. 

Table 2 presents the data statistics. 

Table 2. data set statistics. 

TYPE OF QUESTION Training set Validation set Test set 

One entity, one relationship 1145 465 488 

Numerous relationships with a same entity 675 154 162 

multi-entity 355 132 120 

4.1. Clustering of data 

The experiment moves onto the clustering phase following the completion of 

word vector transformation and data pretreatment. The silhouette coefficient 

typically has a range of [−1, 1], and the bigger its value, the more compact the 

clusters are inside and the farther apart they are from one another. Furthermore, the 

persuasiveness and representativeness of the clustering results will be impacted by 

an excessive or insufficient distribution of data in a single cluster. Consequently, the 

silhouette coefficient and the scatter plot’s data distribution must be taken into 

account when calculating the K value. In other words, if the distribution of the 

clustered data is more uniform, the corresponding K value is more appropriate based 

on the maximum value of the silhouette coefficient. This study conducted several 

sets of controlled experiments to determine the best clustering distribution results; 

the precise outcomes are displayed in Figure 3. 
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(a) (b) 

Figure 3. The GMM scatter plots and contour coefficient values with various clustering numbers. (a) The silhouette 

coefficient value is 0.008 and there are three clusters; (b) there are four clusters and a silhouette coefficient of −0.035. 

It is evident from examining the experimental data that the silhouette coefficient 

is comparatively high when there are two or three clusters, but it progressively drops 

as the number of clusters rises. The scatter plot demonstrates that the distribution of 

three clusters is more uniform when K = 3, whereas the distribution of two clusters is 

unequal when K = 2. Thus, based on a thorough comparison of the experimental 

findings, three clusters are the ideal number for the data gathered for this paper. At 

this point, the center point is utilized as the clustering center, and the parameter K is 

set to three for the final K-means clustering. Figure 4 displays the sample data’s 

clustering impact. 

 

Figure 4. K-means scatter diagram for clustering. 

The number of clusters is set at three, and three conventional clustering 

algorithms—the Birch, Hierarchical, and DBSCAN algorithms—are chosen at 

random while maintaining all other parameters constant. Both graph and evaluation 

index viewpoints are used to analyze the experiment findings. Table 3 demonstrates 

that the G-K-means algorithm has the highest profile coefficient, the greatest CH 

index value, and the smallest DB index value. This suggests that the algorithm’s 

clustering impact is superior to that of the other algorithms and more consistent with 

the “optimal clustering quality” approach. The Birch, Hierarchical Clustering, and 

DBSCAN algorithms, on the other hand, have poor distribution and poor clustering 



Molecular & Cellular Biomechanics 2025, 9(1), 856.  

10 

effects. In particular, the DBSCAN method has trouble dividing the data set into 

manageable clusters, which makes it clearly unsuitable for clustering the text of 

online Q&A community questions. 

Table 3. Comparative analysis of several algorithms’ evaluation indices. 

TYPE OF ALGORITHM DB Index CH Index THE SILHOUETTE FACTOR 

G-K means 4.5567 1668.25 0.2561 

birch 4.785 1326.82 0.2672 

DBSCAN 462.54 37.452 0.3668 

Clustering in Hierarchy 6.325 1324.51 0.2145 

4.2. Deep learning in conjunction with the original model (Om) for text 

semantic matching 

The experimental findings in Table 4 are used to discuss the two research 

issues raised in this work. Accuracy, AUC, and F1 score range from 0 to 1. First, 

RQ1 is discussed. These findings show that the addition of SSM enhances the 

performance of the representation-based models on the five datasets and that the 

interaction information gleaned by self-supervised learning successfully makes up 

for these models’ drawbacks. 

Table 4. Model performance comparison (%). 

 MODEL MSRP CCKS18-T3 TCAI20 GAIIC21-T3 GAIIC21-T3M 

OM SSM multi-task model and 

representation-based OM model 

ARC-I 75.26 68.26 75.49 84.62 90.62 

ARC-I + SSM 76.52 71.65 76.58 85.62 93.65 

DSSM 82.14 74.26 65.88 75.62 80.78 

DSSM + SSM 81.16 75.66 84.62 88.98 90.99 

CDSSM 79.86 71.46 72.66 78.91 68.52 

CDSSM + SSM 81.36 77.68 85.02 88.86 90.62 

OM SSM multitasking model, 

hybrid OM model, and interaction-

based OM model 

ARC-II 76.52 71.36 74.26 81.45 84.66 

ARC-II + SSM 78.69 70.36 77.68 86.36 91.68 

DRMMTKS 77.98 74.26 87.65 66.24 68.32 

DRMMTKS + SSM 80.89 76.52 87.89 86.26 90.26 

K-NRM 77.98 73.65 72.58 66.26 62.32 

K-NRM + SSM 78.58 72.36 81.26 88.36 92.35 

CONV-KNRM 76.36 77.25 76.36 82.36 80.24 

CONVKNRM + SSM 81.26 75.68 85.62 85.68 89.96 

MVLSTM 75.26 74.26 78.86 80.26 82.53 

MVLSTM + SSM 78.63 72.36 82.14 88.25 92.63 

DUET 75.68 75.62 84.63 80.35 4.68 

DUET + SSM 77.69 75.62 84.63 87.41 92.36 

SA + SSM multitasking and the 

decomposition model 

Self-attention(SA) 81.36 74.62 80.26 89.36 92.63 

SA + SSM 80.25 74.62 83.20 87.52 93.23 
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The performance improvement for each dataset following the combination of 

the self-supervised models is shown in Table 5. With an average improvement of 

2.44%, the nine models’ improvement for the MSRP dataset is more constrained. 

This dataset’s sentences originate from various news websites and news articles, 

which effectively reduces the potential semantic similarity between sentences. This 

reduces topic complexity and sentence commonality, indicating that SSM is not 

robust enough to generate sentence pairs that address different topics. The model’s 

improvement with the addition of self-supervised learning is more evident for the 

other three datasets. GAIIC21-T3(M) focuses on brief text matching for AI-assisted 

interactions, while TCAI20 focuses on judging comparable sentences associated with 

the New Crown outbreak. SSM is able to extract high-quality interaction information 

from these datasets, which contain more comparable sentence topics. 

Table 5. Data-set-based self-supervised model enhancement (%). 

Dataset ARC-ISSM 
DSSM +  

SSM 

CDSSM 

 + SSM 
ARC-IISSM 

DRMMTKS 

 + SSM 

KNRM 

 + SSM 

CONV 

 + SSM 

MVL 

 + SSM 

DUET 

 + SSM 
AVG 

MSRP 2.9 0.4 1.2 1.8 2.8 2.2 3.2 5.2 2.5 2.54 

CCK-T3 2.8 5.2 8.6 0.2 2.6 4.6 2.2 3.2 2.5 3.45 

TCA120 2.6 21.5 18.8 1.7 1.2 12.5 17.8 4.9 2.8 9.02 

GAIIC21-T3 3.8 15.8 11.5 5.5 27.4 32.6 4.5 8.7 8.6 13.65 

GAIIC21-T3M 1.5 12.6 30.8 7.4 35.9 45.6 11.6 12.4 9.5 17.88 

4.3. English corpus information matching 

Ablation experiments are conducted on the test set for five different feature 

types for the entity linking link, and the recall rates of keeping varying numbers of 

candidate entities are documented. The recall rate of all question-annotated entities 

while keeping the first n candidate entities is represented by Recall@n/% in Table 6, 

which displays the experimental results. 

Table 6. The entity link’s outcome on the test set. 

feature reserved quantity Recall@n/% 

Entity feature plus question entity All (avg 12.6) 94.6 

Entity feature plus question entity 2 82.4 

Entity feature plus question entity 4 93.6 

Entity feature plus question entity 6 94.8 

Entity feature plus question entity 8 95.6 

Only solid characteristics 4 87.4 

Features of Question-Only Entities 4 72.6 

F-values were calculated on the test set for various counterexample counts and 

retrieval strategies. Three scenarios’ performances are compared in this paper: After 

text matching, (1) the query path with the highest similarity is directly chosen; (2) a 

bridging technique is used to generate potential query paths for each question in the 

multi-entity case; and (3) the first three paths of the text matching are re-matched 
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with the multi-entity paths by overlapping words and choosing the path that is most 

similar to the final query path. 

The advantages of the model include (1) with the help of pre-training model and 

knowledge base segmentation technique, it significantly improves the recognition 

accuracy of question subject terms; (2) through text matching technique, it matches 

the query paths of questions and knowledge base entities, thus avoiding the problem 

of unregistered relations; (3) through entity splicing method, it can effectively deal 

with multi-entity and multi-relationship problems. The drawbacks, on the other hand, 

include (1) the model relies on the features of the question entities and the 

knowledge base entities, and thus has high requirements for machine learning-based 

entity linking techniques; (2) the creation of more potential query pathways, which 

impacts the model’s effectiveness. According to the authors, entity type and entity 

number information can be added to the problem to increase the accuracy of multi-

entity and multi-relationship problems, and deep learning techniques can be used to 

link entities in the future to decrease feature dependency and improve accuracy. 

5. Conclusion 

The integration of biological principles with modern AI technology in smart 

classrooms offers a novel approach to language learning. From a biological 

perspective, language acquisition is a complex cognitive process involving various 

brain regions responsible for memory and semantic processing. Traditional 

vocabulary learning methods are limited in optimizing these brain functions. Smart 

classrooms, utilizing deep learning and big data, simulate brain-like processing of 

information, enhancing vocabulary learning through contextualized semantic 

matching and clustering algorithms. 

This technology mirrors the brain’s associative memory and cognitive functions, 

creating personalized learning paths that align with individual neural response 

patterns. By optimizing cognitive processes such as memory retention and semantic 

understanding, smart classrooms foster more effective learning. Ultimately, this 

model not only enhances language acquisition but also contributes to understanding 

the biological mechanisms of learning, marking a significant advancement in 

educational practices. 
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