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Abstract: Oral English pronunciation is an important feature of language ability, especially 

among non-native speakers, as good pronunciation has a direct impact on communication 

efficacy and social integration. However, the difficulties connected with attaining a high 

standard of oral English pronunciation can lead to severe stress, anxiety, and other mental 

health disorders. The purpose of the research is to establish a dynamic correlation between 

oral English pronunciation standards and mental health, as monitored through biosensor data. 

The research aims to explore how variations in speech accuracy and fluency during English 

pronunciation tasks can reflect underlying psychological states, such as stress, anxiety, and 

overall emotional well-being. The study proposed a novel Improved Flower Pollination-tuned 

Resilient Deep Neural Network (IFP-RDNN) in this article, to predict the oral English 

pronunciation rating using biosensors. Electroencephalography (EEG)records patterns of 

cerebral waves using electrodes applied to the head to assess the electrical impulses in the 

cerebellum called EEG signals was acquired during the listening state and with the audio 

signals utilized in stimuli, as well as the spoken audio obtained from the subject. The data 

processing used a median filter to remove noise from the audio data. Fast Fourier transform 

(FFT) is used to extract the features from the preprocessed data. It is measured by biomedical 

data, can be predicted with the help of an optimization technique which draws inspiration 

called IFP helps to optimize the parameters effectively by mimicking natural pollination 

processes; RDNN is employed with the optimized parameters; it can predict oral English 

pronunciation ratings. Experimental results reveal that the spoken audio confirms the 

improvement in pronunciation throughout the trials. In a comparative analysis, the suggested 

method is assessed with various evaluation measures, such as F1-score (88.9%), recall 

(91.60%), precision (89.80%), and accuracy (90.3%). The result demonstrated the IFP-

RDNN method to predict the oral English pronunciation rating using biosensors. The findings 

indicate a significant connection between the quality of oral English pronunciation and 

mental health, with deviations from standard pronunciation being associated with increased 

stress and emotional suffering. 

Keywords: oral English pronunciation; mental health; biosensor; improved flower 

pollination tuned resilient deep neural network (IFP-RDNN) 

1. Introduction 

The development of English pronunciation standards and the promotion of 

mental health using innovative technology like biosensors have received a lot of 

attention in recent years. The importance of proficient oral communication has 

grown since English established itself as a universal language [1]. Being proficient in 

English, especially in pronunciation is important for linguistic correctness and helps 

to demonstrate one’s capacity for interaction and integration in multicultural 
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environments. The spoken English pronunciation was necessary for social, 

professional, and academic settings [2]. English phonetics is complicated and varies 

greatly among linguistic origins, non-native speakers have difficulty for specific 

criteria. Traditional pronunciation techniques include machine learning (ML) and 

repetitive exercises, students might suffer from worry, self-doubt, and stress. It might 

hinder language learning and possibly impact students’ mental health [3]. To 

incorporate mental health concerns frameworks for language acquisition. Biosensors 

have become a transformative tool, providing a way to track how learners react to 

stress and anxiety while they work on their pronunciation [4]. The knowledge might 

help establish a stress-reduction and mental health-promoting learning environment. 

Teachers and students could modify the rhythm and subject matter of sessions to 

provide a more pleasant experience of physiological effects on pronunciation 

practice. For instance, instructors might use specific strategies to reduce a student’s 

tension if a biosensor identifies increased anxiety during specific sounds or phrases 

[5]. Biosensors aid in the development of self-awareness in students, allowing them 

to identify stress and self-regulation techniques. The biosensor-driven method offers 

insights into physiological components for learning instead of traditional evaluations, 

which frequently ignore the learner’s mental state. It was possible to implement a 

comprehensive approach that gives equal weight to mental health and speech 

development, resulting in a well-rounded educational experience [6]. 

1.1. Linguistic hierarchy in language learning 

Learners might feel less motivated and have poor self-perception when they 

can’t satisfy the pronunciation requirements. The relationship between mental health 

and pronunciation of an interdisciplinary approach recognizes the psychological 

difficulties of language acquisition [7]. The sentiments could be intensified by the 

pressure from society to speak English, which frequently made the worse ideas by 

linguistic hierarchy. Long-term psychological repercussions of such events might 

include consequences on mental toughness and self-worth. It was proactively 

addressed by integrating biosensors into language teaching. Additionally, biosensors 

enable language learning programs to be tailored to every learner’s unique 

requirement and speed [8]. By customizing feedback based on biosensor data, 

students can progress at a pace that suits them, avoiding feelings of being 

overburdened. The strain of challenging sounds or dialects was lessened and a sense 

of accomplishment was fostered by customization. It is especially helpful in group 

situations when students might experience more pressure to perform on pace with 

their classmates [9]. Teachers might create a supportive atmosphere that prioritizes 

mental health as linguistic accuracy by using biosensors to detect student focus. 

Using biosensors in pronunciation instruction promotes more compassionate 

teaching strategies. Teachers might modify the methods to encourage rather pupils to 

learn more about emotional and psychological states. It fosters the learner’s mental 

health by acknowledging their difficulties and promoting self-compassion with 

pronunciation [10]. Instructors might be trained to identify symptoms of stress and 

anxiety that help to modify the encouragement or feedback of individuals. The 

positive feedback encourages students to take chances and make errors as a vital 
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component of language acquisition, without worrying about criticism or failure [11]. 

Pronunciation learning could be impacted by differences in learners’ ability, 

motivation, and exposure to English. Oral pronunciation frequently emphasizes 

correctness and fluency, but it might exceed how language acquisition affects the 

mental health and growth of speaking confidence. Biosensors offer real-time 

physiological data to monitor stress and anxiety levels during pronunciation practice, 

providing a personalized language learning approach. This technology aids in 

improving pronunciation and promotes mental well-being by creating a supportive, 

tailored learning environment [12]. 

The study’s aim is to develop a novel Improved Flower Pollination-tuned 

Resilient Deep Neural Network (IFP-RDNN) to predict the oral English 

pronunciation rating using biosensors. The research intends to explore how 

variations in speech accuracy and fluency during English pronunciation tasks can 

reflect underlying psychological states, such as stress, anxiety, and overall emotional 

well-being. 

Contribution of the study 

⚫ The study’s aim is to develop a novel Improved Flower Pollination-tuned 

Resilient Deep Neural Network (IFP-RDNN) to predict the oral English 

pronunciation rating using biosensors. 

⚫ This research establishes the dynamic relationship between oral English 

pronunciation standards and mental health, as monitored through biosensor data. 

⚫ The data processing used a median filter to remove noise from audio data. FFT 

was used to extract the features from the preprocessed data. 

⚫ The research intends to explore how variations in speech accuracy and fluency 

during English pronunciation tasks can reflect underlying psychological states, 

such as stress, anxiety, and overall emotional well-being. 

The following six sections comprise the overall article. Related work is given in 

Phase II, the study’s methodology was presented in Phase III, Phase IV represents 

the result, Phase V provide discussion, and the research is concluded in Phase VI. 

2. Related works 

Speaking and listening were greatly impacted by Ramzan and Javaid [13] for 

proper pronunciation. Language acquisition and performance were influenced by 

psychological variables. The students had significant difficulties with some 

monophthongs, particularly diphthongs. The psychological elements influence 

proper pronunciation. The experimental outcome demonstrated the significant 

barriers to acquiring proper pronunciation. 

The Deep Belief Network (DBN) utilized for voice identification in oral 

English instruction by utilizing deep learning methods and speech recognition 

techniques by Wang [14]. Several typical issues with oral English instruction 

included the ineffectiveness of the teaching technique and the low spoken English 

proficiency of the students. Furthermore, it develops a multi-parameter assessment 

model to gauge college students’ spoken English pronunciation proficiency. The 

experimental outcome demonstrated the speech rating trials of pronunciation. 
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Teachers’ pronunciations were inconsistent for students and difficult to learn 

proper pronunciations, spoken English was extremely passive in typical classroom 

settings by Jing et al. [15]. Enhancing students’ interest in oral English, encouraging 

them to talk, and helping them to understand English communication. The 

experimental outcome demonstrated the export language assessment. 

Li and Huang [16] investigated the detection of pronunciation errors and quality 

evaluation, for evaluating learners’ English pronunciation quality. English has 

gained more attention from the worldwide language, and learning the language orally 

was essential. The result findings demonstrated the effectiveness of speech quality 

assessment and mistake detection in pronunciation. 

The restricted English learning environment and teaching settings make it 

difficult for English language learners to acquire spoken English Geng [17]. 

Language training and learning have constituted a new era due to advancements in 

artificial intelligence and instructional techniques. Language learning relies heavily 

on voice recognition and evaluation technology, with speech recognition as a 

fundamental building block. The experimental outcome demonstrated the impact of 

multimedia instruction in English. 

The international Standard English teaching approach known as phonics by 

Zhou et al. [18] created a phonetic matching system by pronunciation. English 

pronunciation is labeled as the International Phonetic Alphabet (IPA), which raises 

the spoken language to worldwide standards. The experimental outcome 

demonstrated the use of new media technologies in spoken English instruction. 

The fundamental aspect of language used in oral communication is known as 

pronunciation. Sharma [19] emphasized how useful it was for teaching segmental 

language and transcendental speech elements. The primary purpose of language is to 

facilitate speech-based communication. Sequences of regional and transcendental 

speech feature pronunciations that intend the speech. The experimental outcome 

demonstrated the pronunciation issues. 

Wang and Zhao [20] investigated the automatic techniques of recognizing and 

assessing spoken English in English education by computer-assisted technologies. 

Learner’s preference for computer-assisted spoken English instruction was growing. 

Learners might improve their pronunciation by using computer-assisted mixed 

technology to evaluate and improve their spoken pronunciation. The experimental 

outcome demonstrated the criticism of pronunciation. 

Spoken English learners have five dimensions of variations, such as learning 

capacity, grammar structure, lexical utilization, pronunciation, and disparities in 

communicative circumstances. Liang and Ye [21] examined how learners’ spoken 

English proficiency affected gender inequalities. The experimental outcome 

demonstrated the possible gender disparities in language acquisition. 

The foundations of creating guidance tasks in Project-Based Learning (PBL) 

include the phonological and phonetic components of English pronunciation by 

Iskandar et al. [22]. The PBL might be used to guide the tasks and it enhances the 

educational achievement in English pronunciation and develops self-directed 

learning abilities. The experimental outcome demonstrated the English pronunciation 

learning guidance. 
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Student’s pronunciation was typically improved by teachers using their 

subjective opinion while teaching oral English. The reconstruction of acoustics and 

language aspects of speech recordings could be used to determine students’ oral 

pronunciation features Wu and Sangaiah [23]. However, the task ensures the 

integration of multimodal sentences. It utilized an improved spatial segmentation 

network for English voice recognition. The experimental outcome demonstrated the 

efficient processing of speech augmentation. 

The history of global communication constitutes more demands on students’ 

speaking and listening skills in English by Gui [24]. The issues can be resolved by 

raising students’ impact on pronunciation while speaking. Students frequently 

struggle with weak articulation, inaccurate intonation, and lack of proficiency in both 

pronunciation and intonation. The experimental outcome demonstrated the 

intonation of English communication. 

Through the use of Mobile Biosensor Networks called MBN-QE, Huang [25] 

suggested a realistic, ethical, and medically relevant evaluation technique for 

political education students in Chinese universities. Learning data analysis, 

automated testing, student rewards, and identity control were all applications for 

MBNs. The results implied that MBNs could be a useful resource for students 

studying political science. 

The usage of wearable technology for managing stress, mental health concerns, 

and physiological parameter monitoring was described by Wu et al. [26]. Sensors 

could interpret changes in emotion and exhaustion levels, offer guided training 

functions, and make the first diagnosis. Applications for enhanced memory retention 

and stress relief could also be linked with such devices. Wearable technology, sensor 

kinds, data reception techniques, processing precision, and application dependability 

were some of the variables that might lead to data inaccuracies. The accuracy of 

future medical systems should be established and clinically assessed. 

Problem statement 

The relationship between English pronunciation standards and mental health 

knowledge enhances how pronunciation issues might impact people’s psychological 

health. Students with poor pronunciation might suffer from anxiety, low self-esteem, 

and social rejection in a variety of social and educational settings, which aggravate 

mental health issues. In contrast, tension and performance anxiety constitute the 

pressure to adhere to certain pronunciation standards, particularly for non-native 

speakers. The impact of mental health on language learning and voice clarity was 

frequently disregarded. Since emotional strain could impair vocal and cognitive 

function. The pronunciation might increase self-esteem, lower anxiety, and improve 

psychological well-being. 

3. Methodology 

The Improved Flower Pollination-tuned Resilient Deep Neural Network (IFP-

RDNN) was used to predict the oral English pronunciation rating using biosensors. 

Data pre-processing is used to preprocess the raw data. The median filtering is used 

to remove the noise from audio data. FFT was used to extract the features from the 
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preprocessed data. IFP helps to optimize the parameters effectively by mimicking 

natural pollination processes and RDNN was employed to predict the oral English 

pronunciation ratings. Figure 1 represents the overall paper flow. 

 

Figure 1. Overall flow for the research. 

3.1. Dataset 

The dataset was gathered from open-source platform 

(https://www.kaggle.com/datasets/ziya07/biosensor-oral-english-pronunciation-

data/data). Using biosensor data from participants’ pronunciation of English tasks 

and physiological indicators like electroencephalogram (EEG), heart rate, and GSR 

called Galvanic Skin Response, the dataset examines the dynamic relationship 

between oral English pronouncing quality and mental health. To examine variability 

in speech performance, the dataset integrates psychological metrics such as level of 

anxiety and Positive and Negative Affect Schedule (PANAS) scores with speech 

audio elements. It is a useful tool for language competence and emotional wellness 

research since it concentrates on stress levels and pronunciation scores, offering 

knowledge about how these aspects may interact with psychological conditions like 

stress and anxiety. 

3.2. Data pre-processing 

One of the most important steps in the evaluation of data and ML is data 

preprocessing, which turns raw data into a format that can be understood. Encoding, 

classifying variables, removing duplicates, scaling or normalizing data, and handling 

missing values are among the tasks that are involved. Preprocessing enhances the 

model’s functionality. To eliminate noise from audio data, the median filter was 

employed in the data. 
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Median filter (MF) 

The MF might be used to smooth variances in speech data, which makes it 

simpler to evaluate the quality and correctness of pronunciation in spoken English 

standards. As a member of the nonlinear filter family, the MF was a widely used 

image processing technique. Within a sliding window centered at each pixel point to 

create a smooth image, the procedure calculates the median value. It effectively 

eliminates high-energy sound, such as isolated bright dark areas, while maintaining 

edge data and minimizing extreme blurring. The brightness of a pixel at a certain 

point(𝑦, 𝑥) in the image after median filtering was expressed in Equation (1) as 

follows: 

𝐻(𝑦, 𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻(𝑦′, 𝑥′)) (1) 

Coordinates (𝑦′, 𝑥′)denote the domain’s pixel locations, and “median” refers to 

the value of the output pixel that was produced when the filter’s pixels were sorted 

by size. The use of median filtering allowed for the elimination of high-frequency 

visual components while drawing emphasis on low-frequency. Human senses are 

susceptible to image change, which increases the arbitrary visual effects of hostile 

situations and the invisibility of negative effects. 

3.3. Feature extraction 

Feature extraction is used in ML and data analysis to minimize the 

dimensionality of data. It cracks unprocessed data into a collection of useful 

characteristics that make analysis easier while preserving details. It improves the 

efficiency and interpretability of the model, concentrating on important 

characteristics. Feature extraction, including FFT used to extract the features from 

the preprocessed data. 

FFT 

FFT is used to evaluate the correctness and fluency of pronunciation in spoken 

English by analyzing the frequency components and speech sounds. Speech patterns 

frequently correspond with mental health by employing speech analysis to identify 

emotional states and cognitive problems. The process of breaking down a function or 

signal over time into a component of frequency function is known as FFT. The 

perception of the Fourier transform was essential for image processing, speech and 

communication, signal processing, and many other fields. Equation (2) describes the 

FFT mathematical form. 

𝑊(𝜁) = ∫ 𝑤(𝑠)
∞

−∞

𝑓−2𝜋𝑗𝜁𝑠𝑑𝑠 (2) 

Here, 𝑊(𝜁) ∈ 𝐷as Lebesgue integrals, and𝜁 indicates the frequency. For practical 

use, FFT can be used to implement quickly. The discrete Fourier transform (DFT) 

was calculated by FFT, which yields the same outcome as evaluating the DFT 

directly. The primary distinction of DFT was significantly quicker and less precise. 

Equation (3) represents the DFT mathematical form. 
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𝑊𝑙 = ∑ 𝑤𝑚𝑓−
𝑗𝜋𝑚

𝑀

𝑀−1

𝑚=0

, (𝑙 = 0, . . , 𝑀 − 1) (3) 

Here, 𝑤0 , . . ,  𝑎𝑛𝑑 𝑤𝑀−1 represent thecomplicated integers. The FFT was used to 

translate and evaluate the spinning machine’s data into the frequency plane from 

several experiments. 

3.4. Improved flower pollination-tuned resilient deep neural network 

(IFP-RDNN) 

A hybrid of Improved Flower Pollination with a Resilient Deep Neural Network 

offers a novel way to improve mental health evaluation and English pronunciation 

standards. Adapted from the pollination process in nature, the FPA optimizes 

parameters inside an RDNN structure, enabling enhanced performance when 

challenging and it ensures non-linear tasks, such as spoken English pronunciation. 

Due to RDNN’s resilience while processing a variety of linguistic inputs, this hybrid 

approach achieves better accuracy in facilitating efficient pronunciation and phonetic 

clarity analysis. By effectively exploring and using the solution space, the FPA 

optimizes the weights and biases of the neural network for pronunciation evaluation 

and guarantees accurate feedback and adaptive enhancements. The IFP-RDNN 

approach incorporates mental health concerns to help students develop emotional 

resilience. Pronunciation instruction causes tension and anxiety in many language 

learners, which might affect their ability to learn. The exploration of participation in 

emotional reactions during pronunciation exercises integrates the evaluations of 

mental health. When paired with FPA’s search capabilities, the layered architecture 

of RDNN detects trends in pronunciation accuracy as mental health. This hybrid 

paradigm combines linguistic and psychological elements to create a learning 

atmosphere where pronunciation is refined to preserve mental health. 

3.4.1. Resilient deep neural network (RDNN) 

RDNN approach seeks to improve both language acquisition and psychological 

wellness. RDNN modifies problems, such as inconsistent accents or noisy data, 

giving regular feedback for better pronunciation. Such systems might track student 

stress, motivation, and confidence by including mental health evaluation and 

fostering a positive learning environment. It enables the model to concentrate on 

both emotional resilience and verbal precision. The Gaussian mixture model (GMM) 

decreases the duplicate features, which shrinks the dimension of the DNN system 

and increases the recognition rate. Consequently, DNN’s structure was modified by 

using GMM. The feedforward neural network (FNN) with several hidden layers was 

completely linked with resilient DNN. To generate the GMM probability density 

function, the Gaussian probability density function of each component was weighted 

for specific demands that were represented in Equation (4) as follows. 

𝑂(𝑤|𝜆) = ∑𝑥𝑗𝑀𝑗(𝑤)

𝑁

𝑗=1

 (4) 
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Here, 𝑥  represents the eigenvector’s dimension as 𝑀𝑗(𝑤), 𝑗 = 1,2, . . , 𝑀 . 𝑁  as 

subgroup probability. Every subgroup probability constitutes Gaussian probability 

distribution in 𝑥𝑗,𝑗 = 1,2, … ,𝑁 dimensions denoted as 𝑀𝑗(𝑤)  were expressed in 

Equation (5). 

𝑀𝑗(𝑤) =
1

(2𝜋)𝐶/2| ∑ |𝑗
1/2

exp {−
1

2
(𝑤 − 𝜇𝑗)

𝑆
∑ (𝑤 − 𝜇𝑗)

−1

𝑗
} (5) 

Here, 𝜇𝑗represents the mean vector, Σ𝑗represents the covariance matrix and 𝑆 refers 

to the number of feature vectors. The eigenvectors are associated with the parameters 

that were expressed in Equation (6). 

𝜆 = {𝑥𝑗 , 𝜇𝑗, ∑ 𝑛
𝑗

} , 𝑗 = 1,2, … ,𝑁 (6) 

The training data’s feature vector sequence as  𝑊 = {𝑤𝑠}, 𝑠 = 1,2, …,  S and 

prospect probability were expressed in Equation (7). 

𝑂(𝑊|𝜆) = ∏𝑂(𝑤𝑠|𝜆)

𝑆

𝑠=1

 (7) 

The Gaussian density function was expressed in Equation (8) as follows: 

𝑂(𝑊|𝜆) = ∑1𝑔

𝑆

𝑠=1

{∑𝑥𝑗𝑀𝑗(𝑤𝑠 , 𝜇𝑗 ,∑  
𝑗

𝑁

𝑗=1

} (8) 

Maximum Likelihood Estimation (MLE) parameter was used to estimate the 

technique that was utilized in the GMM system. The model is constantly modified 

into the prospect probability, 𝑂(𝑊|𝜆) achieves its concentration. Following the 

definition of the model parameters, the probability at maximum likelihood as 𝜆𝑗was 

expressed in Equation (9). 

𝜆𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑂(𝑊|𝜆) (9) 

DNN’s input specifications were specified in equation (10) as follows. 

𝑞 = ∑ 𝑥𝑗 ×
𝜇𝑗 − 𝜇𝑗,𝑢𝑏𝑚

(𝑑𝑖𝑎𝑔{∑ }𝑗
1/2

𝑗
 (10) 

Here, 𝜇𝑗,𝑢𝑏𝑚represent the universal background model’s (UBM) as the mean vector. 

The initial hidden layer’s activation vector of the eigenvector was expressed in 

Equation (11). 

𝑔⃗(1) = 𝜎(𝑋(1)𝑆 𝑤⃗⃗⃗ + 𝑎⃗(1)) (11) 

Here, 𝑋(1)𝑆represents the weight distribution of the first invisible layer in reverse, 

with dimensions 𝐽 × 𝑀1 times. Where𝑎⃗(1) a1 denotes the offset vector, and 𝜎 is a 

function that activates the buried layer. The vectors of activation 𝑔⃗(𝑗)were used to 

calculate the 𝑗 second invisible layer expressed in Equation (12). 

𝑔⃗(𝑗)(𝑤⃗⃗⃗) = 𝜎(𝑋(𝑗)𝑆𝑔⃗(𝑗−1)(𝑤⃗⃗⃗) + 𝑎⃗(𝑗−1) (12) 
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Here, 𝑀𝑗indicates the number of neurons in 𝑡ℎ𝑒 𝑗𝑡ℎ invisible layer, 𝑋(𝑗)𝑆represents 

the weight distribution reverse of the 𝑗𝑡ℎ layer, which has dimensions of 𝑀𝑗−1 ×

𝑀𝑗 . Where 𝑎⃗(𝑗)  represents the offset vectors of matching dimension. The ReLU 

function utilized as a hidden layerfunction of activation because of its strong 

performance in resilient DNN categorization and recognition assignments were 

expressed in Equation (13). 

𝜎(𝑏) = {
𝑏 𝑖𝑓 𝑏 > 0
0𝑖𝑓 𝑏 ≤ 0

 (13) 

The SoftMax function is used by the DNN’s output layer to finish the output 

category. It ultimately achieves categorization and identification. The expression for 

the SoftMax function is expressed in Equation (14). 

𝑡(𝑦𝑙) =
𝑓𝑦𝑙

∑ 𝑓𝑦𝑖𝐼
𝑖=1

 (14) 

Here, 𝑦𝑙  represents the vector’s output layer’s dimensions. The loss function 

provided by the SoftMax regression technique was expressed in equation (15). 

𝐼(𝑥) = −
1

𝑛
∑∑1{𝑧(𝑗) = 𝑐}𝑙𝑜𝑔

𝑓𝑥𝑖
𝑆𝑦(𝑗)

∑ 𝑓𝑥𝑘
𝑆𝑦(𝑖)𝑐

𝑘=1

𝑐

𝑖=1

𝑛

𝑗=1

 (15) 

Here, 𝑙𝑜𝑔
𝑓𝑥𝑖

𝑆𝑦(𝑗)

∑ 𝑓𝑥𝑘
𝑆𝑦(𝑖)𝑐

𝑘=1

represents the logarithmic values for the softmax function, with 

𝑧(𝑗)  as the predicted part. 1{×} represents a characteristic function, where 𝑧(𝑗) 

indicates the predicted label or true label. Where𝑧(𝑗) = 𝑐  function returns as 1 

otherwise it returns as 0. 

3.4.2. Improved flower pollination (IFP) 

The Improved Flower Pollination algorithm simulates the interaction of pollens 

with flowers to solve complicated problems. It was inspired by the natural 

pollination process in flowers. In the context of spoken English pronunciation, it 

replicates the process of choosing the most pertinent linguistic elements and 

adjusting to various speech patterns, thereby optimizing speech models to better 

match the pronunciation standards. The IFP approach improves the flexibility and 

personalization of the process. The communication models of people with speech 

impairments or mental health disorders impact the speech and language for the 

evaluations of treatments. 

Initial population generation: 

Chaos is defined as a nonlinear dynamical system’s unpredictable, erratic, and 

chaotic behavior in a starting state that is highly sensitive in a small space. A slight 

alteration at the beginning condition might result in a change of output. The link 

between a chaotic system’s present state and its upcoming state was described by a 

separate logistic operation to construct the chaotic map. The initial population 

generation of IFP has resulted in the greatest improvement in convergence rate. The 

circle map outperforms chaotic maps to improve the modified multi-verse 

optimizer’s rate of convergence. The circular map’s chaotic sequences’ have the 
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highest degree of dispersion accounts for its efficiency. The non-recurrence 

probability of chaotic sequences increases with their dispersion degree. Therefore, 

the circle map utilized for population initialization could yield superior starting 

population generation resolutions that disperse the ideal solution. The usual random 

technique of initializing the population will be replaced with a circular map. 

Frog leap search: 

The local search approach used by the FP discourages information exchange 

among the superior solutions, which causes the IFP to converge slowly. The shuffled 

frog-leaping algorithm (SFLA) serves as the inspiration for the idea of reciprocal 

cooperation. The frogs’ foraging habits served as the basis for the creation of the 

SFLA. The search space was used to start an initial population of frogs. It contains 

information about the quantity of food in each frog’s location. Memeplexes were 

created from the initial population. The frog who snatches the most food during the 

procedure was assigned to the initial group. The process was continued until the frog 

ranks were assigned. Likewise, the frogs of the second and third ranks were assigned 

to the second and third groups, respectively. The initial group receives the frog rank. 

The frogs with the lowest and highest fitness for each memeplex were represented as 

𝑊⃗⃗⃗ 
𝑥𝑗
(𝑠)

 and 𝑊⃗⃗⃗ 
𝑎𝑗
(𝑠)

. The frog’s least fit will be updated according to the information that 

constitutes the best frog exchange represented in Equations (16) and (17). 

𝑊⃗⃗⃗ 
𝑥𝑗
(𝑠+1)

= 𝑊⃗⃗⃗ 
𝑥𝑗
(𝑠)

+ 𝑟𝑎𝑚𝑑 (𝑊⃗⃗⃗ 
𝑎𝑗
(𝑠)

− 𝑊⃗⃗⃗ 
𝑤𝑗
(𝑠)

) (16) 

𝑡𝑚𝑎𝑥 ≥ 𝑟𝑎𝑛𝑑 (𝑊⃗⃗⃗ 
𝑎𝑗
(𝑠) − 𝑊⃗⃗⃗ 

𝑤𝑗
(𝑠)) ≥ −𝑡𝑚𝑎𝑥  (17) 

Here, 𝑠  denotes the current iteration, 𝑟𝑎𝑛𝑑 ∈ (0,1)  and 𝑡𝑚𝑎𝑥 represents the 

maximum step size. The modified frog’s fitness was assessed. The frogs were 

arbitrarily relocated to a different area of the swamp if their fitness didn’t improve. 

The procedure was carried out repeatedly until the Memeplexes predetermined the 

maximum iteration number until it reached. Entire Memeplexes were combined. The 

shuffling procedure divides the population among groups and the local search of 

every Memeplexes entails the halting condition until it is satisfied. 

Momentum coefficient: 

Ensuring the optimization system’s worldwide search exhibits dynamic 

behavior was essential for increasing the convergence rate. It was better to conduct 

more inquiry in the initial stages. The solutions were closer to the global optimum, 

which ensures the progressive transition to become more localized corruption in the 

final stages. IFP constitutes the search procedure. It takes a long time because of the 

pointless investigation at the end. The suggested IFP coordinates the Lévy flight to 

overcome the constraint were expressed in Equations (18) and (19). 

𝑊⃗⃗⃗ 
𝑗
𝑠+1 = 𝑊⃗⃗⃗ 

𝑗
𝑠 + 𝑥𝐾(𝑊⃗⃗⃗ 

𝑗
𝑠 − ℎ∗) (18) 

𝑥 = 𝑥𝑚𝑖𝑛 (1 +
𝑥𝑚𝑎𝑥

√𝑠
× 𝑡𝑎𝑛𝑔 (

ℎ1

ℎ∗
)) (19) 
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Here, 𝑥 represents the inertia weight, with 𝑥𝑚𝑎𝑥 being the maximum allowed inertia 

weight and 𝑥𝑚𝑖𝑛 being the minimum. The ideal global fitness is indicated as ℎ∗ to 

obtain the highest fitness value attained by the original population the Lévy 

distribution stands for the current generation number and the hyperbolic tangent is 

indicated as tanh (×) the inertia weight might be used to dynamically modify the 

worldwide search’s step size in IFP. The iteration ensures optimal fitness value as 

better to ensure the outcome of inertia weight that eventually drops. The values of 

𝑥𝑚𝑎𝑥  𝑎𝑛𝑑 𝑥𝑚𝑖𝑛  are set from 1 and 10. Algorithm 1 shows the IFP-RDNN 

pseudocode. 

Algorithm 1 Process of IFP-RDNN 

1: 𝑑𝑎𝑡𝑎 = 𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑎(“𝑜𝑟𝑎𝑙_𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑚𝑒𝑛𝑡𝑎𝑙_ℎ𝑒𝑎𝑙𝑡ℎ_𝑑𝑎𝑡𝑎. 𝑐𝑠𝑣”) 

2: 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎 = 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑑𝑎𝑡𝑎(𝑑𝑎𝑡𝑎) 

3: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 = 𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑑𝑎𝑡𝑎) 

4: 𝑑𝑒𝑓𝑐𝑟𝑒𝑎𝑡𝑒_𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡_𝑑𝑛𝑛(𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒, ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒): 
5:    𝑚𝑜𝑑𝑒𝑙 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() 

6: 𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠 = ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠[0], 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚 = 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′)) 

7: 𝑓𝑜𝑟𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒𝑖𝑛 ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠[1: ]: 
8: 𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠 = 𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑟𝑒𝑙𝑢′)) 

9: 𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(𝑢𝑛𝑖𝑡𝑠 = 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑜𝑓𝑡𝑚𝑎𝑥′)) 

10: 𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚(), 𝑙𝑜𝑠𝑠 = ′𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′,𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 

11: 𝑟𝑒𝑡𝑢𝑟𝑛𝑚𝑜𝑑𝑒𝑙 
12: 𝑑𝑒𝑓𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑_𝑓𝑙𝑜𝑤𝑒𝑟_𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠): 
13: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒) 

14: 𝑓𝑜𝑟𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑟𝑎𝑛𝑔𝑒(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠): 
15:𝑓𝑜𝑟𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑖𝑛𝑡ℎ𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 
16:𝑖𝑓𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛(): 
17:𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 

18:𝐸𝑙𝑠𝑒: 
19:𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑙𝑜𝑐𝑎𝑙_𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 

20:𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

21:𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑠𝑐𝑜𝑟𝑒𝑠) 

22: 𝑟𝑒𝑡𝑢𝑟𝑛𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑓𝑟𝑜𝑚_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

23: 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑙𝑒𝑛(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

24: ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [64, 32] 
25: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑙𝑒𝑛(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎. 𝑙𝑎𝑏𝑒𝑙𝑠) 

26: 𝑑𝑛𝑛_𝑚𝑜𝑑𝑒𝑙 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡_𝑑𝑛𝑛(𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒, ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒) 

27: 𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑_𝑓𝑙𝑜𝑤𝑒𝑟_𝑝𝑜𝑙𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 = 50,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 100) 

28: 𝑑𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑢𝑝𝑑𝑎𝑡𝑒_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑏𝑒𝑠𝑡_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

29: 𝑑𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎. 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑒𝑝𝑜𝑐ℎ𝑠 = 50, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32) 

30: 𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑑𝑛𝑛_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

31: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎. 𝑙𝑎𝑏𝑒𝑙𝑠) 

32: 𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑎𝑛𝑎𝑙𝑦𝑧𝑒_𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛(𝑡𝑒𝑠𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

33: 𝑚𝑒𝑛𝑡𝑎𝑙_ℎ𝑒𝑎𝑙𝑡ℎ_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒_𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑚𝑒𝑛𝑡𝑎𝑙_ℎ𝑒𝑎𝑙𝑡ℎ(𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎.𝑚𝑒𝑛𝑡𝑎𝑙_ℎ𝑒𝑎𝑙𝑡ℎ) 

34: 𝑝𝑟𝑖𝑛𝑡(“𝑃𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑄𝑢𝑎𝑙𝑖𝑡𝑦: “, 𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 

35: 𝑝𝑟𝑖𝑛𝑡(“𝑀𝑒𝑛𝑡𝑎𝑙𝐻𝑒𝑎𝑙𝑡ℎ 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛: “,𝑚𝑒𝑛𝑡𝑎𝑙_ℎ𝑒𝑎𝑙𝑡ℎ_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

4. Experimental results 

Using TensorFlow to complete the recommended task. Where Python software 

was installed for the procedure to be completed and the experiment was run on a 64-

bit version of Windows 10. The Intel(R) Core (TM) i7-7770hq 2.8 GHz CPU and 8 

GB of RAM are installed. The configuration information’s of the experiment is 

presented in Table 1. 
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Table 1. Configuration details for experiment execution. 

Component Details 

Operating system 64-bit version of Windows 10 

Software installed Python 

Processor Intel(R) Core (TM) i7-7770HQ, 2.8 GHz CPU 

RAM 8 GB 

4.1. Confusion matrix 

A confusion matrix is a technique for assessing the performance of a 

classification model. It shows the numbers of real positive results (properly 

anticipated positives), genuine negative results (properly forecasted negatives), and 

false positive results (inaccurately predicted positives) for each result. This matrix 

offers information on the model’s overall efficiency. It also helps to pinpoint the 

areas of inaccuracy and areas for model improvement. For unbalanced datasets, 

where basic accuracy might be deceptive which was helpful. It demonstrates how 

many events were correctly and incorrectly predicted across various categories. In 

this matrix, “True labels” and “Predicted labels” are categories. Most instances were 

properly predicted by the model; however, a few individuals were low predicted. It 

helps to determine how effectively the model operates and where it might be 

improved. Figure 2 represents the confusion matrix. 

 

Figure 2. Confusion matrix for proposed method. 
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4.2. Accuracy and loss 

The ratio of accurate forecasts to all predictions used to determine the model’s 

accuracy can anticipate events properly. It expresses a broad idea of the model’s 

performance in every class. Loss measures how far the model’s predictions deviate 

from reality by comparing the expected values with the actual results. Since it 

reduces the difference between the real and projected values, a lesser loss suggests 

that the model was operating properly. A more precise assessment of the model’s 

learning quality and predicted accuracy is provided by loss, whereas accuracy is a 

broader metric. Figure 3 represents the accuracy and loss. 

 

Figure 3. Graphical outcome of (a) accuracy and (b) loss. 

 

Figure 4. The pronunciation accuracy outcome values. 

Pronunciation accuracy can articulate sounds, stress, intonation, and rhythm 

correctly in speech while adhering to the norms of the target or standard language. It 
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is essential for communication since it guarantees speakers’ comprehension and 

clarity. Accurate pronunciation makes a student more understandable and self-

assured while speaking a language. Accuracy was frequently attained by voice 

technique and sound production refinement through practice and feedback. Figure 4 

illustrates the pronunciation accuracy. 

The proposed strategy was assessed and its effectiveness was calculated using 

the following indicators: Recall (%), Accuracy (%), precision (%), and F1-score (%). 

An efficiency comparison across the proposed strategy and other traditional 

approaches was also presented. The traditional methods include a Resilient Deep 

Neural Network (RDNN). 

Evaluating the model’s accuracy by calculating the ratio of successfully 

expected to total occurrences, accuracy offers a robust assessment of the system’s 

efficiency. Compared to traditional methods like RDNN have an accuracy of 86.5% 

and the proposed IFP-RDNN attains an accuracy level of 90.3%. A model’s 

precision level indicates how accurately it anticipated results. The assessment is the 

proportion of precisely predicted positive results to the total expected benefits. 

Compared to traditional methods RDNN has a precision of 85.9%, and the proposed 

IFP-RDNN attains a precision level of 89.80%. Figure 5 and Table 2 illustrate an 

evaluation of accuracy and precision in comparison between suggested and 

traditional methods. The proposed method provided superior results in predicting the 

oral English pronunciation rating using biosensors. 

 

Figure 5. Results of model accuracy and precision performance analysis. 

Table 2. Result parameters. 

Methods Accuracy (%) F1- Score (%) Recall (%) Precision (%) 

RDNN 86.5 85.9 85 85.4 

IFP-RDNN[Proposed] 90.3 89.8 91.60 88.9 
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Recall is a statistic that assesses a model’s capacity to locate all pertinent 

instances of a class. It assesses the model’s accuracy in identifying every pertinent 

among the total number of real positives. Compared to traditional methods like 

RDNN with a recall of 85%, the proposed IFP-RDNN attained a recall level of 

91.60%. F1-score is a statistic that was used to assess how well a classification 

model is performed. Compared to traditional methods, like RDNN with an F1-score 

of 85.4%, the proposed IFP-RDNN attained an F1-score level of 88.95%. Figure 6 

and Table 2 present an evaluation of the F1-score in comparison between suggested 

and traditional methods. The proposed method provided better results for predicting 

oral English pronunciation rating through biosensors. 

 

Figure 6. Result values for recall performance and F1-Score evaluation. 

5. Discussions 

The model’s complexity of the FDNN method in oral English pronunciation 

standards and mental health might demand more computing power, which might 

make it less appropriate for real-time applications and settings with constrained 

computational resources. Furthermore, mental health was impacted by several 

intricate and multifaceted elements other than language proficiency; it might be 

difficult to measure the relationship between oral pronunciation standards and mental 

health. The standardization of spoken English pronunciation might be impacted by 

participants’ cultural and linguistic diversity, making the application of global 

standards challenging. To overcome this, the IFP-RDNN model uses the advantages 

of the IFP for accurate parameter effectiveness, which helps it successfully navigate 

the challenges of mental health and oral English pronunciation standards. Because it 

is less computationally complex than the FDNN method, it is more suited for 

applications that operate in real-time, even in resource-constrained environments. 

With the ability to handle the complex nature of mental health, RDNN adjusts to a 

range of mental states, maintaining robustness. The approach offers more accurate 

and personalized knowledge of how pronunciation impacts mental health by 

integrating biosensor data. Furthermore, the problem of particular cultural and 



Molecular & Cellular Biomechanics 2024, 21(4), 833.  

17 

linguistic variation is addressed by IFP’s natural optimization method, providing a 

more flexible option for language students from across the world. All things 

considered, the IFP-RDNN model offers a thorough, scalable, and effective way to 

forecast pronunciation quality by taking emotional well-being into account. 

6. Conclusions 

The Improved Flower Pollination-tuned Resilient Deep Neural Network (IFP-

RDNN) was used to predict the oral English pronunciation rating using biosensors. 

The research is to explore how variations in speech accuracy and fluency during 

English pronunciation tasks can reflect underlying psychological states, such as 

stress, anxiety, and overall emotional well-being. The purpose of the research is to 

establish the dynamic correlation between oral English pronunciation standards and 

mental health, as monitored through biosensor data. EEG signals were acquired 

during the listening state with the audio signals utilized in stimuli, as the spoken 

audio obtained from the subject. The median filter removes noise about the recorded 

information was employed in the data processing. FFT is used to extract the features 

from the preprocessed data. The proposed method is implemented using Python 

software. Experimental results reveal that the spoken audio confirms the 

improvement in pronunciation throughout the trials. While comparing the proposed 

method to the traditional method RDNN, the suggested method achieved various 

evaluation measures, such as F1-score (88.9%), recall (91.60%), precision (89.80%), 

and accuracy (90.3%). The result demonstrated the IFP-RDNN method to predict the 

oral English pronunciation rating using biosensors. The findings indicate a 

significant connection between the quality of oral English pronunciation and mental 

health, with deviations from standard pronunciation being associated with increased 

stress and emotional suffering. 

Limitations and future scope 

Pronunciation learning could be impacted by differences in learners’ ability, 

motivation, and exposure to English. Language anxiety, less confidence, and 

decreased motivation exceed pronounced words, which might have an impact on 

mental health. Oral pronunciation frequently emphasizes correctness and fluency, 

but it might exceed how language acquisition affects the mental health and growth of 

speaking confidence. Future research should examine the pronunciation guidelines in 

a global setting while acknowledging the variety of English dialects and how they 

affect learners’ mental health in various cultural contexts. 
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