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Abstract: The development and improvement of a youth basketball training program 

founded on the fusion of education and sports is investigated in this study. Athlete 

performance and academic advancement must be balanced in light of the growing need for 

comprehensive youth development. Biomechanical factors play a significant role in both 

sports performance and injury prevention, making it essential to integrate them into the 

training program design. To increase the effectiveness and design of training programs, the 

suggested model makes use of the Tabu Search Optimized Intelligent Random Forest (TSO-

IRF) algorithm. The TSO-IRF identifies important physical, technical, and cognitive 

elements affecting basketball play by combining search-based optimization with machine 

learning (ML) approaches from a biomechanical perspective. It focuses on elements such as 

joint forces, muscle activation patterns, and movement kinematics, which are fundamental in 

determining an athlete's performance and injury risk. The research gathers information on 

youth basketball training programs, with a specific emphasis on biomechanical aspects. This 

includes information on players' body mechanics during different basketball movements, like 

jumps, shots, and passes. By integrating this data, the study ensures that the goals of 

educational development and sports training are aligned, while also considering the 

biomechanical requirements of the athletes. TSO-IRF is used to evaluate these 

multidimensional features and provides individualized training suggestions in line with the 

performance and educational objectives of both sports. Experimental results indicate that the 

TSO-ERF model can perform better than traditional methods, providing higher prediction 

recall (94.26%), accuracy (97.81%) and precision (97.21%) in development metrics for 

players. Additionally, the model shows improved adaptability across various skill levels as it 

can adjust training recommendations based on an athlete's unique biomechanical 

characteristics. The proposed youth basketball training system optimizes loads in training, 

reduces risks of injury, and develops young athletes over the long term. It facilitates athletic 

success but fosters cognitive and emotional development so that the fields of sport and 

education may converge. Future work involves the application of this model in other sports 

disciplines and algorithm refinement to take care of larger datasets that would help deliver 

real-time performance feedback. 

Keywords: sports and education; biomechanics; youth basketball training system; Tabu 

Search Optimized Intelligent Random Forest (TSO-IRF) 

1. Introduction 

Considering the educational system as the primary training field, “the 

integration of sports into education” is a remarkable effort. Its ultimate objective is to 

support human development comprehensively through competitive sports and 

contribute to the national [1]. Basketball is a special type of interpretation and 
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implementation that is identifiable by the cheerful aspect of physical activity [2]. 

Basketball has outstanding academic value because of its numerous positive impacts 

on human personality. Basketball’s value-formative features explain its enormous 

appeal in the educational surrounding, including the desire of instructors in physical 

education to encourage it at the highest level of school sports [3]. Participating in 

physical education and sports can help young people improve their personal and 

social skills. Physical education is increasing in popularity as a means of educating 

youth about the challenges of daily living [4]. 

However, young people’s brain and musculoskeletal systems are indeed 

developing. Teenagers’ and adolescents’ control and coordination of stretch and 

shorten cycles are significantly impacted by differences in neural conduction speed, 

control ability, and muscle structure [5]. Intensive youth sports programs can have 

both positive and negative outcomes, given their popularity and the possibility that 

most participants fail to succeed in their basketball training. Understanding the 

overall development implications for youth. Athletes’ involvement in these 

initiatives is essential to guaranteeing that they foster healthy development [6]. 

Athletes have varied rates of physical growth and performance during this phase, 

leading to variations in timing, intensity, and pace. Youth male basketball athletes 

with advanced maturity typically outperform their late-maturing colleagues in static 

endurance, power, sprinting, agility, jump, and shooting abilities [7]. 

Using sports analytics as a performance tool during training might increase the 

interest and motivation of young athletes who are driven to develop [8]. There are 

instructional components, such as academic tutoring and life skills coaching, which 

again can be specific to student-athletes in terms of learning requirements [9]. 

Tutoring in core subjects such as math, language arts and science helps athletes 

better meet academic requirements while maintaining training schedules. Life skills 

such as time management, teamwork, leadership and resilience should also be 

incorporated into training. This will promote personal growth and character 

development. For example, some preparation in time management will help young 

athletes deal with setbacks on the court, but also in pursuing academic opportunities 

to develop other useful life skills [10]. The study addressing the aim of this study is 

to improve youth basketball training program that combines education and sport as 

well as uses the TSO-IRF method to optimize training, improve performance, and 

cognitive and emotional growth. 

Contribution of this study 

 It integrates data from a number of youth basketball training programs, in 

particular physical, technical, and cognitive attributes that drive basketball 

performance. 

 Pre-processing of the data further involves Z-score normalization to bring all 

data into one comparable scale. This removes any form of bias in the dataset 

that may be emanating from a difference in unit or magnitude. 

 While feature extraction involves the use of Principal Component Analysis. It 

decreases the dimensionality of the data as it identifies the most relevant 

features, and principal components, providing the maximum variance in data. 

 The study increases the effectiveness and design of training programs using 

TSO-IRF, a hybrid approach integrating search-based optimization techniques 
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with machine learning, which will be applied for the evaluation of 

multidimensional features. 

The rest of the study is the following parts: Part 2 describes the related article 

on young player basketball training, Part 3 provides a methodology to clarify a 

proposed method process, the performance of the evaluated result and discussion are 

shown in Part 4, finally, Part 5 expresses the overall research conclusion. 

2. Related work 

To evaluate juvenile basketball training performance using an evaluation model 

based on the Particle Swarm Optimization (PSO) method was the purpose of Ouyang 

and Wu [11]. The technique created a performance index system using the Analytic 

Hierarchy Process (AHP) to determine index weights, and then optimizes the model 

using PSO. Results reveal that the strategy improved evaluation accuracy while 

decreased evaluation time, exhibiting beneficial training performance insights. 

Zhong [12] to improve basketball training by precisely recognizing motions 

using Basketball Spatiotemporal Action Recognition Network (BSTARNet), an AI-

based action recognition technique. An encoder-decoder model was improved with 

Darknet by using Convolutional Long Short-Term Memory (ConvLSTM) for 

spatiotemporal extraction of data and Attention Long Short-Term Memory 

(AttLSTM) for concentrated attention on action zones. Experiments reveal that 

BSTARNet recognizes basketball actions with 89.5% mAP and 95.4% accuracy. 

Xu-Hong et al. [13] used 3D convolutional neural network architecture to 

enhance basketball technical action recognition. The approach tackled the 

complexity of diverse basketball tactics by processing two different resolution image 

inputs from a basketball action dataset. The framework’s ability to identify activities 

in basketball footage was demonstrated by experimental findings, and improved 

sports video analysis accuracy. 

The aim of Khobdeh et al. [14] was to improve basketball action recognition for 

Human-Computer Interaction by providing officials and players with helpful 

information. In order to overcome obstacles like complicated backdrops and 

illuminated, it used YOLO (You Only Look Once) for player identification in 

conjunction with a deep fuzzy LSTM network for action classification. When the 

suggested model was tested on the SpaceJam and Basketball-51 datasets, it 

outperformed all baseline models in terms of accuracy. 

Lower extremity muscle strains (LEMSs) in National Basketball Association 

(NBA) players were examined by Lu et al. [15], which also evaluated machine 

learning algorithms for injury prediction. With 736 LEMS incident data, models 

such as XGBoost outperformed logistic regression with good prediction accuracy 

(AUC 0.840). XGBoost was the best-performing model, and important factors were 

age, playing statistics, and injury history. 

Javadpour et al. [16] sought to maximize offensive play in Division 1 women’s 

basketball by using deep learning to predict the best play given a certain set of game 

parameters. The information came from basketball games played by a private 

university in a top-25 league. Using deep learning techniques, gaming scenarios 

were analyzed to find patterns that increased the likelihood of a successful shot. To 
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improve decision-making and team performance during close games, the model was 

trained using raw game data. 

By utilizing random forest, support vector machine, and multi-linear regression 

algorithm to evaluate players’ skill levels and track their progress, Yao and Li [17] 

sought to create an effective evaluation system for juvenile sports instruction. The 

technique entails building a system model that assesses the impact of training, 

monitors the development of physical fitness, and gives coaches measurable criteria 

to customize training regimens. The system’s effectiveness in helping trainers 

assessed players’ skills and make better training selections was demonstrated by the 

results. 

By combining 3D Convolutional Neural Networks (CNNs) with Long Short-

Term Memory (LSTM) networks, Wang et al. [18] attempted to improve basketball 

action detection by capturing spatiotemporal aspects of basketball actions. Adaptive 

rates of learning and normalization were used to optimize the model after basketball 

actions from publically accessible datasets have been preprocessed. With an 

accuracy improvement of 15.1% beyond frame difference-based techniques and 

12.4% over optical flow-based techniques, the suggested method surpassed 

conventional approaches. Its average accuracy was 93.1%, indicating great durability 

under a variety of scenarios. 

By utilizing big data and intelligent systems to optimize the ecological 

environment of basketball courses, Xue [19] aimed to improve basketball instruction 

in higher education. The process entails created a model to extract student learning 

data for individualized basketball instruction, constructing an intelligent motion 

capture device, and transferring data to a server. Comparative trials were used to 

assess the efficacy of the system, which showed an 87% identification rate. 

According to the findings, using big data in basketball instruction may greatly 

increase students’ physical fitness and promote sustainable growth plans for 

collegiate athletics. 

With an emphasis on the ecological context of basketball education, Xuexiang 

[20] intended to investigate the creation and administration of collegiate basketball 

talent training utilizing data mining (DM) technology. To enhance the training 

model, the technique entails gleaning valuable insights from sports talent data. The 

accuracy of sports talent information mining has improved by 23.85% when 

compared to traditional approaches, according to the results, indicating that 

basketball education has to change to satisfy social demands. 

Wang and Du [21] were to use the Internet of Things (IoT) and machine 

learning technologies to improve sports education and training. To increase 

prediction accuracy, it refines hidden layer mapping and parameter optimization in 

the Extreme Learning Machine (ELM). The ELM analyzed and forecasted the 

outcomes of sports training using the continuous data gathering enabled by IoT 

technology. The system efficiently optimized the process of sport education and 

training, as demonstrated by experimental findings. 

Yang [22] used neural networks to create a customized physical training index 

system for basketball players. Tests of agility, strength, and endurance were 

combined to provide an objective framework for assessing athletes’ physical 

preparation. Using a neural network model, the technique examined data from 100 
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elite basketball players and predicted a performance boost of 6.68%. It emphasized 

how well machine learning works in sports science studies. 

Xu and Tang [23] aimed to avoid injury in sports and enhanced the efficiency of 

shooting during basketball training by considering machine learning-based path 

planning for an intelligent robot. One could find a strategy on that to analyze 

basketball trajectories of motion, create a model of shooting motion, and introduced 

an improved Q-Learning algorithm of robot path planning. Results have shown that 

the path resulting from the improved algorithm was smoother and takes less time to 

build an optimal path. The approach avoided collisions effectively and enhanced 

safety during basketball training. 

Problem statement 

The integration of sports and education in youth basketball training systems is a 

new area of focus, as this meets the emerging need for all-round development of 

youths, balancing athletic performances with academic and cognitive development. 

Traditional training models often stress the physical skills and technical 

developments of young athletes, with limited regard for the large cognitive and 

emotional component that underpins enduring success both in sport and 

academically. The last gap created the need for training systems that, while 

enhancing athletic performance, would also nurture the intellectual and emotional 

maturity of the young athlete. Even with such potential benefits, integrating the two 

domains yet lacks personalized and data-driven approaches in optimizing the training 

loads and injury risks and aligning performance with educational objectives. The 

challenge at present would be to construct training programs that could be adaptive 

to great differences in skill levels by effectively balancing the goals of physical 

fitness, mental development, and academic progress. This problem is addressed by 

the paper, which designs and improves sports and education integration based on the 

Tabu Search Optimized Intelligent Random Forest (TSO-IRF) algorithm in the field 

of a basketball training program for youth. Key factors will be identified in terms of 

physical, technical, and cognitive influences on player performance. Optimize the 

training load to suggest personalized training in developing better adaptability 

among skill levels to promote long-term athlete development. 

3. Methodology 

The approach integrates education and sports to improve the training process 

for young basketball players. First, the data is collected from youth basketball 

training dataset available in Kaggle. Players in the Kaggle dataset were selected 

based on certain criteria, including age, skill levels, and their performance. Next, the 

gathered data is preprocessed by applying Z-score normalization to unify the 

features. Followed by this, feature extraction is done through Principal Component 

Analysis (PCA) to reduce the number of dimensions while retaining crucial 

information. At the core of the methodology is a TSO-IRF algorithm that integrates 

search-based optimization techniques with machine learning to identify key physical, 

technical, and cognitive factors affecting basketball performance. Figure 1 presents 

an entire flowchart that elaborates the methodology applied, which includes data 

collection to the determination of key performance factors. 
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Figure 1. Basic concept of study proposed framework. 

3.1. Dataset 

The Youth Basketball Training data set on Kaggle [24] provides performance 

information related to young basketball players in terms of shooting accuracy, 

dribbling speed, and physical endurance. The dataset is divided into 1000 rows, each 

representing an individual adolescent athlete, and 25 columns that contain 

demographic, physical, technical, cognitive, educational, as well as training-related 

characteristics. The sample was gathered based on the participation of players in 

structured youth basketball training programs. Data collection was through the 

tracking of player performance over a selected period while performing drills and 

exercises. The dataset comprises various features, enabling the in-depth examination 

of technical, physical, and cognitive factors that affect basketball performance. This 

data is pre-labeled and sorted for analysis. 

3.2. Data pre-processing 

This data is standardized using the Z-score normalization to transform these 

features into a common scale with a zero mean and unit standard deviation. It makes 

the input features comparable to each other by avoiding biases due to different units 

or ranges of feature values, hence allowing for more accuracy. One statistical method 

used to deal with the problem of outliers is Z-score normalization. This technique 

transforms the values of the chosen feature by using its standard deviation and mean. 

Specifically, the change is carried out using Equation (1) as follows: 

𝑧 ′ =
𝑧 − 𝜇

𝜎
 (1) 

where 𝑧′  denotes the standardized value, 𝑧  is the actual value, 𝜇 is the feature’s 

mean, and 𝜎 is the standard deviation. Z-score normalization maps values under the 

mean to negative numerals, values over the mean to positive numerals, and values 

equivalent to the mean to zero. This approach guarantees that the information is 

normalized and that outliers are efficiently handled. 

3.3. Feature extraction 

Feature extraction uses Principal Component Analysis (PCA) in this study to 

decrease the dimensionality of the collected data. PCA emphasizes the main 
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variables that exist behind basketball training by converting the original correlated 

variables into a smaller set of uncorrelated components. This reduction allows for 

better and faster evaluation and optimization during training while maintaining the 

main details in the context to provide accurate predictions. Extracting features and 

decreasing dimensionality are two well-established applications of principal 

component analysis (PCA). Representing the d-dimensional data in a lower-

dimensional space is our goal while using PCA. This will lessen the complexity of 

space and time as well as the degrees of freedom. By eliminating the category label, 

every observation in a data set of 𝑙 occurrences is statistically n-dimensional. Let 

𝑤1, 𝑤2, . . . , 𝑤𝑙  ∈  𝔮𝑛 . The subsequent processes involved in PCA computation. 

Determine the mean vector µ in m dimensions by the following Equation (2). 

𝜇 =
1

𝑙
∑ 𝑤𝑗

𝑙

𝑖=1

 (2) 

For the observed data, calculate the calculated matrix of covariance 𝑇  by 

following the Equation (3). 

𝑇 =
1

𝑙
∑(𝑤𝑗 − 𝜇)(𝑤𝑗 − 𝜇)

𝑠
𝑙

𝑙=1

 (3) 

Determine the latent values and matching latent vectors of 𝑇, here 𝜆1 ≥ 𝜆2 ≥

. . . ≥ 𝜆𝑘 ≥ 0. The 𝑙 primary elements were determined from the 𝑙 initial variables by 

following the Equation (4). 

𝑧1 = 𝑏11𝑤1 + 𝑏12𝑤2 + ⋯ + 𝑏1𝑘𝑤𝑙 

(4) 𝑧2 = 𝑏21𝑤1 + 𝑏22𝑤2 + ⋯ + 𝑏2𝑘𝑤𝑙 

𝑧𝑙 = 𝑏𝑙1𝑤1 + 𝑏𝑙2𝑤2 + ⋯ + 𝑏𝑘𝑘𝑤𝑙 

It is important that 𝑧𝑙 ′s is unrelated. The initial variation in the data set is 

explained to the greatest extent feasible by 𝑧1 , the remainder of the variance is 

explained to the greatest extent possible by 𝑧2, etc. The most useful data sets often 

have a few numbers of bigger latent values that predominate over the rest that is 

Equation (5). 

𝛾𝑙 =
𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 + ⋯ + 𝜆𝑙
≥ 80% (5) 

Where the proportion kept in the data representation is denoted by 𝛾𝑙. The primary 

components that can account for at least 80% of the total variance should be kept 

when employing PCA for feature extraction. 

3.4. Tabu Search Optimized Intelligent Random Forest (TSO-IRF) 

The Tabu Search Optimized Intelligent Random Forest (TSO-IRF) algorithm, 

as it effectively utilizes search-based optimization and machine learning, is ideally 

appropriate to the complexity, non-linearity, and multidimensional nature of youth 

basketball training data in this study. Tabu Search optimization serves to identify 
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critical features and helps explain the tuning of the model by exploring a broader 

solution space, whereas the Random Forest algorithm is remarkably good in 

examining these features for predicting and personalizing training strategies. With 

this hybrid approach, the model can precisely assess critical physical, technical, and 

cognitive variables that affect performance, thereby increasing training efficiency, 

injury risk mitigation and athletic pathway success. With its proven adaptability, the 

TSO-IRF is ideal for multiple levels of play and can support real-time, 

individualized feedback necessary to balance athlete and academic development. 

Algorithm 1 procedure of Tabu Search Optimized Intelligent Random Forest (TSO-

IRF). 

Algorithm 1 Process of TSO-IRF 

1: Initialization 

2: Initialize Tabu List (TL) to store visited solutions 

3: Initialize Random Forest (IRF) with default parameters 

4: Define stopping criteria (max iterations or convergence threshold) 

5: Define neighborhood search space (M) 

6: Define aspiration criteria function T(l) 

7: Set initial solution w_0 (a random selection of features) 

8: Define Tabu Search parameters 

9: α = 1/2 [1+sin[jθ/M_neigh ]]  Coefficient for neighbor solution variation 

10: Set parameters for T(l) using sigmoid function 

11: Tabu Search Process 

12: for iteration in range(1, max_iterations): 

13:    Step 1: Generate neighborhood solutions around the current solution w 

14:     neighbors = generate_neighbors(w, M) 

15:      Step 2: Evaluate the quality of the neighbors using Random Forest 

16:     best_neighbor = None 

17:     best_accuracy = −∞ 

18:     For a neighbor in neighbors: 

19:         accuracy = evaluate_rf(neighbor, IRF)  Evaluate RF model on current feature set 

20:         if accuracy > best_accuracy: 

21:             best_accuracy = accuracy 

22:             best_neighbor = neighbor 

23:      Step 3: Check if the best neighbor violates Tabu List constraints 

24:     if best_neighbor is in TL: 

25:          Apply aspiration criteria if necessary 

26:         if aspiration_criteria(best_neighbor, iteration): 

27:             w = best_neighbor   Accept the neighbor despite being in the Tabu List 

28:     Else: 

29:         Accept the best non-tabu neighbor 

30:         w = best_neighbor 

31: Step 4: Update the Tabu List (add the current solution and remove the oldest) 

32:     update_tabu_list(TL, w) 

33: Step 5: Check stopping criteria (convergence or max iterations reached) 

34:     if stopping_criteria(w, iteration): 

35:         break 

36: Final Solution 

37: optimized_features = w   Features selected by the optimized solution 

38: final_model = train_rf(optimized_features) Train Random Forest with the selected 

features 

3.4.1. Intelligent random forest 

The Intelligent Random Forest is used to analyze and assess the 

multidimensional features established to affect youth performance in basketball. 
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These will be processed by the IRF algorithm to predict the true development of the 

athlete’s condition. It enables personalized recommendations for training, thus 

achieving a balance between physical, technical, and cognitive aspects and adapting 

to different levels of skills in the best training outcomes. Numerous studies 

demonstrate that the random forest approach improves classification accuracy, 

tolerates aberrations and noise, and is resistant to overfitting. The node’s splitting 

Equations (6 and 7) display the data gain and Gini index achieved by dividing the 

specimen set 𝐶 based on characteristics 𝑏. 

𝐺𝑎𝑖𝑛(𝐶, 𝑏) = 𝐸𝑛𝑡(𝐶) − ∑
|𝐶𝑢|

|𝐶|
𝐸𝑛𝑡(𝐶𝑢)

𝑈

𝑢=1

 (6) 

𝐺𝑖𝑛𝑖(𝐶, 𝑏) = ∑
|𝐶𝑢|

|𝐶|
𝐺𝑖𝑛𝑖(𝐶𝑢)

𝑈

𝑢=1

 (7) 

The symbol 𝐶𝑢  denotes that the 𝑢  branching node includes all samples in 𝐶 

with a value of 𝑏𝑢 for the parameter 𝑏. 

𝐸𝑛𝑡(𝐶) = − ∑ 𝑜𝑙 log
2

𝑜𝑙

|𝑧|

𝑙=1

 (8) 

𝐺𝑖𝑛𝑖(𝐶) = ∑ ∑ 𝑜𝑙𝑜𝑙′

𝑙′≠𝑙

|𝑧|

𝑙=1

= 1 − ∑ 𝑜𝑙2

|𝑧|

𝑙=1

 (9) 

The goal of node dividing is to increase the integrity of the data after separation 

(Equations 8 and 9). This may be achieved by a mix of node-splitting formulas and 

adaptive methods. The variable selection procedure is as follows: 

𝐺 =
min

𝛼, 𝛽 ∈ 𝑅  
𝐸(𝐶, 𝑏) = 𝛼𝐺𝑖𝑛𝑖(𝐶, 𝑏) − 𝛽𝐺𝑎𝑖𝑛(𝐶, 𝑏) (10) 

𝛼, 𝛽  denote the value of the attribute dividing strength coefficient, Equation 

(10). Meanwhile, 𝐺 has a low value. The dynamic parameter selection procedure is 

used to get the best combination of variables. The experiment evaluates performance 

using classification error and accuracy rates. The categorization error rate of the 

specimen 𝐶 is expressed as Equation (11). 

𝐹(𝑒; 𝐶) =
1

𝑛
∑ 𝐼𝐼(𝑒(𝑤𝑗) ≠ 𝑧𝑗)

𝑛

𝑗=1

 (11) 

The precision percentage is calculated using Equation (12). 

𝑎𝑐𝑐(𝑒; 𝐶)
1

𝑛
∑ 𝐼𝐼(𝑒(𝑤𝑗) = 𝑧𝑗)

𝑛

𝑗=1

= 1 − 𝑓(𝑒; 𝐶) (12) 

The next part compares and verifies the outcomes of the experiment. Figure 2 

illustrates the intelligent random forest architecture. 
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Figure 2. Intelligent random forest architecture. 

3.4.2. Tabu search optimization 

The TSO method was implemented in this study that allowed an efficient 

exploration of youth basketball training features and relevance identification, 

including physical, technical, and cognitive aspects. This has optimized the choice of 

relevant features so that the search mechanism would operate in a larger solution 

space to enhance the accuracy of performance predictions while also allowing 

trainers to have sport-specific, personalized, and effective plans for each athlete. 

Generations of neighbors and searching for neighborhoods 

To function optimize 𝑔(𝑤) worldwide from all of the potential outcomes 𝑤 ∈

𝑊 in the space 𝑊, a structure near the space of solutions and the initial solution must 

be specified. The search continues to adjust the present answer to generate a list of 

potential answer in the region of solution space. The amount of answers in close 

proximity of the result area, 𝑀(𝑤𝑗), and the total amount of repetitions, 𝑙, determine 

the solution number traversed by TS throughout the course of the search. The 

operation is evaluated for 𝑀(𝑤𝑗) solutions in every repetition. Around the whole 

solution space, the best move is selected. The following iteration of the search looks 

for a solution close to the relocation that was approved. Therefore, the TS uses a 

historical record of the search to provide a collection of workable options. 
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List of tabu 

The data through the previously visited answer is stored in the tabu list in TS. 

The list, which changes continuously while the search continues on, features the 

biggest recent moves. The tabu list’s contents help direct the change from the current 

response to the next one. Every time the search procedure is carried out, the tabu list 

is updated. Additionally, by avoiding re-visiting recent neighbors that are shown, the 

tabu list saves computing time. 

When neighbor solutions are being generated, a coefficient called 𝛼  is 

employed to regulate the difference between new neighboring answers and the 

existing ones. The process of creating new neighbors involves multiplying the 

change from the present position by α. The form of the coefficient 𝛼  is a sine 

function, Equation (13). 

𝛼 =
1

2
[1 + 𝑠𝑖𝑛 [

𝑗𝜃

𝑀𝑛𝑒𝑖𝑔ℎ
]] (13) 

Here, 𝜃 is a parameter that regulates the period of oscillation of 𝛼, 𝑀𝑛𝑒𝑖𝑔ℎ is the 

entire amount of neighborhood answers produced at every iterations, and 𝑗 was the 

neighbor’s index. 

Aspiration criteria 

Sometimes moves leading to unvisited solutions are prevented by the TS 

criteria. A requirement known as the aspiration criteria has the power to overrule a 

move’s tabu status. In some circumstances, the ambition criteria may invalidate the 

tabu property to prevent some missing solutions throughout the search and preserve a 

suitable balance between intensification and diversification. Aspiration criteria are 

created using the sigmoid function provided by the Equation (14). 

𝑇(𝑙) =
1

1 + 𝑓−𝜎(𝑙 − 𝑙𝑐𝑒𝑛𝑡𝑒𝑟 × 𝑁)
 (14) 

The tuning parameters 𝑙𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑙 , 𝜎 , and 𝑁  serve as a representation of the 

greatest number of repetition, another tunable variable, and the current repetition 

number. The range of 𝑙𝑐𝑒𝑛𝑡𝑒𝑟 value in numbers is 0.30 to 0.70, while the spectrum of 

σ is 5 to 10/M. For every cycle, a uniform distribution generates a random number 𝑂 

ranging from zero to one. If 𝑂 is bigger than𝑇(𝑙), the tabu characteristic is activated, 

and the greatest non-tabu neighbors are chosen as an initial beginning point. If 𝑂 is 

either smaller or closer to 𝑇(𝑙) , the aspirations criteria disregard the tabu 

characteristic. 

Criterion of stopping 

When the ideal situation is reached, a stopping condition must be used to end 

the search. The halting criterion might be a select frequency of repetitions or a 

threshold for solution convergence. The maximum time terminate and terminate-on 

convergence requirements are also employed as search stoppers. 

|
𝑓𝑙(𝑤) − 𝑔𝑙−Γ(𝑤)

𝑔𝑙−𝛤(𝑤)
| < 𝛿 (15) 
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where 𝛿 is the proportion of the alteration in the significance of the objective 

operation, 𝛤 =  𝜂𝑀 when 𝜂 was the percentage of the highest number of repetitions 

(𝑁) by which the objective function alteration is compared, Equation (15). The 

stopping criteria suggest that if the development across 𝛤 generation is less than a 

threshold (𝛿), additional repetitions may be futile and the search should be stopped. 

Figure 3 illustrates the flow chart of the TS algorithm. 

 

Figure 3. Flow chart of the TS algorithm. 

4. Result and discussion 

The Python programming language was utilized in combination with an Intel® 

Core i9 CPU-powered Windows 10 operating system with 16.00 GB of RAM. 

Figure 4 illustrates how the TSO-IRF has to adapt and tailor training for such 

diverse needs of player development. The TSO-IRF model optimizes the key metrics 

that are tailored from one player to another according to one’s needs at different 

levels of skills. At the beginner level, recommendations for training involve 

developing rudimentary physical fitness and cognitive understanding accompanied 

by technical skills. In the case of higher ranks, the model develops specified 

strengths in areas of technical and cognitive skills and physical fitness to continue 

enhancing general performance and minimize injury. 
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Figure 4. TSO-IRF model optimizes the key metrics by skill level. 

Accuracy and loss 

Accuracy and loss for the proposed TSO-IRF model increases the values of 

accuracy while reducing the values of loss with time, which improves the predictions 

with each model training, as shown in Figure 5. Training accuracy grows before 

stabilizing, while testing accuracy may be low because of overgeneralization. Figure 

5 shows loss will be steady downward, showing better performance by the model. 

The model should be able to generalize well to new data without overfitting if the 

training and testing accuracy match and the loss decreases. 

 

Figure 5. Accuracy and loss for suggested method TSO-IRF. (a) Training Accuracy and Testing Accuracy; (b) 

Training Loss and Testing Loss. 

Receiver Operating Characteristic—Under the Curve (ROC-AUC) 

The ROC-AUC measures the ability of the proposed TSO-IRF model to 

distinguish between successful and unsuccessful player development in youth 

basketball training, as shown in Figure 6. Good predictability of player progression 

is indicated by high values close to 1 for AUC; the corresponding True Positive Rate 

(TPR) would be high, while the False Positive Rate (FPR) would be very low; it 

would not be problematic to distinguish between those players who are improving 

and those who are not (at least according to physical, technical, and cognitive 
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ability). A value closer to 0.5 would correspond to the almost random-guessing 

performance of the model. A higher ROC-AUC value, for example, suggests an even 

better model in terms of personalization while being effective in recommending 

training towards better outcomes for the player contrarily. Lower AUC shows 

potential aspects that could be improved in the model or feature optimization. 

 

Figure 6. ROC-AUC curve for proposed TSO-IRF approach. 

The young basketball training program uses TSO-IRF performance evaluation 

in the study to integrate sports and education. The comparative assessment uses 

several parameters, including recall, accuracy, and precision. Deep neural network 

(DNN) [25], Gated residual network (GRN) [25], and decision tree (DT) [25] are the 

conventional comparison techniques. 

Accuracy 

Accuracy is defined as the ratio of correct predictions made to all predictions 

made in the form of both true positives and true negatives. Accuracy indicates the 

overall correctness of the TSO-IRF model regarding its prediction related to whether 

the player’s development at physical, technical, and cognitive levels would stay 

correct and on track. Figure 7 shows accuracy values. If the value of accuracy for 

the same traditional techniques such as GRN, DNN, and DT is less than TSO-IRF, it 

means that the TSO-IRF model is better at handling more complex multidimensional 

data and making accurate predictions regarding the development of players. 

 

Figure 7. Comparison accuracy values of various traditional models vs. proposed 

method. 
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Precision 

Precision is the number of correctly classified positive cases out of the total 

number of cases or positives that the classifier expects to be positive. A false positive 

could be classifying a player as improving when, in fact, they are not. Figure 8 

demonstrates the precision values. When this model classifies a player as improving, 

there’s the likelihood that such classification is correct when the precision is high. If 

TSO-IRF gives higher precision than other methods like GR, DNN, and DT, it would 

mean that the model is more likely to be a good predictor in terms of positive 

comments concerning the development of players and minimizes false positives. 

 

Figure 8. Comparison precision values of various traditional models vs. proposed 

method. 

Recall 

Recall (or Sensitivity) is the number of correct true positives out of all actual 

positives, i.e., the percentage of correctly identified positive instances out of all 

actual positives. A player who is improving should not be categorized as a false 

negative. High recall would mean the model correctly identifies most of the players 

who are improving even though it also predicts some false positives. Figure 9 

describes the recall values. If recall is better for TSO-IRF than for other methods, 

including GR, DNN, and DT, then the model is more targeted at improving players 

and therefore provides more utility in an early intervention context where players 

may not have developed as well as the analyst would have anticipated. Table 1 

illustrates the comparison performance of the proposed method with traditional 

methods. 
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Figure 9. Comparison recall values of various traditional models vs. proposed 

method. 

Table 1. Model performance comparison based on proposed method with traditional 

models. 

Methods Accuracy Precision Recall 

GRN (Hu and Ma [25]) 94.84 93.51 90.58 

DNN (Hu and Ma [25]) 94.97 93.85 91.92 

DT (Hu and Ma [25]) 97.37 96.37 93.99 

TSO-IRF [proposed] 97.81 97.21 94.26 

Discussion 

The youth basketball training system integrates the sports and educational 

aspects of development towards overall development. A drawback with the 

traditional methods, including Deep Neural Network (DNN), Gated Residual 

Network (GRN), and Decision Tree (DT), is that they might not operate efficiently 

in dealing with the complexity and multi-dimensionality of player development data, 

both in terms of sports and education. DNN [25] has proved to be powerful but tends 

to suffer from overfitting, especially in limited data or a poorly preprocessed dataset. 

It also happens that high computational resources were required for training DNNs, 

which might not prove to be effective in cases where real-time feedback is required 

in youth basketball training. DNNs require a significant amount of training time, 

which is not suitable for systems that need rapid adjustments during live training 

sessions. Although GRNs [25] were implemented to handle complex temporal data, 

they probably do not handle multi-faceted factors appropriately, like physical, 

technical, and cognitive skills, in the absence of additional optimization techniques. 

The applicability of GRNs might be restricted in cases of lack of noisy data, which 

often result in incorrect models and influence player development decisions. They 

are also computationally intensive and require more sophisticated tuning to avoid 
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underfitting or overfitting. DT [25] tends to overfit the training data, especially if 

there are many variables or in cases of more complex relations among features. This 

drawback in DT models can prevent them from generating generalized insights, 

which are crucial for optimizing training outcomes across a range of player profiles. 

Moreover, they are not capable of managing intricate inter-feature interaction 

capabilities, which may be very important for holistic player development, especially 

in sports and education. 

To overcome such limitations, the proposed hybrid model combines the 

strengths of different techniques to reach an optimum solution, as exemplified by the 

TSO-IRF model. The hybrid model will have the ability to analyze the player more 

comprehensively at different dimensions, such as physical, technical, and cognitive, 

while simultaneously overcoming problems related to the great computational 

requirements of classical methods. The TSO-IRF model is so structured that it 

accommodates large datasets efficiently without consuming much computational 

power, thus providing quick real-time feedback for youth basketball training. It has a 

feedback loop that updates the training strategies through continuous data input and 

provides personalized advice to the players based on their changing needs. This 

proposed study has the advantage of integrating education and sports through the 

TSO-IRF model, aiming to maximize training effectiveness by identifying crucial 

physical, technical, and cognitive factors towards personalized advice based on data 

analysis. The method delivers more accuracy in prediction, skill level adaptation, 

reduced chances of injury, and long-term athlete development both in athletics and 

cognitive development. 

5. Conclusion 

Young player’s education and sports development should be balanced with their 

physical achievement, based on this study. The study established an integrated 

structure for youth development that provides for both cognitive and physical 

development by integrating sports training programs with educational objectives. 

The TSO-IRF approach is developed in the research using search-based optimization 

and ML. Thus, it is possible to determine the critical technical, cognitive, and 

physical factors that influence basketball performance, improve training procedures, 

and provide specific suggestions for player development. It used Z-score 

normalization for data preparation to ensure that the data is consistent and 

appropriate for data analysis. Furthermore, PCA was employed for feature 

extraction, which reduces the multidimensional training data while retaining 

important data. The experimental findings demonstrate that the TSO-IRF model 

surpasses conventional techniques in terms of forecast precision (97.21%), recall 

(94.24%), and accuracy (97.81%). It provides better measures to evaluate player 

development, as well as enhanced flexibility across various skill levels, hence 

improving the training program’s effectiveness. 

6. Limitation and future score 

In integrated sports and education for youth basketball training, resource 

shortages, a lack of specialized coaches, and finding a balance between academic 
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work and athletic commitments are some of the major challenges. Students engage 

themselves with different levels of engagement and performance. Future 

development needs to consider data-driven approaches, such as machine learning for 

personalized training, improvement of the current education of coaches, and 

designing flexible schedules to fit better with both academic and athletic objectives. 

The studies may also delve into scalable models that incorporate technologies for 

monitoring progress and performance optimization. 
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