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Abstract: Breast cancer (BC) is one of the most prevalent cancers worldwide and remains a 

significant global public health challenge. The biomechanical characteristics of tumor 

microenvironments provide critical insights into cellular interactions and mechanical stress 

responses that potentially influence cancer progression. The integration and analysis of multi-

omics data for BC subtype classification present substantial challenges, including high-

dimensional data complexity and difficulties in integrating heterogeneous omics data 

characteristics. To address these challenges, we propose an Autoencoder and Transformer 

integrated neural network (AET-net) classification framework. The experimental results 

demonstrate that our model achieves significant performance improvements in predicting BC 

subtypes based on integrated multi-omics datasets, with an Accuracy of 0.912 and an AUC of 

0.9862. These results not only validate the high accuracy of our model in BC subtype 

classification, providing a valuable tool for diagnostic decision support, but also demonstrate 

the potential of integrated multi-omics data analysis in enhancing the precision and efficiency 

of BC subtype identification. 
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1. Introduction 

BC remains a significant global public health challenge and is currently one of 

the most prevalent cancers worldwide, characterized as a multifactorial disease with 

diverse causes [1–3]. Recent biomechanical studies have revealed that the 

mechanical properties of BC tissues, including cellular stiffness, extracellular matrix 

interactions, and tumor microenvironment mechanics, play a critical role in cancer 

progression, metastasis, and potential diagnostic approaches [4,5]. Furthermore, 

preliminary studies suggest that mechanical alterations in breast tissue can serve as 

potential indicators of malignant transformation, providing insights into the 

pathophysiological changes preceding overt tumor development [6,7]. Accurate 

classification of BC subtypes is crucial for understanding disease mechanisms and 

guiding treatment decisions, as different subtypes exhibit distinct molecular 

characteristics and clinical behaviors [8,9]. With the advancement of gene expression 

profiling technologies, BC can be categorized into different molecular subtypes 

(such as luminal A, luminal B, HER2 over-expression, basal-like, and normal-like), 

and the introduction of the prediction analysis of microarray 50 (PAM50) model has 

further standardized this classification approach to support individualized treatment 

decisions [10]. The advancement of high-throughput technologies has enabled the 

generation of multiple types of omics data, particularly gene expression and DNA 
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methylation data, which provide complementary molecular insights into BC biology 

and classification [11,12]. The integration of these multi-omics data types offers 

promising opportunities for more accurate and comprehensive BC subtype 

classification, where gene expression data captures the dynamic transcriptional state 

of cancer cells, while DNA methylation profiles reveal important epigenetic 

regulatory patterns [13,14]. However, the effective utilization of these data types 

faces two major challenges: Both gene expression and DNA methylation data are 

inherently high-dimensional, containing thousands of features that characterize 

different aspects of cancer biology, and these different omics data types possess 

distinct characteristics, making their integration particularly challenging for 

achieving accurate subtype classification. The successful integration of these multi-

omics data could potentially enhance our ability to accurately classify BC subtypes, 

providing a valuable tool for diagnostic decision support. 

In recent subtype classification research, various frameworks for molecular 

subtype classification of BC have emerged. For instance, Choi and Chae [15] 

proposed moBRCA-net, a deep learning framework for BC subtype classification 

that integrates multiple omics data types. moBRCA-net demonstrated superior 

performance compared to established machine learning methods and other state-of-

the-art cancer subtype classifiers, highlighting the benefits of multi-omics data 

integration and attention mechanisms in improving classification accuracy. Zubair et 

al. [16] discussed the increasing global burden of BC and the limitations of current 

diagnostic methods. They highlighted the need for advanced molecular diagnostic 

tools and explores the potential of biomarkers, multigene assays, and portable 

biosensors for early detection and personalized treatment of BC, while also 

mentioning ongoing clinical studies aimed at improving patient outcomes. Moreover, 

Gao et al. [17] designed DeepCC, a computational algorithm for calculating 

enrichment scores of each cancer sample’s gene expression profile based on selected 

gene sets. They employed these scores to implement a fully-connected neural 

network model for classifying BC subtypes. Meti et al. [18] compared the predictive 

performance of machine learning prediction models with standard statistical models 

on clinical and pathological data to assist in the early identification of BC patients 

who respond poorly to neoadjuvant chemotherapy. Graudenzi et al. [19] proposed a 

novel cancer subtype classifier based on gene expression data and applied it to two 

different BC datasets. This classifier, based on a support vector machine, relies on 

critical pathway information related to BC development to reduce the vast variable 

space. However, these methods may have some potential issues, including dataset 

imbalance and classification accuracy after data integration. For example, certain BC 

subtypes may be more common than others, leading to an uneven distribution of 

samples in the dataset. This imbalance could impact the training of classification 

models as the models might overfit to more common categories and neglect less 

common ones, potentially resulting in poorer classification performance for less 

common BC subtypes [20,21]. Machine learning classification methods have certain 

shortcomings in feature engineering, dependency on input data, handling long-term 

dependency relationships, parameter tuning, and large-scale data processing. In 

contrast, the Transformer model, with features such as self-attention mechanism and 
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position encoding, can handle sequence data and large-scale data more effectively, 

without the need for manual feature engineering [22]. 

In this study, we introduce a novel framework for cancer subtype classification, 

specifically tailored for BC, which we refer to as AET-net. Our approach leverages 

multi-omics data, encompassing both gene expression and DNA methylation 

profiles. The data integration process employs an Autoencoder neural network, 

which effectively consolidates the disparate omics layers into a unified 

representation. Building upon this integrated data, we develop a Transformer-based 

classification framework that incorporates an attention mechanism to enhance the 

accuracy of BC subtype classification. To rigorously assess the efficacy of our 

proposed method, we perform a comparative analysis against several conventional 

machine learning classifiers under identical data conditions and dataset partitioning. 

Our experimental results demonstrate that the AET-net framework not only 

integrates multi-omics data with high fidelity but also achieves superior 

classification performance compared to other tested models. Metrics such as 

classification accuracy, precision, recall, and F1-score consistently highlight the 

advantages of our approach. The implications of our framework extend beyond 

theoretical advancements, offering significant potential for diagnostic decision 

support in BC subtype classification. By leveraging the integrated multi-omics data 

and superior classification performance, AET-net provides a more nuanced and 

accurate categorization of BC subtypes. 

2. Materials and methods 

2.1. Datasets collection and cleaning 

In this retrospective study, we utilized the multi-omics dataset from The Cancer 

Genome Atlas Breast (TCGA) Invasive Carcinoma (BRCA) project, which is a 

comprehensive BC study under TCGA platform [23]. To conduct our analysis, we 

specifically obtain the multi-omics data related to gene expression and DNA 

methylation. The gene expression dataset consists of RNA sequencing data from 

1097 BC samples, encompassing 20,531 genes. This dataset provides a 

comprehensive transcriptomic profile, allowing us to analyze gene expression 

patterns across different BC subtypes. For the collection of these datasets, we 

employ the TCGAbiolinks and SummarizedExperiment (SE) libraries within the R 

programming environment. TCGAbiolinks is a powerful R package that facilitates 

the integrative analysis of TCGA data, providing functions for data retrieval, 

preprocessing, and downstream analysis. The SE package in R allows for the 

efficient storage and manipulation of large, multi-omics datasets, providing a flexible 

structure to handle assay data and associated metadata. By leveraging these tools, we 

ensure that the data is consistently processed and normalized, maintaining the 

integrity and reproducibility of our analyses [24]. Our research leverages these 

datasets to investigate the molecular subtypes of BC. By integrating gene expression 

and DNA methylation data, we aim to uncover novel insights into the epigenetic 

regulation of gene expression in BC and its implications for patient prognosis and 

treatment strategies.  
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It is essential to clean the gene expression data to ensure the quality and 

reliability of. the subsequent analyses. The primary reason for this data cleaning is 

that many genes in the dataset cannot be read accurately. This can happen due to 

various reasons such as technical limitations of the sequencing methods, low 

expression levels, or errors during data collection. The presence of unreadable genes 

introduces a significant amount of noise, which can adversely affect the learning 

process of the deep learning model. Noise in the data can lead to overfitting, reduce 

the model’s ability to generalize, and ultimately result in poor predictive 

performance. To address this issue, we implement a data cleaning step where we set 

a specific threshold for gene expression readings. If a gene is not read in the majority 

of samples, it is considered unreliable and thus removed from the dataset. This 

threshold is carefully chosen to balance the need to retain as much useful 

information as possible while eliminating the noise caused by unreadable genes. For 

instance, if more than 80% of the samples have a zero reading for a particular gene, 

that gene is excluded from further analysis. This thresholding helps in reducing the 

dimensionality of the dataset, thereby simplifying the model training process and 

improving the overall quality of the data. In addition to data cleaning, it is also 

crucial to categorize the patient samples based on their specific subtypes. For our 

dataset of patient samples, we first applied the Synthetic Minority Over-sampling 

Technique (SMOTE) to address class imbalance and ensure representative sampling 

across different BC subtypes. Subsequently, we performed a subtype analysis using 

the PAM50 algorithm, which is a widely recognized method for BC subtype 

classification [25]. Table 1 shows the analysis of BC subtype information for the 

original 780 patient samples in the dataset. After applying the SMOTE, the number 

of samples in each subtype is balanced to 422 samples per subtype. 

Table 1. Number of original samples in each subtype. 

Data Source Subtype Number of Samples 

 Basal-like 137 

 HER2 46 

TCGA-BRCA LumA 422 

 LumB 141 

 Normal-like 34 

2.2. Standardization of multi-omics data 

We employ the z-score algorithm to standardize the data. Standardization is a 

crucial step, especially in the context of multi-omics data, where different types of 

data can have varying dimensions and magnitudes. Multi-omics data integration 

involves datasets such as gene expression and DNA methylation [26]. Without 

standardization, the differences in scales can lead to biased results, where variables 

with larger magnitudes dominate the analysis. The z-score normalization method 

transforms the data to have a mean of zero and a standard deviation of one, 

effectively removing the influence of scale and allowing different types of data to be 

compared on the same level. This process ensures that each type of omics data 
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contributes equally to the analysis, facilitating more accurate and meaningful 

integrative analysis. The formula used for z-score standardization is as follows: 

𝑍 =
𝑋 − 𝜇

𝜎
 (1) 

In this formula, 𝑋 represents the value from the multi-omics dataset for BC. The 

term 𝜇 denotes the mean of the dataset, calculated as the average value of all data 

points: 

𝜇 =
1

𝑁
∑ 

𝑁

𝑖=1

𝑋𝑖 (2) 

where 𝑁 is the total number of data points, and 𝑋𝑖 represents each individual data. 

point. The standard deviation 𝜎 measures the dispersion of the data points around the 

mean and is calculated using the formula: 

𝜎 = √
1

𝑁
∑  

𝑁

𝑖=1

(𝑋𝑖 − 𝜇)2 (3) 

Finally, 𝑍  represents the standardized dataset, where each data point is 

transformed. as follows: 

𝑍𝑖 =
𝑋𝑖 − 𝜇

𝜎
 (4) 

By applying this transformation, each variable in the multi-omics dataset is 

rescaled. to have a mean of zero and a standard deviation of one. This rescaling is 

particularly important for algorithms sensitive to data scales, such as principal 

component analysis and many machine learning techniques, including deep learning 

models [27]. Standardizing the dataset helps in enhancing the model’s performance 

by ensuring that each feature contributes equally to the learning process. It mitigates 

the risk of model bias towards features with higher magnitudes and improves the 

convergence speed during the training phase of the model. 

2.3. Multi-omics data integration 

The Autoencoder is an unsupervised deep learning model designed to learn 

low-dimensional representations of data. This model is particularly useful for 

integrating multi-omics data, such as gene expression and DNA methylation data, 

which often have high dimensionality and complex structures. By learning compact 

representations of these datasets, the Autoencoder facilitates more efficient and 

meaningful data integration [28]. 

We utilize an Autoencoder to integrate gene expression data and DNA 

methylation data, as depicted in Figure 1. 
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Figure 1. Multi-omics data integration framework. 

The architecture of our data integration framework is designed to leverage the 

complementary information from these two types of omics data, thereby enhancing 

the downstream analysis and predictive modeling. The Autoencoder model 

comprises two main components: The encoder (𝜙 ) and the decoder (𝜓 ). The 

encoder’s role is to compress the original high-dimensional data into a lower-

dimensional representation, effectively capturing the essential features of the data 

while discarding noise and redundant information. Mathematically, the encoder 

function can be represented as: 

𝑍 = 𝜙(𝑋) (5) 

where 𝑋 represents the input data (gene expression and DNA methylation data) and 

𝑍 is the resulting low-dimensional representation. The decoder, on the other hand, 

aims to reconstruct the original data from this low-dimensional representation. The 

reconstruction process is designed to be as accurate as possible, ensuring that the 

learned representation retains the critical information necessary for data integration. 

The decoder function is expressed as: 

𝑋̂ = 𝜓(𝑍) (6) 

The training objective of the Autoencoder is to minimize the reconstruction 

loss, which measures the difference between the original data 𝑋  and the 

reconstructed data 𝑋̂. This objective can be formulated as: 

𝜙,𝜓 = arg⁡𝑚𝑖𝑛
𝜙,𝜓

 𝐿(𝑋, (𝜓 ∘ 𝜙)𝑋) (7) 
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Here, 𝐿 denotes the loss function, which is typically the mean squared error 

between 𝑋 and 𝑋̂: 

𝐿(𝑋, 𝑋̂) =
1

𝑁
∑  

𝑁

𝑖=1

(𝑋𝑖 − 𝑋̂𝑖)
2 (8) 

By minimizing this loss, the Autoencoder learns to capture the most significant 

features of the input data in a lower-dimensional space, facilitating effective data 

integration. The integrated multi-omics data, represented in a compact and 

informative manner, serves as a robust input for the subsequent Transformer 

classification framework. The reduced dimensionality not only makes the data easier 

to handle and train but also helps in reducing the number of parameters in the 

Transformer model, thereby improving its training efficiency and generalization 

capability. The use of an Autoencoder for multi-omics data integration enables us to 

combine gene expression and DNA methylation data into a cohesive and informative 

representation. This integrated data enhances the performance of machine learning 

models by providing a comprehensive view of the biological systems under study, 

ultimately contributing to more accurate and insightful analyses in BC research. 

2.4. Attentional neural network multi-omics classification framework 

The Transformer is a neural network model based on self-attention 

mechanisms, widely used in natural language processing tasks such as machine 

translation and text classification [29]. It possesses powerful modeling capabilities, 

able to capture long-distance dependencies and contextual information in input data. 

For the multi-omics BC classification task, the Transformer effectively learns the 

interactions and associations between different omics data, thereby enhancing 

classification performance. 

Multi-omics BC classification typically involves multiple data modalities, such 

as gene expression data, DNA methylation data, and proteomics data. The 

characteristics and expression methods of data in each modality differ significantly, 

posing a challenge for traditional machine learning classification methods which 

often struggle to fully utilize the relationships between multi-modal data. The 

Transformer model, however, adeptly handles multiple input modalities 

simultaneously and learns the interactions and importance between modalities 

through its self-attention mechanism. This capability allows for better integration of 

information from different modalities, improving classification performance and 

providing deeper insights into the underlying biological processes. 

As shown in Figure 2, we employ an Autoencoder and Transformer to integrate 

multi-omics data. 
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Figure 2. AET-net: Attentional neural network classification framework incorporating autoencoder. 

The Autoencoder effectively compresses the high-dimensional data into a 

lower-dimensional latent space, preserving the most relevant features from each 

modality. The integrated data is then input into the Transformer neural network, 

which processes the data through its layers of self-attention and feed-forward neural 

networks. We add a Classifier layer to the output of the Transformer, utilizing the 

softmax function to determine the subtype categories. The softmax function converts 

the output scores into probabilities, facilitating the classification of BC subtypes. The 

softmax function used is as follows: 

Softmax(𝑥𝑖) =
exp⁡(𝑥𝑖)

∑  𝑗 exp⁡(𝑥𝑗)
 (9) 

To optimize the model, we use CrossEntropyLoss as the loss function. This 

function measures the performance of the classification model whose output is a 

probability value between 0 and 1. The function used is defined as: 

ℓ(𝑥, 𝑦) = 𝐿 = {𝑙1, … , 𝑙𝑁}
⊤ (10) 

𝑙𝑛 = −∑  

𝐶

𝑐=1

𝑤𝑐log⁡
exp⁡(𝑥𝑛,𝑐)

∑  𝐶
𝑖=1 exp⁡(𝑥𝑛,𝑖)

𝑦𝑛,𝑐 (11) 

where 𝑥  represents the input data, 𝑦  represents the target labels, 𝑤  denotes the 

weight assigned to each class, and 𝐶  is the number of subtype classes. This loss 

function penalizes the model proportionally to the error in probability estimation, 

thus guiding the model to improve its predictions over iterations. 

The integration of the Autoencoder with the Transformer neural network and 

the application of the softmax function and CrossEntropyLoss ensure that our model 

efficiently captures the intricate relationships within the multi-omics data, leading to 

superior classification performance. This method demonstrates a significant 

advancement in the field of multi-omics data analysis, providing a robust framework 
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for BC subtype classification and potentially aiding in the development of 

personalized treatment strategies. 

2.5. Comparison of machine learning classification models 

We employ a suite of classical machine learning classification algorithms to 

evaluate the performance of our proposed AET-net data integration model. 

Specifically, we utilize Light Gradient Boosting Machine (LightGBM), Logistic 

Regression (LR), Random Forest Classifier (RF), and Extra Trees Classifier (ET). 

These algorithms are chosen due to their proven effectiveness in various 

classification tasks as highlighted by Kotsiantis et al. [30]. 

The LightGBM, an efficient and powerful gradient boosting framework, is 

particularly noted for its speed and accuracy in handling large data sets. Logistic 

Regression, a fundamental statistical approach, serves as a baseline for its 

interpretability and simplicity. Random Forest and Extra Trees, both ensemble 

learning methods based on decision trees, are included for their robustness to 

overfitting and capacity to model complex interactions within data. We conduct our 

experiments using the same dataset, which is split into consistent training and testing 

sets across all models to ensure fair comparison. The training phase involves careful 

hyperparameter tuning and cross-validation to optimize each model’s performance. 

During testing, we evaluate the models based on standard metrics such as accuracy, 

precision, recall, and the F1-score to assess and compare their classification 

capabilities. Our results aim to demonstrate how our AET-net model, which 

integrates multiple data types using an advanced neural network architecture, 

compares against these traditional classifiers in terms of both performance and 

computational efficiency. We discuss the implications of these findings and how 

they validate the effectiveness of AET-net for complex data integration tasks in 

machine learning environments. 

2.6. Evaluation metrics 

We utilize the following commonly used classification metrics to rigorously 

evaluate the performance of the classifiers. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

F1-Score =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 

These metrics are vital for assessing each model’s efficacy in tackling the multi-

omics BC subtype classification task. 
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3. Results 

3.1. Analysis of integration dimensions for autoencoder 

The Autoencoder excels in reducing data dimensionality while preserving the 

complex and nonlinear relationships inherent in diverse biological data types. We 

select integration dimensions of 2048, 1024, 512, 256, and 128 using the 

Autoencoder model. This choice is made to explore their impact on the overall 

performance of the system. Specifically, these dimensions are chosen to strike a 

balance between computational efficiency and the depth of biological insights they 

can capture. As depicted in Figure 3, the loss for each dimension is critically 

evaluated. The results indicate a trend where increasing the dimension size initially 

decreases the loss rate. However, beyond 2048 dimensions, the reduction in loss 

plateaus, suggesting a diminishing return on model complexity. The analysis 

suggests that a dimensionality setting around 2048 offers an optimal balance 

between loss reduction and computational efficiency. 

 
Figure 3. Autoencoder multi-omics dataset integrated loss. 

3.2. Analysis of AET-net parameter settings 

We adjust the hyperparameters of the model to maximize its performance. For 

efficient memory utilization, the input size for the batch size parameter is set to 128. 

This setting balances the need for sufficient data per batch with the constraints of the 

available memory, allowing for optimal processing efficiency. The training process 

comprises 5000 epoches, providing the model with ample opportunity to learn and 

converge. This extensive training duration ensures that the model has enough 

iterations to achieve maximum performance and stability in its predictions. Key 

parameters within the model’s architecture are also finely tuned. The transformer 

architecture is configured with nhead value of 8, indicating the number of attention 
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heads used in the multi-head attention mechanism. This setting enhances the model’s 

ability to focus on different parts of the input sequence simultaneously, improving its 

overall interpretative power. The number of layers, nlayers, is set to 6. This depth 

allows the model to capture complex patterns and relationships within the data, 

contributing to its high performance. To prevent overfitting and enhance 

generalization, a dropout rate of 0.1 is applied. This technique randomly omits a 

fraction of the neurons during training, which helps in making the model robust to 

unseen data. Additionally, the encoder dimension is set to 1024. This dimension size 

defines the internal representation space of the model, providing a rich and detailed 

encoding of the input data. The combination of these hyperparameter settings results 

in a powerful and efficient model, capable of high performance across various tasks. 

3.3. Results of multi-omics subtype classification 

In Figure 4, we observe that as the number of training epochs increases, the 

training loss of our multi-omics integration classification network model gradually 

decreases. This indicates that the model is progressively optimized during the 

learning process, with the degree of fit to the training data continually improving. 

When the epoch reaches 5000, the model appears to have reached a stable state, 

which may suggest that the model has found the optimal solution on the current 

training data, i.e., the model has converged. Convergence refers to the state in the 

training process where the update of parameters tends to be stable, and the 

performance of the model no longer significantly improves. 

 

Figure 4. Training and testing losses with different integration dimensions of AET. 

The Figure 5 presents performance metrics for a classification model across 

different BC subtypes. Overall, the model shows excellent performance, with high 

AUC values (> 0.95) for all subtypes, indicating strong discriminative ability. 

Precision and F1 scores are generally high, but vary somewhat across subtypes. The 

model performs exceptionally well on Basal-like, HER2, and Normal-like subtypes, 

with near-perfect AUC and very high precision and F1 scores. Performance on 

Luminal A and B subtypes is still strong but slightly lower, particularly in terms of 

F1 score for Luminal A and precision for Luminal B. 
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Figure 5. Performance metrics for BC subtype classification. 

Furthermore, our analysis reveals significant improvements in model 

performance when comparing single-omic and multi-omics approaches. As shown in 

Figure 6A, which compares gene expression data alone to the integrated multi-omics 

model, we observe substantial enhancements across all metrics. For instance, 

accuracy increased from 0.6923 to 0.9120, while the F1-score improved dramatically 

from 0.5339 to 0.9159. Similarly, Figure 6B, which compares methylation data 

alone to the multi-omics model, demonstrates comparable improvements. These 

results underscore the power of integrating multiple omics data types, as our multi-

omics approach consistently outperforms single-omic models across various 

performance metrics. This integrated approach allows for a more comprehensive 

understanding of the underlying biological processes, leading to more accurate and 

robust predictions. 

 

Figure 6. Comparison of classification metrics for single-omic and the multi-omics approach. (A) Gene expression; 

(B) methylation. 
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3.4. Comparison of different machine learning classifiers 

The Figure 7A presents the classification results of gene expression dataset 

using machine learning classification algorithms. In terms of accuracy, the 

LightGBM model performs the best, achieving an accuracy of 0.7941. Regarding the 

AUC, the ET model exhibits the best performance with an AUC of 0.9211. In terms 

of recall, all models demonstrate comparable performance, with scores ranging 

between 0.6471 and 0.7941. Regarding precision, the LightGBM model again shows 

the best performance, achieving a precision of 0.8123. For the F1 score, the 

LightGBM model outperforms the others, reaching an F1 score of 0.7943. The 

Figure 7B presents the classification results of methylation dataset using machine 

learning classification algorithms. In terms of accuracy, the LR model performs the 

best, achieving an accuracy of 0.7353. Regarding the AUC, the LR model also 

exhibits the best performance with an AUC of 0.9035. In terms of recall, all models 

demonstrate comparable performance, with scores ranging between 0.6176 and 

0.7353. Regarding precision, the LR model shows the best performance, achieving a 

precision of 0.7517. For the F1 score, the LR model outperforms the others, reaching 

an F1 score of 0.7354. 

 

Figure 7. Comparison of classification metrics between AET-net and other classifiers on gene and methylation 

datasets. (A) Gene expression; (B) methylation. 

From Table 2, the model's classification performance progressively improves 

with increasing integration dimensions. 

Table 2. Comparison in different integration dimensions. 

Dimension Accuracy AUC Recall Precision F1 score 

128 0.7701 0.9516 0.7816 0.7749 0.7764 

256 0.7606 0.9380 0.7737 0.7678 0.7688 

512 0.8127 0.9617 0.8286 0.8168 0.8153 

1024 0.8483 0.9679 0.8591 0.8508 0.8534 

2048 0.9120 0.9862 0.9218 0.9197 0.9159 
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From Tables 3 and 4, machine learning classification methods do not perform 

well in the classification of BC subtypes. This observation underscores the need for 

more sophisticated methods to handle the complexity of the data and the task. 

Therefore, we have employed an Autoencoder data integration method and built an 

attention-based neural network, AET-net. 

Table 5 presents the classification results of AET-net when applied to multi-

omics BC subtype data, with a dataset balanced using SMOTE and a training set 

comprising 80% of the samples and a test set of 20%. The results demonstrate the 

network’s robust performance in accurately classifying different BC subtypes by 

integrating diverse omics data. 

Table 3. Classification metrics results for gene datasets compared to AET-net. 

Classifier Accuracy AUC Recall Precision F1 score 

LightGBM 0.7941 0.9010 0.7941 0.8123 0.7943 

LR 0.6471 0.8782 0.6471 0.6595 0.6481 

RF 0.6765 0.9118 0.6765 0.7036 0.6809 

ET 0.7647 0.9211 0.7647 0.7721 0.7641 

AET-net 0.9120 0.9862 0.9218 0.9197 0.9159 

Table 4. Classification metrics results for methylation datasets compared to AET-

net. 

Classifier Accuracy AUC Recall Precision F1 score 

LightGBM 0.7059 0.8720 0.7059 0.7044 0.6996 

LR 0.7353 0.9035 0.7353 0.7517 0.7354 

RF 0.6176 0.8982 0.6176 0.6560 0.6121 

ET 0.6471 0.8989 0.6471 0.7173 0.6395 

AET-net 0.9120 0.9862 0.9218 0.9197 0.9159 

As shown in Figure 7, the classification metrics have seen substantial 

improvements. The accuracy has reached 0.9120, the AUC has increased to 0.9862, 

the recall has reached 0.9218, the precision has reached 0.9197, and the F1 score has 

reached 0.9159. The significant improvements can be attributed to the capability of 

the AET-net to effectively integrate multi-omics data and capture intricate patterns 

that traditional machine learning methods often overlook. The Autoencoder 

component of AET-net compresses the high-dimensional multi-omics data into a 

lower-dimensional space, preserving the essential features that are crucial for the 

classification task. The attention mechanism within the AET-net allows the model to 

focus on the most informative features, thereby increasing the model’s 

discriminative power. 
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Table 5. Results of balanced dataset partitioning in AET-net. 

Subtype Train set Test set Correct set 

Basal-like 343 79 77 

HER2 346 76 76 

LumA 325 97 69 

LumB 331 91 84 

Normal-like 343 79 79 

4. Discussion 

Our study introduces the AET-net framework, a novel approach for BC subtype 

classification that advances multi-omics data integration methodologies. A critical 

aspect of our research focuses on optimizing the multi-omics integration dimensions, 

which significantly impacts the model’s performance. As demonstrated in Table 2, 

increasing the integration dimensions progressively enhances the model’s 

classification capabilities, with the optimal results achieved at a dimension of 2048. 

At this optimal dimension, the AET-net classifier demonstrates remarkable 

performance metrics: An accuracy of 0.912, an AUC of 0.9862, a Recall of 0.9218, a 

Precision of 0.9197, and an F1 score of 0.9159. These results indicate that a 2048-

dimensional integration strikes an ideal balance between capturing detailed 

biological information and maintaining model efficiency. Comparatively, our 

approach shows significant improvements over recent multi-omics integration 

models like Choi and Chae’s moBRCA-net and Gao et al.’s DeepCC algorithm. 

While previous research struggled with the complexities of high-dimensional omics 

data, our Autoencoder and Transformer-based neural network effectively addresses 

these challenges. The model enhances classification performance, increasing 

accuracy from 0.865 to 0.9120 and achieving an AUC of 0.9862. By 

comprehensively integrating gene expression and DNA methylation data, AET-net 

captures nuanced biological relationships more effectively than traditional machine 

learning methods. The framework provides balanced performance across different 

BC subtypes, offering a valuable tool for diagnostic decision support in precision 

oncology. 

The biological significance of our approach extends beyond computational 

performance. By integrating gene expression and DNA methylation data, we provide 

insights into the molecular heterogeneity of BC subtypes. Our analysis reveals 

intricate interactions between genomic and epigenomic landscapes that characterize 

different breast cancer molecular profiles. Specifically, the model's ability to capture 

nuanced molecular relationships suggests distinct epigenetic modifications and 

transcriptional variations across BC subtypes. These molecular distinctions 

illuminate potential connections between genetic profiles and cellular mechanical 

properties, contributing to our understanding of the molecular mechanisms 

underlying tumor progression, cellular differentiation, and the structural 

characteristics of breast cancer subtypes. 

The method’s comprehensive approach not only improves subtype classification 

accuracy but also demonstrates the potential of advanced deep learning techniques in 

unraveling the molecular complexity of BC. However, future research should focus 
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on validating the approach across larger datasets, exploring additional omics data 

types, and developing more interpretable models to further our understanding of BC 

molecular heterogeneity. 

5. Conclusion 

Classification of BC subtypes is essential for individualized treatment, as 

different subtypes respond differently to treatment. Multi-omics data integration, on 

the other hand, provides more comprehensive biological information and improves 

diagnostic and prognostic accuracy. Traditional machine learning classification often 

relies on specific features and may ignore complex relationships between data. Deep 

learning has greater potential to process complex data for further inprovement. In 

this research, we propose a cancer subtype classification framework, called AET-net, 

based on multi-omics data of BC. We initially obtain multi-omics data from the 

BRCA project of BC, which includes gene expression data and DNA methylation 

data, using the R language. The obtained multi-omics data is then integrated using an 

Autoencoder neural network framework. We establish a Transformer attention 

mechanism neural network classification framework to classify BC subtypes. 

Simultaneously, under the same data conditions and dataset partitioning, we compare 

the performance of other machine learning classifiers. Our experimental results 

demonstrate AET-net’s effectiveness in BC subtype classification, showcasing the 

potential of deep learning techniques in medical diagnostic support. The method 

consistently improved classification accuracy across multiple performance metrics, 

revealing promising avenues for future research. By utilizing advanced classification 

approaches, AET-net represents a novel method with potential to enhance diagnostic 

processes. 
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