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Abstract: Emotional interactions in traditional online education often face problems such as 

unnaturalness, lack of personalization, and neglect of body language. This paper aims to 

optimize the emotional expression of virtual teachers from the perspective of kinematics and 

mechanics through the principles of biomechanics, improve the naturalness and 

personalization of emotional interaction, and thus enhance learners’ emotional involvement, 

learning motivation, and learning effects. This paper combines the principles of biomechanics 

to optimize the human-computer emotional interaction system and enhance the emotional 

resonance between virtual teachers and students. In the study, inverse kinematics and 

dynamic models are constructed to ensure that the virtual teachers’ movements conform to 

the laws of human biomechanics and effectively express emotions. Secondly, the facial 

action coding system is used to model the facial expressions of the virtual teachers, and the 

coordination of facial expressions and body movements is achieved through a coordinated 

control algorithm. Finally, an emotion perception and feedback mechanism is designed to 

enable the virtual teachers to adjust their posture, speech, expression, etc., in real time 

according to the students’ emotional state and provide personalized emotional response. The 

experimental results show that the optimized virtual teacher emotional interaction system is 

significantly superior to the traditional education system in terms of human-computer 

interaction quality, emotional feedback, and learning motivation. Specific data shows that the 

experimental group scores 4.3 in positive emotions (positive affect, PA), significantly higher 

than the control group’s 3.1. In terms of pleasure scores, the experimental group scores 4.5, 

while the control group only scores 3.2. In addition, the experimental group is significantly 

better than the control group in various indicators of learning motivation, and its learning 

time is significantly longer than that of the control group. Its task completion and number of 

interactions are also better than those of the control group. 

Keywords: biomechanical principles; online education; interpersonal emotional interaction; 

virtual teacher; emotional feedback 

1. Introduction 

With the rapid development of information technology, online education has 

gradually become an important part of modern education [1,2]. Its flexibility, 

convenience and personalized customization have made it widely used around the 

world. Especially during the COVID-19 pandemic, the popularity of online 

education has further accelerated and has become the main way for students to learn. 

Online education not only provides learners with a more convenient learning channel, 

but also breaks through the spatial and temporal limitations of the traditional 

education model, promoting the global sharing of educational resources and the 

realization of educational equity [3,4]. However, although online education has made 

significant progress in knowledge transfer and technology application, the existing 
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online education system still faces many challenges in improving learning 

experience and enhancing learning outcomes, especially in terms of “human-

computer emotional interaction” [5]. Traditional online education platforms focus on 

imparting knowledge and ignore the importance of emotional factors. Studies have 

shown that emotional interaction plays a vital role in the learning process and can 

effectively stimulate students’ learning motivation, enhance learning investment, and 

improve learning outcomes. Therefore, how to optimize students’ learning 

experience through effective emotional interaction mechanisms has become a key 

issue in current online education research [6,7]. 

Currently, many online education platforms rely on a single method such as 

voice, facial expressions, or text to provide emotional feedback. Although these 

methods can convey emotional information, they lack the support of body language, 

and the emotional response is not personalized, which result in the virtual teachers’ 

emotional expression being unnatural and not vivid enough, making it difficult to 

arouse students’ emotional resonance [8]. In addition, existing systems usually fail to 

perceive students’ emotional states (such as anxiety, confusion, fatigue, etc.) in real 

time, resulting in the inability to respond to students’ emotional needs in a timely 

manner, which may affect learning motivation and outcomes. Traditional online 

education systems mainly focus on knowledge transfer and technology application, 

ignoring the role of emotional interaction, which limits students’ emotional 

involvement and learning motivation. Therefore, improving the quality of human-

computer emotional interaction in online education has become an important way to 

improve learning outcomes. 

To address the shortcomings of existing systems, this paper optimizes the 

emotional expression of virtual teachers by applying biomechanical principles, 

thereby enhancing the naturalness, personalization, and effectiveness of emotional 

interaction. Biomechanics, as a discipline that studies human movement and 

mechanics, provides a theoretical basis for the body language and emotional 

expression of virtual teachers. Through the application of biomechanics, the virtual 

teachers’ body movements, postures, and facial expressions are adjusted to make 

them more in line with the laws of natural human movement and the needs of 

emotional expression, thereby enhancing the realism and interactive effect of 

emotional interaction. Specifically, biomechanical principles help optimize the 

emotional feedback of virtual teachers, making the emotions they express more 

natural and personalized, and making timely adjustments based on the emotional 

state of students. This biomechanics-based optimization helps virtual teachers 

establish a deeper emotional resonance with students, stimulate students’ learning 

motivation, and ultimately improve learning outcomes. 

This study optimized the emotional interaction system of the virtual teacher by 

introducing the principles of biomechanics. Using inverse kinematics and dynamic 

modeling, we ensured that the movements and postures of the virtual teacher 

conformed to the laws of human biomechanics, enhancing the naturalness and 

realism of the movements. The facial action coding system (FACS) made the facial 

expressions of the virtual teacher more detailed and dynamic, while the coordinated 

control algorithm (CCA) achieved the synchronization of facial expressions and 

body movements, improving the consistency of emotional expression. In addition, 
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combined with facial expression recognition and speech emotion analysis technology, 

the system can perceive and respond to students’ emotional states in real time and 

provide personalized emotional feedback. These optimizations enable virtual 

teachers to establish emotional connections with students more naturally, stimulate 

learning motivation, and improve learning outcomes. 

2. Related work 

In recent years, with the rapid development of online education, the role of 

emotional interaction in improving learning experience and results has gradually 

been valued [9,10]. Traditional online education platforms usually focus on 

imparting knowledge, and research on emotional interaction started relatively late. 

Existing virtual teachers and educational robots mostly rely on single emotional 

feedback methods such as voice and facial expressions. Although these technologies 

can convey emotions to a certain extent, the naturalness and vividness of their 

expressions are relatively limited [11]. In particular, traditional systems lack body 

language and personalized emotional responses, and the emotional expression of 

virtual teachers is relatively mechanical, so it is difficult for students to have real 

emotional resonance with virtual teachers [12]. In addition, existing systems are 

usually unable to perceive students’ emotional states in real time and fail to make 

dynamic adjustments based on their emotional needs, which means that students’ 

emotional needs often cannot be responded to in a timely manner, in turn affecting 

their learning motivation and learning outcomes. Therefore, how to improve the 

naturalness and personalization of emotional interaction has become a key issue in 

improving the effectiveness of online education systems. 

The application of biomechanical principles in emotional interaction provides a 

new approach to solving this problem [13]. As a discipline that studies human 

movement and mechanics, biomechanics reveals the natural movement patterns of 

the human body in emotional expression. Non-verbal signals such as human posture, 

movement, and body language change with emotional state. These physiological 

reactions help convey emotional information and enhance the authenticity of 

communication [14,15]. In emotional interaction, biomechanics optimizes the virtual 

teachers’ body languages and facial expressions to make them more consistent with 

the laws of natural movement and enhance the effect of emotional feedback [16]. By 

applying biomechanics, it is possible to adjust the virtual teachers’ range of motion, 

posture, and expression, and provide personalized feedback based on the students’ 

emotional state. For example, when students are anxious or confused, virtual 

teachers can ease emotions through body languages and encouraging gestures to 

improve the learning experience. The application of biomechanics can help to 

establish a more realistic emotional connection between virtual teachers and students, 

thereby promoting the improvement of learning motivation and effectiveness [17,18]. 

3. Methods and implementation 

3.1. Application of biomechanical principles in emotional interaction 

3.1.1. Action and posture optimization 
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(1) Construction and application of inverse kinematics model 

This paper adopts the inverse kinematics (IK) model to reversely calculate the 

target position of the end effector of the virtual teachers’ limbs and infer the rotation 

angle of each joint, thereby ensuring the naturalness and accuracy of limb 

movements. When constructing the IK model, the skeleton structure of the virtual 

teachers is first defined, including the connection between joints and skeleton 

segments [19]. The rotation axis, range of motion, and movement limit of each joint 

are reasonably set according to the human anatomical structure. The specific settings 

are shown in Table 1: 

Table 1. Settings of human joints of IK model. 

Location Joint type Rotation axis direction Range of motion 

Shoulder joint Ball-and-socket joint X axis (horizontal), Y axis (vertical) 180° front and rear, 180° horizontal rotation 

Elbow joint Pivot joint X-axis (vertical) 0°–150° (bend angle) 

Wrist joint Ball-and-socket joint Y axis (vertical), Z axis (horizontal) Rotate 45°, bend 90°, extend 80° 

Knee joint Pivot joint X-axis (vertical) 0°–150° (bend angle) 

Ankle joint Gear joint Y axis (vertical) 0°–60° (dorsiflexion and plantar flexion angles) 

Spinal joint Ball-and-socket joint X axis (front and back), Y axis (left and right) 30° front and rear, 15° left and right 

Neck joint Ball-and-socket joint X-axis (up and down), Y-axis (left and right) Neck front and back 30°, left and right 45° 

The key to IK solution is to calculate the relationship between joint angles and 

target positions. Common IK solution methods include Jacobian inverse method and 

gradient descent method [20]. This paper adopts the Jacobian inverse method, which 

is based on the linearized model and describes the relationship between the joint 

angle and the end effector position change through the Jacobian matrix. The 

Jacobian inverse method calculates the angle of each joint through inverse operation, 

so that the end effector gradually approaches the target position, and adjusts the joint 

angle through iteration until the target error is less than the preset threshold. In IK 

solution, the Jacobian matrix J describes the relationship between each joint angle 

and the change in the end effector position [21]. If the end effector position is p and 

the joint angle is θ, then the following relationship holds: 

Δ𝑝 = 𝐽(𝜃) ⋅ Δ𝜃 (1) 

In Equation (1), Δ𝑝 is the change of the end effector position; Δ𝜃 is the change 

of the joint angle; 𝐽(𝜃) is the Jacobian matrix, which represents the effect of the joint 

angle change on the end effector position change. The solution process of the 

Jacobian inverse method is: 

Δ𝜃 = 𝐽−1(𝜃) ⋅ Δ𝑝 (2) 

In Equation (2),Δ𝜃 is computed through iterative optimization, and the joint 

angle is gradually adjusted until the error of the target position is less than the set 

threshold. The Jacobian inverse method solution process is shown in Figure 1: 
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Figure 1. Jacobian inverse method solution flow chart. 

However, during the IK solution process, the adjustment of joint angles may 

cause sudden or discontinuous movements, making the virtual teachers’ body 

movements appear unnatural. Therefore, based on the joint angles obtained by IK 

solution, this paper further uses the Bézier curve to smooth the movements [22]. The 

Bézier curve is a classic smooth curve interpolation method in computer graphics. It 

generates a smooth trajectory through control points to ensure that the transition 

between the starting point and the end point of the movements is natural and 

continuous. To ensure that the virtual teachers’ body movements are physiologically 

consistent and smooth, this paper selects the cubic Bézier curve, which defines the 

smooth transition of the movements through four control points. On this basis, the 

joint angles obtained by IK solution are used as the starting and end points of the 

Bézier curve, and the control points are set according to the speed requirements at 

the beginning and end of the movements to ensure a natural and smooth transition of 

the movement trajectories. The parametric equation of the cubic Bézier curve is: 

𝐵(𝑡) = (1 − 𝑡)3 ⋅ 𝑃0 + 3(1 − 𝑡)2 ⋅ 𝑡 ⋅ 𝑃1 + 3(1 − 𝑡) ⋅ 𝑡2 ⋅ 𝑃2 + 𝑡3 ⋅ 𝑃3 (3) 

In Equation (3), 𝑡 is the parameter, and 𝑃0, 𝑃1 , 𝑃2, and 𝑃3  are control points, 

which determine the start, end, and transition path of the curve. In this paper, the 

smoothing process using the cubic Bézier curve is shown in Figure 2: 

 

Figure 2. Bézier curve smooth transition diagram. 
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In addition, to further improve the naturalness and continuity of the movements, 

this paper also uses the natural spline curve to optimize the transition of limb 

movements. Unlike the Bézier curve, the spline curve can automatically take into 

account boundary conditions and generate smooth curves, ensuring that there are no 

drastic accelerations or speed changes during the movement. During the computing 

process, the natural spline curve can effectively reduce the abruptness of the 

movement by conditionally constraining the start and end of the movement, making 

the virtual teachers’ body movements smoother and in line with physiological laws. 

𝑆(𝑡) = ∑ 𝑁𝑖(𝑡) ⋅ 𝑦𝑖

𝑛

𝑖=1

 (4) 

In Equation (4), 𝑆(𝑡) is the spline curve; 𝑁𝑖(𝑡) is the spline basis function; y
i
 is 

the value of the spline node. By properly selecting boundary conditions and node 

values, the spline curve can smoothly connect various movement nodes and ensure a 

natural transition of limb movements. 

(2) Dynamic modeling and movement optimization 

In this paper, the core task of dynamic modeling is to simulate the mechanical 

response of each joint and part when the virtual teachers perform body movements, 

covering multiple factors such as inertia, gravity, muscle tension, etc. This paper 

uses the Lagrange equation for dynamic modeling. 

In Lagrangian dynamic modeling, the skeleton structure of virtual teachers 

needs to be considered as a multi-rigid body system first [23,24]. Each joint is 

regarded as a rigid body with physical properties such as mass and moment of inertia, 

and the interconnection between bone segments is realized through joints. Therefore, 

each joint of the virtual teachers can be regarded as an independent rigid body and 

has its own degree of freedom of movement. The basic form of the Lagrange 

equation is: 

𝐿 = 𝑇 − 𝑉 (5) 

In Equation (5), 𝐿 is the Lagrangian; 𝑇 is the kinetic energy of the system; 𝑉 is 

the potential energy of the system. The expression for kinetic energy is as follows: 

𝑇 =
1

2
∑ 𝑚𝑖𝑣𝑖

2

𝑛

𝑖=1

 (6) 

In Equation (6), 𝑚𝑖 is the mass of the 𝑖-th rigid body, and 𝑣𝑖 is the velocity of 

the 𝑖-th rigid body. The potential energy takes into account the effect of gravity and 

can be expressed as: 

𝑉 = ∑ 𝑚𝑖𝑔ℎ𝑖

𝑛

𝑖=1

 (7) 

In Equation (7), g is the acceleration due to gravity, and hi is the height of the 𝑖-

th rigid body. Through the Lagrange equation, the motion equation of the virtual 

teachers is constructed, and the dynamic characteristics of the system are derived, 

thereby obtaining the force conditions and torques of each joint. Specifically, by 

deriving the Lagrange equation of each rigid body and differentiating the joint angle, 
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the dynamic equation related to the joint motion is obtained, which can describe the 

acceleration, velocity, and mechanical response of each joint. 

In the process of dynamic modeling, the optimization of the movements must 

not only ensure that they conform to physiological laws, but also avoid excessive 

mechanical burden during the movements, especially when performing complex 

movements, such as reaching out to hug, which involve the coordinated movement 

of multiple joints. Through the Lagrange equation, the moment of inertia and torque 

of each joint can be precisely calculated, and the interaction forces between joints 

can be analyzed, so as to optimize the force conditions of the joints and avoid 

excessive loads on certain joints or abrupt movements. For example, when the 

shoulder, elbow, and wrist joints are extending, the force on each joint must be 

reasonably distributed to avoid excessive load on local joints. By modeling and 

optimizing the mechanical relationship between joints, it can be ensured that the load 

on each joint during the movement is within a reasonable range, avoiding 

uncoordinated movements caused by uneven loads. 

In addition, the smoothness of the movement is also an important goal in the 

optimization process. By adjusting the range of motion, acceleration, and speed of 

each joint, it can be ensured that there are no abrupt pauses or incoherent 

acceleration during the execution of the movements. Especially in some movements 

that require smooth transitions, such as when the virtual teachers perform some 

complex body movements, the coordination and smoothness of the movements of 

each joint must be ensured. The Lagrange equation can help calculate the equations 

of motion for each joint and optimize the motion process as needed to eliminate 

possible skips or unsmooth transitions. Through precise dynamic modeling and 

optimization, the virtual teachers’ movements are made natural and physiologically 

reasonable, avoiding excessive speed changes or unnatural movement mutations. 

(3) Emotional expression through movement optimization 

In the process of motion optimization, in addition to improving naturalness, 

another important goal is to ensure that body movements effectively convey 

emotional information. The virtual teachers express emotions such as care, 

understanding, and encouragement through body movements, postures, and facial 

expressions. Therefore, motion optimization must not only follow physiological and 

mechanical laws, but also accurately reflect emotional characteristics. This paper 

combines inverse kinematics and dynamic modeling to ensure that the virtual 

teachers’ body movements are natural and smooth and can effectively convey 

emotions. 

For example, when expressing “care” or “comfort”, the virtual teachers’ 

movements should be gentle and soothing. At this time, the body movements should 

avoid being abrupt, but should be gradual and gentle. To this end, the IK model and 

the dynamic model work together to optimize the starting angle, amplitude, and 

acceleration of the movement to ensure that the movement not only meets 

physiological requirements and avoids excessive tension or unnatural mutations, but 

also shows emotional softness. Specifically, IK solution provides the preliminary 

angle and target position of limb movements, while dynamic modeling optimizes the 

mechanical properties during the movements to ensure that the movements are 

smooth and meets the requirements of emotional expression. 
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Relatively speaking, when expressing “encouragement”, virtual teachers’ body 

movements need to show more vitality and strength, such as waving, patting 

shoulders, etc. At this point, the synergy between the IK model and the dynamic 

model is mainly reflected in adjusting the amplitude and speed of movements so that 

the movements are both dynamic and meet the requirements of physiology and 

mechanics. By fine-tuning these details, virtual teachers’ body languages can be 

made more vivid and expressive, thereby enhancing learners’ emotional resonance, 

stimulating their learning motivation, and ultimately improving learning outcomes. 

By combining inverse kinematics and dynamic modeling, this paper can 

precisely optimize each body movement of virtual teachers to ensure that it conforms 

to physiological and physical laws and can accurately convey emotional information. 

Such optimization not only improves the naturalness of virtual teachers’ movements, 

but also enhances the depth and effectiveness of their emotional expression, helps to 

establish more effective emotional interactions, and thus promotes learners’ 

emotional involvement and learning outcomes. 

3.1.2. Combination of facial expressions and body language 

(1) Facial expression modeling 

Facial expressions are an important dimension of emotional expression of 

virtual teachers. To accurately convey emotions (such as smile, frown, surprise, etc.), 

this paper uses the facial action coding system (FACS) to model the facial 

expressions of virtual teachers. FACS divides facial expressions into a set of basic 

action units (AU) based on facial muscle movements, each of which represents the 

muscle activity in a specific area of the face [25]. By activating different action units, 

virtual teachers can show a variety of emotional expressions. The action unit settings 

for common emotional expressions are shown in Table 2: 

Table 2. Action unit settings for common emotional expressions. 

Emotional Expression AU Emotional Expression AU 

Smile 
AU6 (muscles of malar elevation) 

AU12 (levator labii superioris) 
Anger AU4 (muscles of the glabella) 

Surprise 
AU1 (eyebrow elevating muscles) 

AU5 (muscles that enlarge the eyes) 
Happiness AU23 (lips tightly closed) 

Frown 
AU4 (muscles of the glabella) 

AU15 (muscles that depress the mouth corners) 
Shyness AU25 (chin tension) 

Sadness 
AU15 (muscles that depress the mouth corners) 

AU1 (eyebrow elevating muscles) 
Suspicion 

AU4 (muscles of the glabella) 

AU14 (muscles that depress the eyelids) 

(2) Coordination of facial expressions and body movements 

The transmission of emotions does not only rely on facial expressions, body 

language also plays a vital role in the emotional expression of virtual teachers. To 

ensure that the facial expressions and body movements of virtual teachers remain 

consistent in the same situation, this paper adopts the coordinated control algorithm 

(CCA) to achieve synchronization between the two. The core idea of the coordinated 

control algorithm is to automatically adjust the body language movements according 

to the changes in facial expressions, so that the facial and body expressions 



Molecular & Cellular Biomechanics 2025, 22(1), 852.  

9 

complement each other in conveying emotions and avoid conflicts or inconsistencies 

in emotional signals. During the implementation process, the algorithm first uses 

FACS to extract the facial expression features of virtual teachers through facial 

action recognition. Based on the intensity, duration, and type of emotions in the 

facial expressions, the algorithm computes the corresponding body language patterns. 

In the actual process, it is assumed that the feature vector of facial expression is 

F= [𝑓1, 𝑓2，…，𝑓𝑛], where each fi represents the activation degree of different facial 

action units. According to these facial features, the coordinated control algorithm 

defines the mapping relationship of body language movements, namely: 

𝐿 = ℳ(𝐹) (8) 

In Equation (8), ℳ(·) is a mapping function that maps the features of facial 

expressions to the movement space of body language 𝐿 and selects different body 

language patterns according to the emotion type. To ensure coordinated movements, 

the coordinated control algorithm dynamically adjusts the amplitude, speed, and 

rhythm of limb movements based on facial expressions. Assuming that A(t) is the 

amplitude function of the body movement; V(t) is the speed function of the 

movement; t is the duration of the movement, under the influence of the facial 

expression input F(t), the amplitude and speed of the body movements are adjusted 

by the following Equations: 

𝐴(𝑡) = 𝛼 · 𝐴0 · 𝐹(𝑡) (9) 

𝑉(𝑡) = 𝛽 · 𝑉0 · 𝐹(𝑡) (10) 

In Equations (9) and (10), 𝛼 and 𝛽 are adjustment parameters, and 𝐴0  and 𝑉0 

represent the default movement amplitude and speed respectively. The intensity and 

type of facial expressions affect parameter changes. For example, when smiling, the 

algorithm adjusts the softness and rhythm of the movement to avoid abrupt or violent 

movements. This method ensures precise matching of facial expressions and body 

language, improving the naturalness and consistency of emotional expression. 

Overall, the coordinated control algorithm ensures that virtual teachers’ emotional 

communication in emotional interaction is both coordinated and natural, avoiding 

inconsistency or conflict in emotional signals, by adjusting the synergy between 

body language and facial expressions in real time. 

3.2. Emotional perception and feedback mechanism 

3.2.1. Facial expression recognition 

In this paper, the core tool for facial expression recognition is OpenFace, a 

powerful open source facial expression analysis system. OpenFace is designed for 

real-time and precise facial expression analysis, and can achieve robust facial 

recognition, facial feature point detection, expression analysis, etc., in complex 

environments. The recognition process of OpenFace mainly includes three key steps: 

facial detection, feature point location, and action unit analysis. 

First, OpenFace uses convolutional neural networks (CNN) to perform facial 

detection, that is, to identify and locate facial areas. The input image is set to be I, 
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and its pixel is set to be P = {𝑝1, 𝑝2,…, 𝑝𝑛}. CNN generates a facial recognition 

model M during training: 

𝑀(𝐼) = 𝑅 (11) 

In Equation (11), R represents the bounding box coordinates of the face region. 

After being trained with a large amount of data, the detection algorithm is able to 

extract facial contours from complex environments, has good adaptability, and can 

accurately identify faces in conditions of uneven lighting, facial occlusion, or tilt. 

This relies on the feature extraction capabilities of deep learning to ensure that the 

system can run in real time and robustly in a variety of real scenarios. 

After completing facial detection, OpenFace enters the feature point positioning 

stage and uses the ensemble of regression trees (ERT) algorithm to mark 68 key 

facial feature points. The position of each feature point is (𝑥𝑖 , 𝑦𝑖), and the facial 

feature point set is represented by {(𝑥1, 𝑦1) ,  (𝑥2, 𝑦2) ,…,  (𝑥68, 𝑦68)}. The ERT 

algorithm optimizes the prediction loss function by iteratively training the decision 

tree. The Equation is as follows: 

ℒ = ∑ ‖𝑝
^

𝑖 − 𝑝𝑖‖2

68

𝑖=1

 (12) 

In Equation (12), 𝑝
^

𝑖 is the feature point coordinates predicted by the model, and 

𝑝𝑖  is the true coordinates. Through decision tree optimization within a few 

milliseconds, the precise positioning of feature points is completed. This feature 

point layout lays the foundation for the system to further analyze facial expressions 

because it can capture the fine movements of various facial areas. OpenFace can 

stably and continuously track the changes in the positions of these feature points in 

each frame of the video, providing the necessary motion data for subsequent action 

unit analysis. 

Based on the location of feature points, OpenFace further uses action units in 

FACS to recognize facial expressions. Action unit detection uses the dynamic 

changes in feature point coordinates to identify the amplitude of facial muscle 

activity. For each AU, OpenFace calculates an intensity score SAU  of the muscle 

activity, which typically ranges from 0 to 5. Assuming that the changes in the feature 

point position at time t and t+1 are Δ𝑥 = 𝑥𝑡+1 − 𝑥𝑡  and 𝛥𝑦 = 𝑦𝑡+1 − 𝑦𝑡 , the 

intensity score SAU  of each AU can be expressed by the facial motion feature 

function f, that is: 

𝑆AU 
= 𝑓(∑ √(Δ𝑥𝑖)2 + (Δ𝑦𝑖)2)

𝑛𝑗

𝑖=1

 (13) 

In Equation (13), 𝑛𝑗  represents the number of feature points associated with the 

AU, and f is the score mapping function of the model. 

OpenFace computes the intensity score of each AU through a machine learning 

model. In this paper, this value ranges from 0 to 5, which reflects the intensity of 

muscle activity. In this way, OpenFace can make a detailed and continuous record of 

various emotional changes on the face. Once these action units are detected and 

quantified, OpenFace provides this data as an emotion indicator to the emotion 
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feedback system. On this basis, the feedback system of virtual teachers can 

dynamically adjust according to the current emotional state of students. 

3.2.2. Speech sentiment analysis 

This paper aims to achieve emotionally resonant human-computer interaction 

by analyzing students’ voice signals in real time, recognizing their emotional states, 

and adjusting the virtual teachers’ tone, speaking speed, and intonation. These 

features together reflect the speakers’ emotional states, so accurately recognizing and 

parsing these features is crucial for emotional interaction. 

To achieve precise speech emotion recognition, this paper adopts an emotion 

recognition model based on deep learning, which mainly includes convolutional 

neural networks and recurrent neural networks. These models automatically extract 

key features in speech, such as pitch, volume, speaking speed, and intonation, and 

use them to determine the type and intensity of students’ emotions, such as anxiety, 

confusion, or joy. 

3.2.3. Design of virtual teachers’ feedback mechanism 

The feedback mechanism of the virtual teacher relies on multimodal emotion 

perception technology, including facial expression analysis, voice emotion analysis, 

and body language perception. OpenFace technology recognizes emotions by 

capturing subtle facial changes, voice emotion analysis extracts voice features to 

recognize emotions, and body language perception adds a dimension to emotional 

expression. This study combines the random forest algorithm to extract features and 

assign weights to the data of facial expression analysis, voice emotion analysis, and 

body language perception to achieve the fusion of multimodal data, thereby 

obtaining a more comprehensive and accurate assessment of emotional state. 

Combining these technologies, the virtual teacher can perceive students’ emotions in 

real time and provide personalized feedback to ensure that the assessment of 

emotional state is comprehensive and accurate. 

The virtual teachers’ feedback mechanism relies on multi-modal emotion 

perception technology, including facial expression analysis, speech sentiment 

analysis, and body language perception. OpenFace technology recognizes emotions 

by capturing subtle facial changes. Speech sentiment analysis extracts voice features 

to recognize emotions. Body language perception adds dimensions to emotional 

expression. Combining these technologies, virtual teachers can perceive students’ 

emotions in real time and provide personalized feedback, ensuring comprehensive 

and precise evaluation of emotional states. 

Based on emotion perception, virtual teachers adjust feedback behavior in real 

time. When students show anxiety or confusion, virtual teachers sooth them by 

adjusting their speaking speed, tone, facial expressions, and body languages, such as 

using a gentle tone, slow speech speed, smiles, and soft gestures (such as nodding 

slightly). When students show positive emotions such as joy, virtual teachers 

encourage them by increasing their speaking speed, strengthening their tone, and 

showing an open gesture. In addition, the virtual teachers’ feedback mechanism is 

personalized and optimized based on students’ emotional history data to adapt to 

different emotional needs. Soothing feedback is provided to anxious students, and 

motivational strategies are adopted for emotionally positive students. When 
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designing feedback mechanisms, biomechanical principles must also be considered 

to ensure that limb movements are natural and smooth, in line with physiological 

laws, avoid inappropriate movements, and ensure physiological comfort and visual 

naturalness. 

4. Test of optimization of performance of human-computer 

emotional interaction system by combining biomechanical 

principles 

In order to compare the effects of the virtual teacher emotional interaction 

system based on biomechanical optimization and the traditional education system on 

students’ emotional experience, learning motivation and learning effect, this paper 

conducted evaluation experiments in university laboratories and online education 

platforms. The experimental subjects were 120 undergraduates aged between 18 and 

22, covering undergraduates from different disciplines, including computer science, 

liberal arts, science, engineering and business. Before the formal experiment, the 

subjects’ learning ability and computer operation proficiency were evaluated through 

pre-tests to reduce the errors caused by other variables. All subjects were divided 

into experimental and control groups by lottery through a random number generator, 

with 60 people in each group. All students conducted experiments under the same 

tasks and time limits to ensure the consistency of learning content and environment, 

and collected data in a controlled environment to ensure the effectiveness and 

fairness of the experiment. 

(1) Emotional experience evaluation experiment 

To evaluate the impact of the virtual teacher emotional interaction system based 

on biomechanical optimization on students’ emotional experience, this experiment 

combines the subjective emotion scale and physiological indicator monitoring 

method. Before the experiment, all participants receive brief training to familiarize 

themselves with the operating interface and task requirements. Before the 

experiment, all participants received 30 min of training, including system operation 

introduction, task requirements explanation, experimental process description and 

practical operation drills to ensure that they can complete the experimental tasks 

proficiently. Basic emotional data are collected using the positive and negative affect 

schedule (PANAS) scale and physiological monitoring equipment (recording heart 

rate and galvanic skin response). The physiological monitoring equipment used 

included the Polar H10 heart rate monitor with a heart rate monitoring accuracy of 

±1 beats/minute and the EDA sensor equipped with the Biopac MP150 system, 

which can monitor the skin galvanic response (EDA) with an accuracy of 0.01 

micro-Siemens (μS). The experimental group uses the optimized virtual teacher 

system, and the control group uses the traditional education system. Both complete 

the same online learning modules, including video explanations, interactive 

questions and answers, and quizzes. The emotional experience evaluation process 

includes two aspects: subjective evaluation and physiological evaluation. During and 

after the learning process, participants are required to fill out an emotional evaluation 

questionnaire covering dimensions such as emotional state, anxiety, pleasure, and 

learning engagement. At the same time, physiological data such as heart rate and 
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galvanic skin response are continuously recorded through physiological monitoring 

equipment to quantify emotional fluctuations during the learning process. At the 

same time, the physiological monitoring equipment continuously recorded heart rate 

data at a frequency of 1 Hz; the galvanic skin response (EDA) data was recorded at a 

frequency of 0.5 Hz. After the experiment, the researchers collect and analyze the 

subjective evaluation data from the emotional questionnaire and the objective data 

from the physiological monitoring equipment. The experimental results are shown in 

Figures 3 and 4: 

 

Figure 3. Emotional index results of the experiment. 

 

Figure 4. Heart rate and galvanic skin response changes. 

Figure 3 shows the difference in scores on the emotional experience index 

between the experimental group (virtual teacher emotional interaction system based 

on biomechanical optimization) and the control group (traditional education system). 

The results show that in terms of positive emotions (positive affect, PA), the score of 

the experimental group is 4.3, which is significantly higher than the 3.1 of the 

control group, indicating that the virtual teacher system can effectively stimulate 

students’ positive emotions. In terms of pleasure, the experimental group scores 4.5, 

which is significantly higher than the control group’s 3.2, showing its advantage in 
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enhancing the pleasure of learning. For negative emotions (negative affect, NA) and 

anxiety, the experimental group scores lower, 1.5 and 1.6 respectively, while the 

control group scores higher, 2.7 and 3.2 respectively, indicating that the virtual 

teacher system effectively alleviates students’ negative emotions and anxiety. Finally, 

the learning engagement of the experimental group is 4.2, significantly higher than 

the 3.1 of the control group, reflecting that the system not only improves emotional 

experience but also enhances learning motivation and concentration. In summary, the 

virtual teacher emotional interaction system based on biomechanical optimization is 

superior to the traditional education system in stimulating positive emotions, 

reducing negative emotions and anxiety, and enhancing pleasure and learning 

engagement. 

During the test, the heart rate and galvanic skin response changes of the 

students in the experimental group and the control group are shown in Figure 4. 

As shown in Figure 4, in the heart rate change curves, the average heart rate of 

the experimental group is significantly lower than that of the control group, 

indicating that the virtual teacher emotional interaction system optimized based on 

biomechanical principles has a more effective emotional relief effect on the overall 

learners, putting them in a more relaxed physiological state. However, the heart rate 

variation of the experimental group is relatively large, which indicates that although 

the overall heart rate is low, the heart rate of the experimental group may fluctuate 

significantly when encountering new learning tasks or interactive situations. Such 

fluctuations may reflect that the emotional interaction system makes students more 

sensitive and immediate in their response to emotional feedback. This suggests that 

the virtual teachers’ emotional interaction can stimulate students’ short-term interest 

and attention, causing their heart rate to fluctuate slightly without causing sustained 

physiological tension. 

In contrast, the heart rate curve of the control group is higher than that of the 

experimental group most of the time, indicating that the traditional system is 

generally ineffective in relieving students’ emotional stress during the learning 

process, keeping the heart rate at a high level for a long time. The heart rate variation 

of the control group is relatively small, which may be because there is less emotional 

interaction in the traditional system, and students do not get the opportunity to 

relieve their emotions. Their physiological state is in a state of continuous tension, 

and their heart rate fluctuations are relatively stable but high. 

In the galvanic skin response change curves, the galvanic skin response value of 

the experimental group is always lower than that of the control group, indicating that 

with the support of the emotional interaction system, students’ physiological stress 

response is weaker, and they present a more relaxed physiological state. Galvanic 

skin response is usually associated with emotional excitement and tension. The 

galvanic skin response value of the control group is higher and the change trend is 

similar to that of the experimental group, indicating that the two groups have the 

same emotional fluctuations when dealing with similar learning content, but the 

experimental group can maintain a lower stress level with the support of the 

interaction system. 

Overall, the virtual teacher emotional interaction system based on 

biomechanical optimization can effectively help students maintain a low average 
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heart rate and galvanic skin response during the learning process, significantly 

relieve continuous emotional stress, and optimize the physiological state. The large 

fluctuation range of the heart rate in the experimental group shows that the system 

stimulates students’ emotional participation to a certain extent, causing them to have 

a positive physiological response to the learning task without causing a continuous 

state of tension. 

(2) Learning motivation evaluation experiment 

In order to evaluate the effect of the virtual teacher emotional interaction system 

optimized based on biomechanical principles on students’ learning motivation, this 

experiment adopted a method combining subjective evaluation with objective 

behavior quantification. The experimental group used the optimized virtual teacher 

emotional interaction system, while the control group used the traditional education 

system. Both groups of students were required to complete the same online learning 

module, including video explanations, interactive questions and answers, and quizzes. 

After the experiment, the participants filled out a learning motivation questionnaire 

based on the Motivated Strategies for Learning Questionnaire (MSLQ) or the 

Learning Motivation Scale (LMS), and the evaluation dimensions included learning 

goal clarity, learning interest and participation, achievement motivation, and self-

efficacy. In addition, the researchers further quantified students’ learning 

participation and motivation performance through behavioral data analysis, such as 

learning time, task completion, and number of interactions. The experimental data 

were statistically analyzed by independent sample T test to determine whether the 

difference in learning motivation between the experimental group and the control 

group was statistically significant. When conducting the T test, this study set the 

significance level (p value) to 0.05 to determine the significance of the results. This 

means that if the p value is less than or equal to 0.05, the difference between the two 

groups will be considered statistically significant, indicating that the virtual teacher 

emotional interaction system is effective in improving students’ learning motivation. 

The experimental results are shown in Table 3 below: 

Table 3. Results of the learning motivation evaluation experiment. 

Evaluation indicators Experimental group Control group p-value 

Learning objectives 4.2 ± 0.5 3.5 ± 0.7 < 0.05 

Study interests 4.5 ± 0.6 3.8 ± 0.8 < 0.05 

Achievement motivation 4.1 ± 0.7 3.3 ± 0.9 < 0.05 

Self-efficacy 4.4 ± 0.6 3.7 ± 0.8 < 0.05 

Study time (minutes) 45.2 ± 5.1 38.5 ± 6.3 < 0.05 

Task completion rate (%) 94.3 ± 3.6 82.1 ± 6.2 < 0.05 

Number of interactions 25 ± 4 18 ± 5 < 0.05 

According to the data in Table 3, the experimental group is significantly better 

than the control group in various indicators of learning motivation, indicating that 

the virtual teacher’s emotional interaction system optimized based on biomechanical 

principles has a significant effect on improving students’ learning motivation. In 

terms of clarity of learning goals and learning interest and participation, the mean 
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values of the experimental group were 4.2 and 4.5 respectively, which were 

significantly higher than the 3.5 and 3.8 of the control group, and the fluctuations 

were small, indicating that the system effectively helped students clarify and 

maintain learning goals. Higher interest. The scores of the experimental group on 

achievement motivation and self-efficacy were 4.1 and 4.4 respectively, which were 

significantly better than the 3.3 and 3.7 of the control group, indicating that the 

system enhanced students’ intrinsic motivation and self-confidence. In addition, the 

experimental group’s learning time was 45.2 minutes, which was significantly higher 

than the 38.5 minutes of the control group, and was also better than the control group 

in terms of task completion and number of interactions, further proving that the 

virtual teacher system can improve student learning engagement and efficiency 

advantages. Overall, the experimental group performed better in all dimensions of 

learning motivation, and the p values were all less than 0.05, indicating that the 

statistical results were significant, indicating that the virtual teacher emotional 

interaction system effectively enhanced students’ learning motivation and promoted 

positive Engage and learn effectively. 

(3) Human-computer interaction experience evaluation experiment 

To evaluate the impact of the virtual teacher emotional interaction system 

optimized based on biomechanical principles on students’ human-computer 

interaction experience, this paper arranges researchers to observe and record the 

interaction frequency, response time, and emotional feedback between the 

experimental group and the control group students and the virtual teachers during the 

learning process, so as to objectively quantify the quality of human-computer 

interaction. After learning, the participants fill out a questionnaire about the human-

computer interaction experience, and the evaluation dimensions cover interaction 

fluency, system responsiveness, teacher role identity, and system usability. The 

experimental results are shown in Table 4: 

Table 4. Results of human-computer interaction experience evaluation. 

Evaluation indicators 
Experimental group Control group 

Mean Standard deviation Mean Standard deviation 

Interaction fluency 4.5 0.6 3.2 0.8 

System responsiveness 4.6 0.5 3.4 0.7 

Teacher role identity 4.3 0.6 3.1 0.9 

System usability 4.4 0.5 3.3 0.8 

Interaction frequency (times/minute) 3.8 1.1 2.4 1.0 

Response time (seconds) 1.2 0.4 1.9 0.6 

Emotional feedback positivity 4.7 0.5 3.5 0.7 

According to the data in Table 4, the virtual teacher emotional interaction 

system based on biomechanical optimization is significantly superior to the 

traditional education system in terms of human-computer interaction quality. The 

experimental group scores higher than the control group (3.2, 3.4, and 3.1) in 

interaction fluency (4.5), system responsiveness (4.6), and teacher role identity (4.3), 

indicating that the optimized system provides smoother and more timely interactions 
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and enhances students’ emotional identification. The experimental group also scores 

significantly higher on system usability (4.4) than the control group (3.3), indicating 

that the system is more convenient to operate. The interaction frequency (3.8 

times/minute) and response time (1.2 s) of the experimental group are better than 

those of the control group (2.4 times/minute and 1.9 seconds), indicating that the 

optimized system can respond to student input more quickly and promote 

participation. Finally, the experimental group scores significantly higher on the 

positivity of emotional feedback (4.7) than the control group (3.5), indicating that the 

system is more effective in stimulating students’ emotional resonance and enhancing 

their emotional involvement. Overall, the optimized system performs superiorly in 

terms of human-computer interaction experience, emotional engagement, and 

learning effects.  

5. Discussion 

This study is limited by a small sample size, mainly from undergraduate 

students majoring in computer science, which may affect the general applicability of 

the results. Future research should expand the sample range to include students from 

different disciplines and cultural backgrounds to explore the impact of potential 

confounding variables such as subject preferences and cultural differences on the 

virtual teacher emotional interaction system. Increasing the sample size can not only 

enhance the robustness of the statistical analysis, but also improve the universality 

and adaptability of the model. Our results provide a basis for future research, but 

need to be verified in a wider range of educational settings to ensure the universality 

and effectiveness of the design of the virtual teacher emotional interaction system. 

6. Conclusion 

This paper combines biomechanical principles into the virtual teacher emotional 

interaction system, aiming to solve the problems of unnatural performance, lack of 

personalization, and neglect of body language in the traditional online education 

system. Based on the principles of kinematics and mechanics, this paper optimizes 

the emotional expression of virtual teachers to improve the naturalness, 

personalization and vividness of human-computer interaction, thereby enhancing 

students’ emotional involvement, stimulating learning motivation, and improving 

learning effects. The experimental results show that the virtual teacher system based 

on biomechanical optimization is significantly superior to the traditional education 

system in terms of human-computer interaction quality, emotional feedback, learning 

motivation, and learning effects. 

Specifically, the optimized virtual teacher system not only provides a smoother 

and more timely interaction experience, but also effectively enhances students’ sense 

of identity with the teachers’ roles, and improves their interest in learning and class 

participation. In terms of learning motivation and emotional experience, the 

experimental group shows significant advantages in the dimensions of learning goal 

clarity, achievement motivation, and pleasure, showing higher learning engagement 

and more positive emotional reactions. In addition, the optimized system helps 

students maintain lower emotional stress during the learning process through real-
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time emotional feedback and interaction, and improves their learning participation, 

thereby further promoting the improvement of learning effects. 

Although this paper achieves remarkable results, there are still some limitations. 

The sample size of the experiment is small and mainly focuses on the application of 

specific learning modules, lacking verification of a wider learning environment and 

different learning content. Future research should expand the sample size and 

explore the applicability of the system in a wider range of learning situations, 

especially in diversified learning content and task settings. In addition, with the rapid 

development of virtual reality and artificial intelligence technologies, it is expected 

to integrate these technologies so as to further optimize the interactivity, adaptability, 

and personalization of virtual teachers, thereby promoting innovation and 

development in the field of education. 
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