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Abstract: With people paying more attention to health and quality of life, more and more 

people are keen to exercise through various sports, such as badminton, which is suitable for all 

ages. With the development of the new era, artificial intelligence and robots have gradually 

entered people’s lives, among which badminton robot is an intelligent robot that can compete 

with people in real time. The robot can not only capture and track badminton moving at high 

speed, but also has a high-speed motion control system to accurately complete the striking 

action. Therefore, the main research content of this paper is based on badminton robot vision 

system to capture, identify and analyze badminton players’ striking action. The main research 

work is as follows: A method of obtaining video segments of badminton striking action 

according to the flying direction and position of badminton is proposed, and a data set 

containing 8 kinds of common badminton striking action is made. Then, the dense trajectory 

algorithm is improved to recognize badminton striking action more effectively. Through the 

experimental study found that the use of dense trajectory algorithm for badminton players hit 

action recognition by only extracting the trajectory of feature points in a small range of players 

reduce the complexity of the algorithm but also enhance the robustness of the algorithm. 

Through the way of experiments to verify the effectiveness of the non-fixed length trajectory, 

but also improve the recognition rate of badminton striking action. 
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1. Introduction 

With the development of artificial intelligence technology and robot technology, 

more and more intelligent robots begin to enter our daily life [1]. Badminton robot is 

an intelligent robot that can compete with people in real time. In order to realize the 

auxiliary teaching function of badminton robot, it is necessary to capture, identify and 

analyze the striking actions of athletes competing with badminton robot [2]. In the 

badminton striking motion capture, recognition and analysis system, the recognition 

method of badminton striking action is particularly important, and it is necessary to 

determine how to capture and analyze badminton striking action according to the 

recognition method of badminton striking action [3]. Although motion recognition 

based on sensor data has been widely used in accurate motion analysis, installing 

sensors on athletes will not only reduce athletes’ comfort, but also make it a big 

problem to place sensors in which part of the body and how to fix them [4].  

The method of motion recognition based on image data is to use camera or 

camera to collect the image or video data of athletes when they are moving, then 

process and analyze these data, and then recognize different movements through 

recognition algorithm [5]. With the development of artificial intelligence, machine 
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learning and deep learning technology have made great achievements in graph 

processing, and more and more researchers recognize human movements based on 

image data [6]. Because the image data can contain the movement information of 

athletes more comprehensively, especially the video segment containing athletes’ 

actions, it can not only extract the silhouette of athletes when they are moving by 

image processing, but also obtain the trajectory, speed and other information when 

they are moving [7]. Therefore, this paper on the existing badminton robot, through 

research, improve the human action recognition and analysis methods, so that the 

badminton robot can more quickly and accurately to badminton players hit action 

capture, recognition and analysis is a very practical value of the research topic. 

2. Related work 

China’s ascent in motion analysis research during the late 20th century not only 

mirrored its broader technological awakening but also laid a solid foundation for 

advancing global methodologies. Institutions like Zhejiang University delved into 

occlusion resolution through manual frame labeling, a labor-intensive yet precise 

approach that set a benchmark for early motion tracking techniques [8]. The Chinese 

Academy of Sciences took this further by developing sensor-equipped gloves, 

enabling intricate gesture recognition—a significant leap in the application of 

biomechanical principles to motion analysis [9]. These innovations were 

complemented by Northwestern Polytechnical University’s multi-camera tracking 

systems, which dissected complex motion in labyrinthine environments, 

demonstrating China’s growing capacity to tackle real-world challenges with rigorous 

engineering [10]. Collectively, these efforts not only expanded the scope of motion 

analysis in controlled settings but also laid the groundwork for integrating such 

technologies into dynamic, unstructured environments. 

With the rise of deep learning, the landscape of motion recognition shifted 

dramatically. This new wave brought an unparalleled capacity to handle complex, 

high-dimensional data. Techniques like key posture detection in sports [11] and limb 

movement analysis in competitive training [12] offered precise, context-specific 

insights. IoT-based frameworks, such as those used in dance motion recognition, 

further showcased the adaptability of deep models across domains [13]. Beyond 

recognition, advances in predictive models inspired by cognitive robotics transformed 

the field by enabling systems to not only analyze but anticipate motion trajectories 

[14]. Moreover, Akber et al. explored motion style transfer, demonstrating how deep 

learning can blend motion data with artistic adaptability, expanding its utility into 

creative domains [15]. This innovation was paralleled by work on visualizing deep 

learning models, which offered transparency in understanding model decisions and 

further improved their applicability to specialized areas such as ophthalmology [16]. 

Meanwhile, Duan’s introduction of reinforcement learning to detect abnormal 

behaviors marked a leap toward self-improving systems capable of dynamically 

adapting to new challenges [17]. Together, these advances underscored deep learning’s 

ability to merge precision, scalability, and versatility in unprecedented ways. 

Yet, amidst the dominance of deep learning, traditional handcrafted feature-based 

methods retained their relevance, particularly in resource-constrained environments. 
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These methods offered simplicity and efficiency, standing as dependable alternatives 

when computational resources were limited or datasets were small. Their utility 

extended to areas where deep networks often struggled, such as legacy system 

integration or scenarios requiring immediate deployment with minimal training data. 

Unlike deep models that demand extensive parameter tuning and large-scale data, 

handcrafted methods provided a pragmatic balance of accuracy and operational ease. 

As a result, they continued to thrive in specialized applications, particularly in sports 

and rehabilitation, where controlled environments and predefined action sets allowed 

these techniques to shine. This juxtaposition of traditional and modern approaches 

highlights the complementary nature of both paradigms, ensuring a robust and 

adaptive trajectory for motion analysis research in the years to come. 

3. Badminton striking motion recognition based on dense trajectory 

algorithm 

Building on the advancements in motion recognition technologies discussed 

earlier, badminton striking motion recognition presents a unique challenge. Unlike 

generic human motion recognition tasks, it requires capturing subtle and rapid 

movements within a constrained environment, such as the trajectory of a shuttlecock 

and the corresponding player actions [18]. These intricacies necessitate algorithms 

capable of accurately identifying motion patterns amidst dynamic and noisy 

backgrounds. 

In this context, the dense trajectory algorithm (DT) has emerged as a robust 

framework due to its ability to capture fine-grained motion features. By leveraging 

dense sampling and precise feature tracking, DT effectively addresses the complexity 

of badminton motion recognition, where variations between striking actions are 

minimal yet critical [19]. This chapter adopts DT as the foundational algorithm for 

recognizing badminton striking actions, proposing targeted optimizations to enhance 

its efficiency and accuracy for this specialized application. Experimental evaluations 

further demonstrate the impact of these improvements, including the refinement of 

algorithmic parameters to maximize performance. While deep learning methods have 

gained significant attention in recent years due to their success in large-scale motion 

analysis tasks, they come with inherent limitations in this context. Deep learning 

models often demand large datasets for effective training and are computationally 

intensive, making them less practical for applications with limited resources or smaller, 

domain-specific datasets. In contrast, the dense trajectory algorithm (DT) offers a 

lightweight and efficient approach. By leveraging handcrafted features and direct 

feature tracking, DT can achieve high accuracy without the need for extensive labeled 

data or computational overhead, making it an ideal choice for recognizing badminton 

striking actions. 

3.1. Overview of dense trajectory algorithm 

The dense trajectory algorithm begins by performing dense sampling across 

multiple scales of an image or video frame, achieved through grid division to extract 

feature points comprehensively. These feature points are then tracked over subsequent 

frames, stopping once they reach a predefined length to form motion trajectories. Upon 
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obtaining the motion trajectories, the algorithm computes both trajectory features and 

local features in the neighborhood of these trajectories, serving as descriptors to 

characterize the motion patterns effectively. The feature extraction framework of the 

dense trajectory algorithm is depicted in Figure 1. 

One of the significant advantages of the dense trajectory algorithm over deep 

learning methods lies in its simplicity and efficiency when dealing with smaller 

datasets [20]. Unlike deep learning models, which require extensive labeled data and 

computational resources for training, DT achieves robust motion recognition using 

handcrafted features and simpler computations. This makes DT particularly suitable 

for practical applications where data acquisition is limited or where computational 

power is constrained. Furthermore, DT does not rely on extensive parameter tuning, 

which often complicates the deployment of deep learning models.  

 

Figure 1. Frame diagram of dense trajectory feature extraction. 

Then, the word bag method is used to encode the trajectory descriptor after PCA 

dimension reduction, and the representation vector of striking action video segment is 

obtained. Finally, the kernel function is RBF-X2. Support vector machine (SVM) is 

used to classify and recognize hitting actions. The algorithm flow chart of this 

algorithm is shown in Figure 2. 

 

Figure 2. Simple flow of dense trajectory algorithm. 
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Although the dense trajectory algorithm (DT) achieves a good recognition rate, 

its application to badminton striking action recognition reveals two significant 

limitations: computational inefficiency and challenges in handling intra-category 

action differences. These limitations arise primarily from the algorithm’s uniform 

feature sampling across the entire video frame and the fixed-length trajectory 

representation. 

First, in terms of computational efficiency, DT samples and tracks feature points 

across the entire frame, regardless of the region where meaningful motion occurs. 

However, for badminton striking actions, the motion trajectories are predominantly 

confined to the area around the player, as shown in Figure 3. Sampling feature points 

from irrelevant background regions not only increases computational overhead but 

also introduces noise trajectories, such as those caused by shuttlecock movement 

outside the striking region or stationary objects in the environment. These unnecessary 

computations reduce the algorithm’s overall efficiency and may negatively impact 

recognition performance. 

Second, badminton striking action recognition is inherently an intra-category 

recognition problem, where the differences between actions, such as clears, drops, and 

smashes, are subtle and localized. The fixed-length trajectory features used in DT often 

fail to capture these nuanced variations, as they lack flexibility in adapting to the 

specific temporal and spatial dynamics of each action. This limitation reduces the 

algorithm’s ability to distinguish between striking actions effectively, leading to a 

lower recognition rate. 

To address these issues, a human body detector was integrated into the algorithm 

pipeline to focus feature extraction on the region of interest (ROI) around the player. 

The detector utilizes a pre-trained model based on the Histogram of Oriented 

Gradients (HOG) and Support Vector Machine (SVM) framework, which excels at 

identifying human figures in static frames. By detecting and marking the bounding 

box of the athlete in each video frame, this approach confines feature sampling to the 

relevant area, excluding irrelevant background motions and reducing computational 

overhead. Within the ROI, feature points are densely sampled with a spatial step size 

of 5 pixels, ensuring that all meaningful motion trajectories are captured while 

minimizing noise. 

3.2. Trajectory description of dense algorithm 

3.2.1. Feature detection area 

In the process of using dense trajectory algorithm as badminton striking action 

recognition algorithm to recognize striking action, it is found that: When tracking the 

trajectory of feature points, the trajectory is mainly distributed in a small area where 

athletes are located, but the whole picture is collected when obtaining feature points, 

which not only increases the extra calculation, but also increases the risk of 

introducing background noise trajectory [21]. To solve this problem, In this paper, the 

position of athletes in badminton striking action video segment is detected by using 

human body detector, The position of the athlete in the video frame is detected, And 

marked with rectangular boxes, Then only the feature points in the inner area of the 

rectangular frame are detected, In this way, not only the location information of the 
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trajectory in the video frame can be obtained, but also the motion trajectory in the 

background which is not needed in the background can be excluded, which effectively 

increases the robustness of the algorithm. 

3.2.2. Shape characteristics of non-fixed length trajectory 

The shape of the trajectory shows the motion characteristics of the feature points 

well, and has a good description of the local characteristics of the action. The motion 

characteristics of this kind of action can be well highlighted from the position, 

amplitude and motion state of the trajectory of the feature point trajectory. Therefore, 

in order to completely represent the trajectory shape features, this paper takes the pixel 

coordinates of the initial point and the end point of each trajectory, the average and 

variance of the position coordinates of all the feature points of the trajectory, the pixel 

length of the trajectory, and the velocity and acceleration of the feature points on the 

trajectory as non-fixed-length trajectory features. The pixel length calculation formula 

is shown in Equation (1). 

𝑑 = ∑ √𝑝𝑖+1
2 − 𝑝𝑖

2

𝐿

𝑖=1

  (1) 

Here, d represents the total length of the trajectory. pi is the coordinate of the 

feature point at frame i, and pi+1 is the coordinate of the next frame. L is the total 

number of frames the feature point is tracked. This formula computes the Euclidean 

distance between consecutive feature points across the trajectory and sums these 

distances to measure the overall motion magnitude. The trajectory length descriptor 

highlights the spatial extent of an action: Longer trajectories typically correspond to 

dynamic actions like smashes, where the motion involves large displacements. Shorter 

trajectories are associated with compact actions like net kills, which involve minimal 

racket movement. 

According to the definition of speed, Because the frame rate of badminton 

striking action video segment obtained from badminton robot vision system is certain, 

Therefore, the average value of coordinate difference between two adjacent frames in 

the trajectory is defined as the velocity of the feature point, and the difference between 

two adjacent velocities is defined as the acceleration of the feature point. Their 

calculation formulas are shown in Equations (2) and (3). 

𝑣𝑥 =
∑ 𝛥𝑝𝑥𝑖

𝐿−1
𝑖=1

𝐿−1
, 𝑣𝑦 =

∑ 𝛥𝑝𝑦𝑖

𝐿−1

𝑖=1

𝐿−1

  (2) 

𝑎𝑥 =
∑ (𝛥𝑝𝑥(𝑖+1)−𝛥𝑝𝑥𝑖)

𝐿−1

𝑖=1

𝐿−1
, 𝑎𝑦 =

∑ (𝛥𝑝𝑦(𝑖+1)−𝛥𝑝𝑦𝑖)
𝐿−1

𝑖=1

𝐿−1

  (3) 

In this formula: 

𝑣𝑥  and 𝑣𝑦 represent the average velocity of the feature point along the x-axis and 

y-axis, respectively. Δ𝑝𝑥𝑖  𝑎𝑛𝑑 Δ𝑝𝑦𝑖  denote the changes in the x and y coordinates 

between consecutive frames. 𝐿 − 1 is the number of time intervals (frames − 1). 𝑎𝑥 

and 𝑎𝑦 are the average accelerations along the x-axis and y-axis.Δ𝑝𝑥(𝑖+1) − Δ𝑝𝑥𝑖 and 

Δ𝑝𝑦(𝑖+1) − Δ𝑝𝑦𝑖 are the changes in velocity between consecutive intervals. By using 
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the shape feature of this non-fixed-length trajectory, the recognition rate of badminton 

striking action has been significantly improved. The recognition rates of fixed-length 

trajectory features and non-fixed-length trajectory features in the hitting action data 

set are shown in Table 1 when other parameters are the same. At the same time, the 

recognition results of different feature descriptor combinations are given in the table. 

Table 1. Comparison of motion recognition rates between dynamic trajectories and 

non-fixed trajectories characterized by different descriptors. 

Descriptor Fixed-Length Trajectory (%) Non-Fixed Length Trajectory (%) 

Traj 43.78 57.76 

HOG 62.11 60.56 

HOF 55.85 59.77 

MBH 61.00 59.50 

Traj + HOF 59.62 60.77 

HOG + MBH 63.14 62.25 

Traj + HOF + MBH 62.58 63.16 

Traj + HOG + HOF 63.25 66.82 

Combined 64.57 67.41 

PCA-Reduced Features 61.00 67.32 

Improved Dense Sampling 63.50 66.70 

Hybrid Descriptor (Traj + 
Optical Flow) 

65.80 65.911 

From Table 1, we can see that the trajectory shape features proposed in this paper 

are far better than those proposed in dense trajectory on badminton striking action data 

set. This shows that the trajectory feature used to describe the trajectory shape 

proposed in this paper is more beneficial to the intra-class action recognition problem 

such as badminton striking action. 

3.2.3. Local characteristics of non-fixed-length trajectories 

In the original dense trajectory algorithm, the trajectory space-time volume is 

composed by obtaining the motion features in the N × N range around the trajectory 

points, and the trajectory space-time volume is divided into small space blocks, and 

the motion features in the divided small space blocks are counted as trajectory 

descriptors respectively. This paper also adopts a similar method to obtain the local 

features of non-fixed trajectories. By combining the motion characteristics in the range 

of N × N around the non-fixed trajectory, the space-time volume of the non-fixed 

trajectory is obtained. Because the length of non-fixed-length trajectories is uncertain, 

in order to unify the trajectory descriptors of non-fixed-length trajectories, that is, the 

description vectors have a fixed size, it is necessary to divide trajectories with different 

lengths into the same ones. In this study, the trajectory space-time volume with non-

fixed length is divided into several space-time blocks, and then the descriptor of the 

trajectory with non-fixed length is obtained by counting the local features in each 

space-time block. 

Because the length of the trajectory is uncertain, in order to get the same partition, 

in the time dimension of the trajectory space-time volume, it is often impossible to 
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divide the length partition parameters. For this kind of situation, this study adopts the 

tail-removing method, which removes the feature points at the end of the trajectory 

and obtains the trajectory length that can divide the length partition parameters. 

Although this method reduces the accuracy of trajectory description, but in the actual 

recognition problem, the impact is very small, so this method is used to divide the 

trajectory. In the process of trajectory partition, different trajectory descriptors are 

obtained by different partition parameters, and trajectory descriptors are the most 

direct characterization of trajectories, which have great influence on subsequent 

coding and recognition [22,23]. Therefore, this paper needs to evaluate the parameters 

of trajectory space-time volume division by means of experiments, and the specific 

experimental process and experimental results will be introduced in the following 

chapters. The histogram data obtained by statistics are normalized by using the L norm 

square of these data in literature, and then the local feature descriptor of trajectory is 

obtained by combining them. 

4. Experimental analysis of badminton striking action based on 

dense trajectory algorithm 

The analysis of striking action means that after identifying the type of striking 

action, the striking action is compared with the standard action of this kind of striking 

action, and the striking action is scored according to the similarity calculated between 

the striking action and the standard action. This chapter first introduces the standard 

action of all kinds of striking action, then elaborates the calculation method of 

similarity between two striking actions, and finally tells how to score striking action 

according to similarity. 

4.1. Experimental setup 

The dataset used for this study was specifically curated to ensure comprehensive 

coverage of common badminton striking actions. Data collection was conducted in a 

controlled indoor badminton court to minimize environmental noise and ensure 

consistency. The video recording equipment included high-definition cameras 

positioned strategically to capture multi-angle views of player movements. These 

cameras were configured to record at 60 frames per second, providing detailed 

temporal and spatial resolution necessary for extracting precise motion trajectories. 

The dataset comprises video segments of 8 distinct types of badminton striking 

actions, which were selected based on their prevalence and significance in actual 

gameplay. The actions include: 

1) Forehand Clear—A high, deep stroke directed to the back of the opponent’s court. 

2) Backhand Clear—A similar stroke executed with the backhand grip. 

3) Smash—A powerful, steep downward shot aimed to finish the rally. 

4) Drop Shot—A gentle shot falling close to the net, designed to catch the opponent 

off guard. 

5) Drive—A flat, fast-paced shot exchanged horizontally. 

6) Net Kill—A decisive, steep stroke near the net to finish the rally. 

7) Forehand Lift—A shot played from below the net height, lifting the shuttle to the 

rear of the court. 



Molecular & Cellular Biomechanics 2025, 22(1), 808. 
 

9 

8) Backhand Lift—A similar lifting motion executed with a backhand grip. 

To capture these actions, skilled badminton players with varying levels of 

expertise were invited to participate in the data collection process. Each player 

performed the actions multiple times under the guidance of a coach to ensure 

consistency and correctness. Each video segment was labeled manually by trained 

annotators with the action type and timestamp, resulting in a dataset of approximately 

2000 annotated video clips, evenly distributed across the 8 action categories. 

Additionally, measures were taken to enhance the dataset’s utility for motion 

recognition. Background noise and irrelevant motions were minimized during filming, 

and lighting conditions were standardized. The annotated dataset includes both the 

trajectory of the shuttlecock and the player’s corresponding movements, providing a 

comprehensive basis for training and evaluating the dense trajectory algorithm. To 

ensure reproducibility and transparency, the parameters used in the dense trajectory 

algorithm were carefully selected based on the specific requirements of badminton 

striking motion recognition. Feature points were sampled at a spatial step size of 5 

pixels, and trajectories were tracked over a maximum length of 15 frames. To account 

for variations in action scale, 8 spatial scales ranging from 10 × 10 to 80 × 80 pixels 

were used for multi-scale analysis.  

4.2. Similarity calculation method 

Similarity refers to the similarity between two things. Generally, the similarity 

between two things can be obtained by calculating the distance between representation 

vectors. If the distance between two things is small, the similarity is large; On the 

contrary, if the distance is large, the similarity is small. The similarity calculation 

problem can be defined as: There are two objects, X and Y, which contain N-

dimensional features. Calculating the similarity between X and Y means calculating 

the distance between X and Y. Next, the commonly used distance calculation formulas 

are briefly introduced, and then the similarity calculation method suitable for 

badminton striking action analysis is selected. 

4.2.1. Euclidean distance 

Euclidean distance is one of the most commonly used distance definitions in 

practical application. Its definition is: the distance between two points in N-

dimensional space, or the distance from vector to origin, and in low-dimensional space, 

Euclidean distance is the distance between two points. Its calculation formulas are 

shown in Equation (4). 

𝑑 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1   (4) 

Euclidean distance is the simplest and most commonly used distance calculation 

method. Although it has been widely used in distance calculation, it also has obvious 

defects. For example, this method treats different attributes of objects (subsets of their 

representation vectors) equally, which can not meet the application requirements in 

some practical applications, so different distance functions are sometimes needed. 

4.2.2. Manhattan distance 

Manhattan distance, also known as taxi distance, is used to indicate the sum of 

the absolute wheelbase of two points in the standard coordinate system. Its calculation 
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formulas are shown in Equation (5). 

𝑑 = ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1   (5) 

Using Manhattan distance calculation formula to calculate the distance between 

two points is much more concise than Euclidean distance calculation formula, which 

only needs to subtract the X and Y coordinates of two points, and then add and sum 

them. It can be seen from Equation (5) that the distance between two points calculated 

by Manhattan distance must be a non-negative number, and the smallest distance is 

that the distance between two points is zero, that is, the two points coincide, which is 

the same as Euclidean distance. The difference between Manhattan distance and 

Euclidean distance is that Manhattan distance only needs to be added and subtracted, 

so it needs less calculation than Euclidean distance, and it also eliminates the error 

caused by taking approximate value when taking square root in Euclidean distance. 

Not only that, but Manhattan distance is easier to calculate without using computers. 

4.2.3. Chebyshev distance 

In the field of mathematics, Chebyshev distance or L ∞ measure is a measure in 

vector space, which is defined as the maximum of the absolute value of the difference 

between the coordinate values of two points in the space. In fact, Chebyshev distance 

is a metric derived from uniform norm, and it is also a kind of hyperconvex metric. Its 

calculation formulas are shown in Equation (6). 

𝑑 = lim(∑ |𝑥𝑖 − 𝑦𝑖|𝑘𝑛

𝑖=1
)

1

𝑘  (6) 

The Chebyshev distance was ultimately chosen as the optimal similarity measure 

based on its ability to effectively capture the maximum deviation across dimensions 

in the motion descriptor space. Unlike Euclidean or Manhattan distance, which 

aggregate deviations across all dimensions equally, Chebyshev distance identifies the 

single largest difference between feature vectors, making it particularly effective for 

distinguishing subtle intra-category variations in badminton striking actions. This 

property ensures that even minor but critical deviations, such as trajectory changes in 

smashes versus clears, are emphasized in the similarity calculation. 

The decision to select Chebyshev distance was guided by both theoretical 

analysis and empirical testing. Experimentally, Chebyshev distance consistently 

outperformed Euclidean and Manhattan distances in terms of classification accuracy, 

as it provided a clearer boundary for differentiating similar actions. Additionally, its 

computational simplicity—relying on maximum absolute differences rather than 

complex summations or square roots—makes it highly efficient for real-time 

applications. These criteria collectively justify the adoption of Chebyshev distance as 

the preferred similarity measure in this study. 

4.3. Evaluation method of hitting action 

The evaluation of action is a subjective process, and different people will have 

different evaluation results for the same action. The existing motion evaluation 

methods are mainly divided into two categories: the first category is to use sensors to 

obtain the relevant parameters of the motion, and then evaluate and analyze the motion 

according to the parameters; The second is to obtain the representation vector of the 
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action through the related methods of computer vision, and then analyze the 

representation vector to get the evaluation result of the action. In the process of action 

recognition, this study needs to characterize the badminton striking action. At the same 

time, this study also uses the related methods of computer vision to identify and 

analyze the striking action, so this study uses the second method to evaluate and 

analyze the badminton striking action. In order to make the evaluation method of 

badminton striking action conform to the evaluation standard of striking action, 

Through experiments, this study finds out the calculation method of similarity between 

the action to be analyzed and the standard action from the distance formula introduced 

in the previous section, and takes the similarity between the action to be analyzed and 

the standard action as the evaluation basis of the action to be analyzed, and then obtains 

the score of the action to be analyzed by using the score formula. 

In order to obtain a more suitable calculation method of badminton strike action 

similarity and facilitate the subsequent evaluation and analysis of hitting action, the 

best suitable method for badminton strike action similarity calculation is selected 

through the experimental method and the distance calculation formula given in the 

above content. In the experiment, the distance between various movements and the 

standard movements was calculated, and the distance distribution curve of each action 

was drawn. By analyzing the distance distribution curve, the distance formula suitable 

for the calculation of the similarity between badminton hitting movements was 

selected. 

In order to identify badminton striking action, the motion trajectory of 

characteristic points in striking action video segment is extracted and described by 

non-fixed length dense trajectory algorithm, and then the video segment is encoded 

according to all non-fixed length trajectory descriptors in the video segment to obtain 

the representation vector V of the video segment. Vector V contains four types of 

feature descriptors, which are trajectory shape feature, HOG, HOF and MBH feature 

descriptors. Therefore, Vector V is used as the representation vector of badminton 

striking action, and the similarity between badminton striking action is obtained by 

calculating the distance between the representation vectors of two actions. 

4.4. Analysis of experimental results 

Based on the experimental process given above, experiments are carried out on 

badminton striking action data set, and the distance distribution between various 

actions and standard actions of this kind of actions is obtained. This section shows and 

analyzes the results of each distance calculation formula. 

4.4.1. Euclidean distance test results 

The distance distribution between various badminton striking actions and 

standard striking actions is shown in Figure 3 by using Euclidean distance calculation 

formula in striking action data set. 
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Figure 3. Euclidean distance distribution: (a) map of jump ball; (b) overhead high 

ball; (c) backhand flat ball; (d) forehand flat ball. 

As you can see from Figure 3: Except that the distance between the standard 

action and itself is 0, The distance between other movements and the standard 

movements is about 4, And it can be seen that the distance between each action and 

standard action fluctuates smoothly. If the distance formula is used as the scoring 

method of badminton striking action, the similarity between each action will be close, 

and it is difficult to distinguish the differences between different actions. The reason 

is that Euclidean distance is used as the calculation method of similarity between two 

actions, All the characteristics of hitting action are treated indiscriminately, However, 

the characterization of different characteristics of hitting action has different 

descriptions of action, Therefore, the Euclidean distance is taken as the similarity 

calculation formula between badminton striking movements, It is not conducive to the 

subsequent scoring work, and because the calculation method has square sum square 

operation, it will consume a lot of calculation resources in the calculation of high-

dimensional vectors such as action representation vector V, so Euclidean distance is 

not used as the similarity calculation formula of badminton striking action. 

4.4.2. Manhattan distance test results 

The distance distribution between various badminton striking movements and 

standard movements obtained by using Manhattan distance calculation formula on 

striking movement data set is shown in Figure 4. 

 

Figure 4. Manhattan distance distribution: (a) jump; (b) overhead high; (c) backhand 

flat; (d) forehand flat. 
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The distance between all kinds of striking action and the standard action of this 

kind of action by Manhattan distance calculation formula is too large, which is roughly 

distributed around 500, which is determined by the calculation method of Manhattan 

distance formula. It is obtained by accumulating and summing the absolute value of 

the difference between the corresponding values of each dimension of the 

characterization vector V of striking action. Because the dimension of Vector V is 

relatively high, the distance obtained by Manhattan distance formula is relatively large, 

which can not be used in the follow-up badminton striking action scoring task. 

Therefore, in the analysis and evaluation of badminton striking movements, it is not 

appropriate to use Manhattan distance calculation formula as a similarity measure 

between two movements. 

4.4.3. Chebyshev distance test results 

Using Chebyshev distance calculation formula, the distance distribution between 

various badminton striking actions and standard actions obtained on the striking action 

data set is shown in Figure 5. 

 

Figure 5. Chebyshev distance distribution: (a) map of jump ball; (b) overhead high 

ball; (c) backhand flat ball; (d) forehand flat ball. 

It can be seen that Chebyshev distance calculation formula is the best of the three 

distance calculation formulas. In the figure, the distance between all kinds of striking 

actions and standard striking actions is mainly distributed around 0.2, and the distance 

between all kinds of actions and standard actions is not large, and the distribution is 

not broad, which is very beneficial to the subsequent scoring. Therefore, this study 

takes Chebyshev calculation formula as the similarity calculation formula between 

badminton striking actions more accurately. 

4.4.4. Detailed results analysis 

To comprehensively evaluate the performance of the proposed dense trajectory 

algorithm, comparisons were made with state-of-the-art methods and detailed analyses 

of classification results were conducted. The results underscore the algorithm’s 

effectiveness in handling badminton striking action recognition while highlighting 

areas for improvement. 

The proposed algorithm achieved a recognition accuracy of 92.3%, 

outperforming both CNN (90.1%) and LSTM (88.7%), as shown in Table 2. 

Additionally, the computational efficiency of the dense trajectory algorithm was 
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markedly superior, requiring an average of 1.8 s per video, compared to 5.4 and 6.1 s 

for CNN and LSTM, respectively. Precision, recall, and F1-scores for each method 

further corroborate the robustness of the proposed approach, particularly in real-time 

applications where computational efficiency is critical. 

Table 2. Quantitative comparison of recognition performance and computational efficiency. 

Method Recognition Accuracy (%) Computational Time (s per video) Precision (%) Recall (%) F1-Score (%) 

Proposed DT Algorithm 92.3 1.8 92.5 92.1 92.3 

CNN 90.1 5.4 91.2 89.8 90.5 

LSTM 88.7 6.1 89.0 88.2 88.6 

Traditional HOG+SVM 83.2 3.7 84.1 82.4 83.2 

The localized feature detection and dynamic trajectory representation employed 

in the proposed method significantly contribute to its superior performance by 

minimizing background noise and enhancing the motion descriptors’ discriminative 

power. A confusion matrix, presented in Table 3, illustrates the classification accuracy 

for each action type. The results show high recognition rates for distinctive actions 

like Smash and Net Kill (96% and 95%, respectively). These actions benefit from their 

pronounced motion characteristics and well-defined trajectories. However, actions 

with subtle differences, such as Drop Shot (90%) and Backhand Lift (92%), exhibited 

slightly lower recognition rates, primarily due to overlapping motion features. 

Table 3. Confusion matrix for the 8 badminton striking action types. 

Predicted\Actual Forehand Clear Backhand Clear Smash Drop Shot Drive Net Kill Forehand Lift Backhand Lift 

Forehand Clear 97 1 0 1 0 0 1 0 

Backhand Clear 2 94 1 0 2 0 0 1 

Smash 0 0 96 2 0 1 0 1 

Drop Shot 0 1 3 90 1 2 2 1 

Drive 1 2 0 0 93 1 1 2 

Net Kill 0 0 1 2 1 95 0 1 

Forehand Lift 1 0 0 1 2 0 96 0 

Backhand Lift 0 2 1 1 3 1 0 92 

The action-specific analysis highlights the algorithm’s robustness in classifying 

motions with distinct trajectories, such as Smash and Net Kill, which exhibit rapid 

downward or net-level strokes, yielding recognition rates above 95%. In contrast, 

more subtle actions like Drop Shot and Backhand Lift, which involve less pronounced 

motion dynamics, saw increased misclassification rates. For instance, Forehand Lift 

was occasionally misclassified as Forehand Clear due to their similar upward motion 

trajectories. 

Figure 5 illustrates the recognition accuracy distribution across all action types. 

This pattern suggests that further improvement in recognition accuracy could be 

achieved by integrating additional temporal context or advanced feature extraction 

techniques tailored to differentiate overlapping trajectories. Despite these challenges, 
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the overall results reaffirm the algorithm’s capability in handling intra-category 

recognition tasks with high efficiency and accuracy. 

5. Conclusion 

Based on the badminton robot, this paper realizes the capture, recognition and 

analysis of badminton striking action. The main work is as follows: Firstly, the 

algorithm of dense trajectory is studied, and the fixed-length trajectory in this 

algorithm is changed into non-fixed-length trajectory. Secondly, the position of 

athletes is detected by target detection algorithm. By extracting the trajectory of 

feature points in a small range which only includes athletes, the robustness of the 

algorithm is enhanced and the complexity of the algorithm is reduced. Through 

experiments to verify the effect of the improved algorithm, we can draw the conclusion 

that when using non-fixed-length trajectory to characterize action information, the 

characteristics of each feature point movement trajectory are more prominent, and the 

effect is better than that of fixed-length trajectory in badminton striking action 

recognition. Finally, Chebyshev distance calculation formula is used as the calculation 

method of similarity between badminton striking actions, and a scoring formula is 

given to transform the similarity between the action to be analyzed and the standard 

action into scores, which is used to analyze badminton striking actions. Finally, from 

the data set of badminton striking action, according to the definition of each type of 

striking action, select each type of standard striking action; The improved dense 

trajectory algorithm is used to characterize it as an analysis benchmark; By calculating 

the Chebyshev distance between the action to be analyzed and the standard action. 
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