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Abstract: This study investigates the biomechanical implications and ergonomic impacts of 

AI-generated content (AIGC) integration in visual communication design workflows. Through 

a comprehensive analysis of 23 professional designers in Chengdu, China, we examined the 

physical stress patterns, user interaction dynamics, and overall ergonomic outcomes when 

transitioning from traditional to AIGC-assisted design processes. The research employed a 

mixed-method approach combining quantitative biomechanical measurements with qualitative 

user experience assessments over 12 weeks. Results revealed significant reductions in muscle 

activity across key muscle groups, with the upper trapezius showing the most significant 

decrease (−3.6% MVC, p < 0.001) during AIGC-assisted tasks. This change in muscle activity 

can be further linked to alterations in the body's postural stability and load distribution, which 

are core considerations in biomechanics. Movement efficiency metrics, which are inherently 

related to biomechanical performance, demonstrated a 27.9% reduction in task completion time 

(p < 0.001) and a 33.3% decrease in design iterations. Quality assessment scores improved 

across all dimensions, with Creative Innovation showing the highest enhancement (+1.8 points, 

p < 0.001). User satisfaction metrics indicated significant improvements, with consistent gains 

of 1.1 points (on a 5-point scale) across all measured dimensions (p < 0.001). Notably, the 

study identified distinct adaptation patterns between novice and experienced users in terms of 

their biomechanical responses. Experienced users demonstrated significantly faster response 

times in AIGC prompt input (8.94 ± 1.87 s vs 18.62 ± 3.15 s, p < 0.001), which can be 

associated with differences in their neuromuscular coordination and motor learning abilities. 

While AIGC integration initially increased certain types of errors (+51.2% in input errors), it 

led to substantial reductions in tool misuse (−40.4%) and design revisions (−39.9%). These 

findings suggest that AIGC integration can significantly reduce physical stress while 

improving design efficiency and quality outcomes, all of which are intertwined with the 

biomechanical functioning of the body during the design process. The research provides 

evidence-based recommendations for optimizing AIGC implementation in professional design 

workflows, taking into account the biomechanical and ergonomic factors that contribute to the 

overall well-being and creative productivity. This study has important implications for software 

development, workplace health policies, and the future direction of AI-assisted creative work, 

as it highlights the significance of considering biomechanics in the integration of advanced 

technologies within creative domains. 

Keywords: AIGC; visual communication design; biomechanics; ergonomics; user interaction; 

design workflow; AI integration; professional design practice 

1. Introduction 

The rapid evolution of artificial intelligence and its integration into creative 

processes has fundamentally transformed the landscape of visual communication 

design [1–3]. As we navigate through the third decade of the 21st century, AI-
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generated content (AIGC) has emerged as a pivotal force reshaping traditional design 

workflows, challenging established ergonomic paradigms, and redefining user 

interaction patterns in professional design practices [4–6]. Visual communication 

design has traditionally been characterized by intensive human-computer interaction, 

requiring prolonged focused attention, precise motor control, and complex cognitive 

processing [7,8]. These tasks’ physical and cognitive demands have long been 

associated with various occupational health concerns, including musculoskeletal 

disorders, visual strain, and cognitive fatigue [9,10]. The emergence of AIGC 

technologies presents opportunities and challenges in addressing these ergonomic 

concerns while potentially transforming the fundamental nature of design work [11–

13]. 

Recent advancements in generative AI, particularly in areas such as image 

synthesis, layout generation, and style transfer, have introduced new tools and 

workflows that significantly differ from traditional design software interactions 

[14,15]. These developments have created an urgent need to understand how AIGC 

integration affects the biomechanical loads, interaction patterns, and overall 

ergonomic well-being of design professionals [16]. Previous studies have primarily 

focused on either the creative capabilities of AI tools or traditional ergonomic 

assessments of design work, leaving a critical gap in understanding the biomechanical 

implications of AIGC integration [17–20].  

This study aims to comprehensively investigate the biomechanical impact of 

AIGC integration in visual communication design through the following objectives: 

(a) To quantify and compare the biomechanical loads experienced during traditional 

and AIGC-assisted design tasks through detailed motion analysis and muscle 

activation measurements. 

(b) To analyze changes in user interaction patterns and their relationship to physical 

stress and fatigue development when incorporating AIGC tools into established 

design workflows. 

(c) To evaluate the effectiveness of AIGC integration in reducing ergonomic risk 

factors while maintaining or improving design quality and efficiency. 

(d) To develop evidence-based recommendations for optimal AIGC integration that 

promotes both ergonomic well-being and design effectiveness. 

The significance of this research extends across theoretical, practical, and 

industry dimensions. From a theoretical perspective, this study contributes to the 

emerging field of human-AI interaction ergonomics, providing quantitative insights 

into how AI assistance affects human biomechanics during creative tasks. The findings 

fill a crucial gap in understanding the physical implications of AI integration in 

professional creative work [21–25]. Practically, this research offers valuable insights 

for software developers, ergonomists, and design professionals. By identifying 

specific biomechanical patterns and risk factors associated with AIGC use, the study 

informs the development of more ergonomically sound AI tools and integration 

strategies. The results provide evidence for developing workplace guidelines that 

optimize the balance between AI assistance and human well-being [26–33]. 

Human-machine collaboration in creative fields is done out of a desire to combine 

human instincts with the result-optimizing powers of artificial intelligence. It is noted 

that designers apply AI for conceptual creation, creating something new and unique 
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or for making some routine work done, but the design process remains with the 

designers. Composers use AI algorithm for creating responsive original scores, fusing 

styles, or creating sonic backgrounds. This is where the AI comes into play, it is used 

by filmmakers for realistic CGI or script analysis. Still, the ethical questions, copyright 

questions, and the desire to stay creative prevent this from happening. Collaborative 

systems involve the use of user interfaces and therefore should have a good stable user 

interface and training. Also, the advocacy that AI provides in improving accessibility 

increases an array of opportunities in creative industries for individuals with varied 

ability. That sort of partnership reimagines the nature of innovation, as well as the 

combination of human insight with computing accuracy. 

This research arrives at a critical juncture for the design industry as organizations 

increasingly adopt AI tools. The findings help inform decision-making around AIGC 

implementation, training protocols, and workplace health and safety policies. 

Understanding the biomechanical implications of AIGC integration is essential for 

maintaining workforce health while maximizing the benefits of AI technology. This 

study also addresses broader societal concerns about the impact of AI on professional 

work, providing empirical evidence of how AI integration affects the physical 

demands of creative labor. As AIGC tools become more prevalent, insights from this 

research will be crucial in shaping policies and practices that ensure sustainable and 

healthy integration of AI in creative professions. 

The rest of the paper is as follows: section 2 presents the methodology, section 3 

provides results and analysis, and section 4 concludes the paper. 

2. Methodology 

Machine learning applications widely known as artificial intelligence generated 

content (AIGC) involves using of advanced AI techniques such as deep learning and 

generative models. MidJourney and DALL-E, Runway are some of the models based 

on generative adversarial networks (GANs) and transformer models that generate 

good quality images, videos or text. These tools enable the designer to type in prompts 

or other reference materials, the design concepts can be developed, styles copied or 

visuals enhanced quickly. AIGC tools also support natural language processing (NLP) 

for easy communication, cutting down cycle time involved in concepting, and 

minimizing the workload. In doing so they free up time for strategic creativity and 

ideation, and fundamentally altering the vector of user engagement in visual 

communication design. 

2.1. Participants 

This study recruited 23 participants from Chengdu, Sichuan Province, China. The 

sample consisted of 13 Females (56.5%) and 10 Males (43.5%), with ages ranging 

from 24 to 45 years (M = 32.4, SD = 5.8). All participants had normal or corrected-to-

normal vision and reported no history of musculoskeletal disorders or neurological 

conditions that could affect their interaction with digital interfaces. The participants 

represented diverse professional backgrounds in visual communication design: 8 were 

professional designers with more than five years of experience, 7 were junior designers 

with 1–4 years of experience, 5 were design educators, and 3 were graduate students 



Molecular & Cellular Biomechanics 2025, 22(2), 766. 
 

4 

in visual communication programs. The average professional experience in design-

related fields was 6.3 years (SD = 3.2). Selection criteria included: (1) minimum one 

year of professional experience in visual design or related fields, (2) familiarity with 

at least one AI-powered design tool, (3) no pre-existing physical conditions that might 

affect biomechanical measurements, and (4) availability for all three phases of the 

study. Participants were recruited through local design associations, universities, and 

professional networks in Chengdu. Before participation, all subjects provided written 

informed consent following protocols approved by the University Ethics Committee. 

Participants were compensated with 200 RMB for their time and involvement in the 

study. To ensure participant privacy, each subject was assigned a unique identifier 

(P01–P23) used throughout data collection and analysis. 

2.2. Research design 

This study employed a mixed-method research design, integrating quantitative 

biomechanical measurements with qualitative user experience assessments to 

comprehensively evaluate the impact of AIGC on visual communication design 

workflows. The research was conducted over 12 weeks from September to December 

2023. 

Based on the results, it is recommended that designers integrate AIGC tools in 

VCD through iterative design processes that alternate between AI and design 

creativity. There must be refresher courses on how to write effective prompts and on 

the functions of the tools. Solutions with comfortable designs that are easy to learn 

and engage with AI should be given the highest value to prevent physical and mental 

stress. It is suggested that in institutions, AIGC modules should be included in the 

course of design for future professionals. It has been found that synergistic interaction 

between developers and designers can make AI tools more focused for specific usages. 

Lastly, the promotion of ethical principles maintains the originality of designs, which 

in turn creates confidence in AIGC-created work as the appropriate use of such tools 

allows the professionals to effectively and sustainably incorporate them. 

i) Mixed-method approach: The study utilized a concurrent triangulation design 

where quantitative and qualitative data were collected simultaneously. The 

quantitative phase focused on capturing biomechanical measurements using motion 

capture technology, eye-tracking data, performance metrics tracking, and 

physiological measurements, including muscle tension and posture analysis. 

Simultaneously, the qualitative phase involved semi-structured interviews, think-

aloud protocols during task execution, observational field notes, and post-task 

reflection sessions. These two data streams were then integrated through cross-

validation and pattern matching to understand the user experience concerning 

biomechanical data comprehensively. 

ii) Data collection instruments: The biomechanical assessment utilized the Vicon 

Motion Capture System (Vicon Nexus 2.12) with 8 infrared cameras for precise 

movement tracking. Surface EMG sensors (Delsys Trigno™) were employed to 

monitor muscle activity, while a Tobii Pro Spectrum eye tracker operating at 300 Hz 

captured detailed gaze patterns. Digital RULA/REBA tools were implemented for 

ergonomic assessment to evaluate postural risks. User experience was assessed 
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through custom-designed task analysis forms, complemented by standardized tools, 

including the NASA Task Load Index (TLX) for cognitive load assessment and the 

System Usability Scale (SUS) questionnaire. Semi-structured interviews following a 

15-question core protocol provided more profound insights into user perspectives. 

Performance monitoring incorporated screen recording software (Camtasia Studio 

2023) alongside custom-developed time-tracking and error-logging systems. 

iii) Sampling strategy: The study implemented a purposive sampling approach 

with stratified elements to ensure comprehensive representation across expertise levels 

and professional backgrounds. An initial pool was created through database 

compilation from local design associations, professional network outreach, academic 

institution partnerships, and targeted social media announcements in relevant 

professional groups. The stratification process considered professional experience 

categories (junior: 1–4 years, senior: 5 + years), AIGC tool familiarity levels, design 

specialization areas, and age groups. Selection proceeded through a systematic process 

involving initial screening questionnaires, technical competency assessments, and 

availability confirmation. The final sample size of 23 participants was determined 

through power analysis for quantitative measures (α = 0.05, β = 0.20) while 

considering saturation requirements for qualitative data and resource constraints. 

Before full implementation, the research design underwent pilot testing with 

three participants, leading to protocol and data collection instrument refinement. This 

approach prioritized ecological validity while maintaining rigorous control over 

variables affecting biomechanical measurements, ensuring robust data collection 

across both quantitative and qualitative dimensions. 

2.3. Experimental setup 

The experimental study was conducted in the Digital Design Ergonomics 

Laboratory at Sichuan University’s School of Design, a controlled environment 

configured explicitly for biomechanical and user interaction research. 

Human-AI combined work presents issues of ecological validity as most are set 

in a laboratory context, what is essentially a simulation of the creative process. Using 

AI in testing systems in dynamic collaborative environments helps assure that AI is 

enhancing creativity and not stifling it. It is therefore reacting to ecological validity 

that enhances trust and realistic implementation in professional and multicultural 

settings. 

i) Laboratory environment: The laboratory space measured 8.5 × 6.5 m, 

maintained at a constant temperature of 22 ± 1 ℃ and humidity of 45 ± 5%. The testing 

area was equipped with adjustable LED lighting systems providing uniform 

illumination of 500 lux at the workstation surface, conforming to ISO 9241-307 

standards for visual display workstations. Acoustic treatments maintained ambient 

noise levels below 35 dB to minimize distractions and ensure clear audio recordings. 

The workstation setup followed ergonomic guidelines with an electric height-

adjustable desk (Loctek E5), allowing participants to alternate between sitting and 

standing positions. The chair provided (Herman Miller Aeron) featured full ergonomic 

adjustability. The primary display was a calibrated 32-inch 4K monitor (Dell 
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UltraSharp UP3216Q) positioned at eye level, with a secondary 24-inch monitor (Dell 

P2419H) for task instructions and reference materials. 

ii) Equipment and tools 

The biomechanical measurement system is comprised of integrated hardware and 

software components. The Vicon motion capture system utilized eight Vantage V16 

cameras around the workstation, tracking 39 reflective markers placed on participants’ 

upper body, focusing on head, neck, shoulders, arms, and trunk movements. Muscle 

activity was monitored through Delsys Trigno wireless EMG sensors attached to key 

muscle groups: trapezius, deltoid, biceps brachii, and forearm extensors. The eye 

tracking system consisted of a Tobii Pro Spectrum mounted below the primary display, 

calibrated for each participant using a 9-point validation procedure. Input devices 

included a standardized wireless keyboard (Logitech MX Keys) and mouse (Logitech 

MX Master 3), marked for consistent session placement. Software tools included 

Adobe Creative Cloud 2024 suite, focusing on Photoshop and Illustrator, alongside 

popular AIGC platforms including Midjourney and DALL-E 3. Custom data 

collection software developed in Python synchronized the timing of all recording 

devices and automated the presentation of design tasks. 

iii) Testing protocols: The experimental protocol followed a structured sequence 

spanning approximately 120 min per participant. The initial setup included 

anthropometric measurements, EMG sensor placement, and motion capture marker 

attachment, followed by system calibration (Approximately 25 min). Participants 

underwent a standardized 15-minute familiarization session with the tools and 

interfaces before beginning the formal testing. The main testing session consisted of 

four design tasks, each lasting 15 min, alternating between traditional and AIGC-

assisted approaches. Tasks included logo design, poster composition, interface 

element creation, and layout optimization. Each task began with a 2-minute briefing 

and ended with a 3-minute reflection session. Rest periods of 5 min between tasks 

prevented fatigue and allowed for system recalibration if needed. 

Throughout each task, the system recorded: 

• Continuous motion capture data at 100 Hz. 

• EMG activity at 2000 Hz. 

• Eye movement patterns at 300 Hz. 

• Screen recordings of design activities. 

• Automated logging of tool usage and interaction patterns. 

• Environmental parameters (temperature, humidity, noise, light levels). 

Post-task procedures included immediate completion of cognitive load 

assessments and brief structured interviews. The protocol concluded with EMG sensor 

and marker removal and a comprehensive debriefing session. Quality control measures 

included regular equipment calibration checks between participants, standardized 

placement protocols for markers and sensors, and continuous data quality monitoring 

during collection. A technical assistant was present throughout each session to address 

equipment-related issues and ensure protocol adherence. 
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2.4. Measurement parameters 

The calibration of the Vicon motion capture system included static and dynamic 

trials to optimize the position of all markers, and the position of all cameras. 

Calibration accuracy was verified through the defined motion and any deviation was 

corrected through iteration. Skin or clothing movements were reduced by wearing 

well-fitted suits and moving the markers during data collection. The video signals were 

cleaned of noise using sophisticated filtering techniques, including Butterworth low-

pass filters while the simplest motion characteristics remained intact. The reliability 

of the data was checked by Root Mean Square Deviation (RMSD) for the residual 

errors. The implementation of these procedures improved the ability of the system to 

record such intricate and evolving motion in biomechanical or design analysis. 

AIGC tools significantly decreased the muscle contraction in hand and forearm 

zones removing extra strain from EMG (electromyography) analysis. Mean muscle 

activation was significantly lower at approximately 12% suggesting that participants 

who used the method had an ergonomic advantage over those who followed 

conventional design flows. This improvement indicates that AIGC can help to avoid 

overexertion strain and promote long-term creative work since it can decrease physical 

fatigue during long design tasks. 

i) Biomechanical indicators: The biomechanical assessment focused on 

quantifying physical stress and movement patterns during design tasks. Primary 

kinematic measurements included joint angles, movement velocities, and postural 

variations. Joint angles were recorded for the neck (flexion/extension, lateral bending), 

shoulder (flexion/extension, abduction/adduction), elbow (flexion/extension), and 

wrist (flexion/extension, radial/ulnar deviation). Muscle activity was monitored 

through normalized EMG signals (% MVC—Maximum Voluntary Contraction) from 

key muscle groups. Table 1 summarizes the measured muscle groups and their 

corresponding activity thresholds. 

Table 1. EMG measurement parameters and activity thresholds. 

Muscle Group Position Activity Threshold (% MVC) Risk Level 

Upper Trapezius Shoulder elevation > 12% High 

Anterior Deltoid Arm raising > 10% Medium 

Biceps Brachii Elbow flexion > 15% Medium 

Ext. Carpi Radialis Wrist extension > 8% High 

Postural analysis utilized the RULA (Rapid Upper Limb Assessment) method, 

generating scores at 5-minute intervals throughout each task. As reported in previous 

studies, mean postural scores were calculated for both traditional and AIGC-assisted 

design sessions. 

ii) User interaction metrics: User interaction was quantified through multiple 

parameters recorded during task execution. Eye movement patterns were analyzed 

using standard metrics, including fixation duration, saccade amplitude, and scan path 

patterns. The interaction analysis followed frameworks established. 

Gaze behavior: 
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• Mean fixation duration: 285 ± 42 ms (traditional) vs. 342 ± 38 ms (AIGC-

assisted). 

• Saccade velocity: 125 ± 18 degrees/second. 

• Area of interest (AOI) transition frequency. 

Mouse and keyboard activity: 

• Click frequency and distribution. 

• Keyboard shortcut utilization rate. 

• Tool switching patterns. 

• Command sequence analysis. 

The temporal distribution of interaction events was mapped against task phases, 

revealing patterns between traditional and AIGC-assisted workflows (Table 2). 

Table 2. Interaction event distribution across task phases. 

Task Phase Click Rate (Per Min) Tool Switches (Per Min) Shortcut Usage (%) 

Initial Design 42.3 8.2 35.4 

Development 28.7 12.4 48.6 

Refinement 35.9 6.8 52.3 

Final Adjustments 22.4 4.5 43.8 

iii) Performance measures: Performance evaluation encompassed both 

quantitative and qualitative measures. Time-based metrics included task completion 

time, response latency to AIGC suggestions, and tool transition times. Quality 

assessments were conducted using a standardized rubric adapted, evaluating design 

outcomes on five dimensions: 

1) Visual Coherence (VC) 

2) Technical Execution (TE) 

3) Creative Innovation (CI) 

4) Design Principles Adherence (DPA) 

5) User Intent Alignment (UIA) 

Performance scores were calculated as weighted averages of these dimensions, 

with weights determined through expert panel consultation (n = 5). The relationship 

between biomechanical load and performance quality was analyzed using a mixed-

effects model, revealing significant correlations between postural stability and design 

quality scores (r = 0.67, p < 0.01). 

Efficiency metrics incorporated both speed and accuracy measures: 

• Task Completion Efficiency (TCE) = Quality Score/Time 

• Error Rate (ER) = Number of corrections/Total actions 

• Design Iteration Ratio (DIR) = Final elements/Initial elements 

Integrating these measurement parameters provided a comprehensive assessment 

framework, allowing for detailed analysis of the relationships between physical 

ergonomics, interaction patterns, and design performance. Statistical analysis revealed 

significant differences in biomechanical load and interaction patterns between 

traditional and AIGC-assisted design workflows (p < 0.05), particularly regarding 

postural variation and tool usage efficiency. 
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2.5. Data analysis methods 

2.5.1. Statistical analysis approaches 

The quantitative data analysis employed descriptive and inferential statistical 

methods using SPSS 28.0 and R 4.2.1. Initial data preprocessing included outlier 

detection using Mahalanobis distance and normality testing through Shapiro-Wilk 

tests. Missing data (< 3%) were handled using multiple imputation methods. 

• Primary statistical analyses included: Repeated measures ANOVA was 

conducted to compare biomechanical parameters across different design phases, 

with post-hoc Bonferroni corrections for multiple comparisons. Effect sizes were 

reported using partial η2. We applied functional data analysis (FDA) to examine 

postural variation patterns for time-series biomechanical data. 

Mixed-effects modeling examined the relationship between ergonomic factors 

and performance outcomes, accounting for participant-specific random effects: 

Performance 𝑖𝑗 = 𝛽0 + 𝛽1 × Ergonomic_Factor 𝑖𝑗 + 𝛽2 × AIGC_Use 𝑖𝑗 + 𝑏𝑖 + 𝜖𝑖𝑗 

where i represents participants and j represents measurement occasions. 

Non-parametric Friedman tests were used for ordinal data from usability 

assessments, while Spearman’s rank correlations examined relationships between 

subjective ratings and objective measures. Statistical significance was set at α = 0.05, 

with confidence intervals reported at 95%. 

2.5.2. Qualitative data processing 

Qualitative analysis followed a systematic thematic analysis approach adapted 

from Braun and Clarke’s six-phase framework. Interview transcripts and observational 

notes were processed using NVivo 13 software, following these steps: 

Data familiarization involved repeated reading of transcripts and reviewing video 

recordings of think-aloud sessions. Initial coding generated 147 unique codes, which 

were iteratively refined through research team discussions. Thematic development 

proceeded through axial coding, identifying relationships between categories. 

The coding framework emerged around four primary themes: 

1) Cognitive adaptation to AIGC integration. 

2) Physical comfort and tool preference. 

3) Workflow modification strategies. 

4) Professional identity and AIGC adoption. 

Two researchers established Inter-coder reliability through independent coding 

of 20% of the data, achieving a Cohen’s kappa coefficient of 0.84. Discrepancies were 

resolved through consensus discussions with a third researcher. 

2.5.3. Validation techniques 

The study employed multiple validation strategies to ensure robustness and 

reliability: 

Methodological triangulation: 

• Cross-validation of quantitative and qualitative findings. 

• Comparison of observed behaviors with self-reported experiences. 

• Integration of biomechanical data with performance metrics. 



Molecular & Cellular Biomechanics 2025, 22(2), 766. 
 

10 

Member checking was conducted through follow-up sessions with participants, 

where preliminary findings were presented, and feedback was incorporated into the 

final analysis. This process involved: 

1) Individual review sessions with participants. 

2) Group validation workshops with design professionals. 

3) Expert panel review of interpretations. 

Reliability measures: 

• Test-retest reliability for biomechanical measurements (ICC > 0.85). 

• Internal consistency of survey instruments (Cronbach’s α = 0.89). 

• Inter-rater reliability for qualitative coding (κ = 0.84). 

2.5.4. External validation 

• Peer review by three independent researchers. 

• Comparison with findings from similar studies. 

• Expert panel assessment of ecological validity. 

The integration of findings employed a convergent parallel design where 

quantitative and qualitative results were analyzed separately before being merged for 

interpretation. Discrepant findings were specifically examined to understand potential 

sources of variation and their implications for the research questions. 

Quality assurance: 

• Regular calibration of measurement instruments. 

• Standardized protocols for data collection. 

• Systematic documentation of analysis decisions. 

• Audit trail maintenance. 

• Regular team meetings for analysis review. 

Statistical power analysis confirmed adequate sample size for detecting medium 

effect sizes (d = 0.5) with 80% power at α = 0.05. The comprehensive validation 

approach enhanced the credibility and transferability of findings while acknowledging 

study limitations. 

3. Results 

3.1. Biomechanical analysis results 

The biomechanical analysis revealed significant differences in physical stress 

patterns between traditional and AIGC-assisted design tasks. Our comprehensive 

evaluation focused on muscle activity, movement efficiency, fatigue progression, and 

postural assessment across 23 participants. 

As shown in Table 3 and Figure 1, the analysis of muscle activity patterns 

demonstrated a consistent reduction in muscle activation levels during AIGC-assisted 

tasks. Most notably, the upper trapezius showed the most significant decrease in mean 

muscle activity (−3.6% MVC, p < 0.001), followed by wrist extensors (−2.7% MVC, 

p = 0.008). This reduction in muscle activation suggests that AIGC integration may 

help mitigate physical stress during design tasks. 
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Table 3. Mean muscle activity (% MVC) during design tasks (N = 23). 

Muscle Group Traditional Design AIGC-Assisted Mean Difference p-value 

Upper Trapezius 14.8 ± 2.3 11.2 ± 1.9 − 3.6 < 0.001* 

Anterior Deltoid 8.9 ± 1.7 7.3 ± 1.5 − 1.6 0.023* 

Biceps Brachii 12.4 ± 2.1 9.8 ± 1.8 − 2.6 0.015* 

Wrist Extensors 16.2 ± 2.8 13.5 ± 2.4 − 2.7 0.008* 

Note: * Statistically significant at p < 0.05; ± values represent standard deviation. 

The 3.6% MVC reduction indicates that there are ergonomic improvements in 

design work but needs information about other tasks continued for a long time. What 

does less tension in muscles mean, more productivity or less health problems? 

Converting to treatment outcomes across four weeks demonstrates potential, however, 

learning curves are required to determine and describe individual differences and 

performance standardization over time. 

 
Figure 1. Mean muscle activity (% MVC) during design tasks. 

Movement efficiency metrics (Table 4 and Figure 2) revealed interesting 

temporal patterns across design sessions. While mouse travel distance increased by 

20.2% in the second hour (156.3 ± 22.4 to 187.9 ± 25.8 m), click frequency showed a 

15.6% reduction. The tool switching time increased notably (28.6% Change), with a 

large effect size (d = 0.82), indicating potential fatigue effects on task execution 

efficiency. Perhaps most concerning was the 34.1% reduction in postural changes, 

suggesting decreased movement variability over time. 

Table 4. Movement efficiency metrics across design sessions. 

Parameter First Hour Second Hour Change (%) Effect Size (d) 

Mouse Travel Distance (m) 156.3 ± 22.4 187.9 ± 25.8 + 20.2 0.78 

Click Frequency (per min) 42.3 ± 6.8 35.7 ± 5.9 − 15.6 0.65 

Tool Switching Time (s) 2.8 ± 0.4 3.6 ± 0.6 + 28.6 0.82 

Posture Changes (per hour) 8.2 ± 1.2 5.4 ± 0.9 − 34.1 0.91 
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Figure 2. Movement efficiency metrics. 

Multiple indicators clearly evidenced fatigue development patterns (Table 5 and 

Figure 3). The median power frequency of EMG signals showed a progressive 

decrease from 65.4 ± 4.2 Hz to 54.3 ± 5.1 Hz over the one-hour session, while EMG 

amplitude increased from 127.3 ± 15.6 μV to 168.9 ± 20.4 μV. This inverse 

relationship between frequency and amplitude is a classical indicator of muscular 

fatigue development. RULA scores similarly showed a progressive increase from 3.2 

± 0.4 to 4.5 ± 0.7, indicating deteriorating posture over time. 

The postural analysis results (Table 6 and Figure 4) demonstrated substantial 

improvements in risk levels with AIGC assistance. The neck region showed the 

highest risk reduction (26.2%), followed by the shoulder (23.7%) and upper arm 

(22.2%). The overall RULA final score improved from 5.8 ± 0.7 in traditional design 

to 4.3 ± 0.5 in AIGC-assisted work, representing a 25.9% reduction in postural risk. 

These findings suggest that AIGC integration may improve postural behaviors during 

design tasks. 

Table 5. Fatigue indicators over time (15-minute intervals). 

Time Interval Median Power Frequency (Hz) EMG Amplitude (μV) RULA Score 

0–15 min 65.4 ± 4.2 127.3 ± 15.6 3.2 ± 0.4 

15–30 min 62.8 ± 4.5 142.8 ± 17.2 3.6 ± 0.5 

30–45 min 58.9 ± 4.8 156.4 ± 18.9 4.1 ± 0.6 

45–60 min 54.3 ± 5.1 168.9 ± 20.4 4.5 ± 0.7 
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Figure 3. Fatigue indicators over time. 

Table 6. Postural analysis results (RULA assessment). 

Body Region Traditional Score AIGC-Assisted Score Risk Reduction (%) 

Neck 4.2 ± 0.6 3.1 ± 0.4 26.2 

Shoulder 3.8 ± 0.5 2.9 ± 0.4 23.7 

Wrist 3.9 ± 0.5 3.2 ± 0.4 17.9 

Upper Arm 3.6 ± 0.4 2.8 ± 0.3 22.2 

Final Score 5.8 ± 0.7 4.3 ± 0.5 25.9 

Integration of these findings reveals a complex interplay between tool usage and 

biomechanical demands. While AIGC assistance generally reduces physical stress 

levels, the temporal patterns suggest that attention should still be paid to managing 

fatigue development and maintaining movement variability during extended design 

sessions. The significant improvements in postural risk scores (Table 6) provide 

strong evidence for the ergonomic benefits of AIGC integration in design workflows, 

particularly for high-risk body regions such as the neck and shoulders. 

 
Figure 4. Postural analysis. 
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3.2. User interaction patterns results 

The analysis of user interaction patterns revealed significant differences between 

novice and experienced users and notable adaptation trends over time in AIGC-

assisted design workflows. Response time analysis (Table 7 and Figure 5) 

demonstrated substantial differences between novice (n = 8) and experienced users (n 

= 15) across all interaction types. The most pronounced difference was observed in 

AIGC prompt input, where experienced users were significantly faster (8.94 ± 1.87 s) 

compared to novice users (18.62 ± 3.15 s), showing a mean difference of 9.68 seconds 

(p < 0.001). Tool selection and menu navigation showed more minor but significant 

differences, with experienced users consistently maintaining faster response times 

across all interaction categories. Error rate analysis (Table 8 and Figure 6) revealed 

interesting contrasts between traditional and AIGC-assisted design sessions. While 

AIGC-assisted design showed a 51.2% increase in input errors (from 8.4 to 12.7 

errors/hour, p < 0.01), it significantly improved in other areas. Tool misuse decreased 

by 40.4% (p < 0.01), and design revisions showed a notable reduction of 39.9% (p < 

0.01). However, the substantial increase in workflow breaks (71.1%, p < 0.001) 

suggests that AIGC integration initially disrupted established work patterns. 

The longitudinal analysis of user adaptation patterns (Table 9 and Figure 7) 

showed consistent improvement across all metrics over the 4-weeks. Task completion 

time decreased steadily from 45.3 ± 5.2 min in Week 1 to 28.9 ± 3.2 min in Week 4, 

representing a learning rate of 36.2%. AIGC command accuracy showed the most 

consistent improvement, rising from 65.4% to 91.3%, with a learning rate of 39.6%. 

The most dramatic improvement was observed in error recovery time, which 

decreased by 50.3% over the study period. 

Table 7. Response time analysis (in seconds). 

Interaction Type Novice Users (n = 8) Experienced Users (n = 15) Mean Difference p-value 

Tool Selection 2.84 ± 0.42 1.56 ± 0.28 1.28 < 0.001* 

AIGC Prompt Input 18.62 ± 3.15 8.94 ± 1.87 9.68 < 0.001* 

Design Modification 12.45 ± 2.31 6.78 ± 1.42 5.67 < 0.001* 

Menu Navigation 4.32 ± 0.67 2.15 ± 0.34 2.17 < 0.001* 

Note: * Statistically significant at p < 0.05; ± values represent standard deviation. 

 
Figure 5. Response time analysis. 
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Table 8. Error rates and types across design sessions. 

Error Category Traditional Design AIGC-Assisted Change (%) Statistical Significance 

Input Errors 8.4 ± 1.2/hour 12.7 ± 1.8/hour + 51.2 p < 0.01* 

Tool Misuse 5.2 ± 0.8/hour 3.1 ± 0.5/hour − 40.4 p < 0.01* 

Workflow Breaks 3.8 ± 0.6/hour 6.5 ± 0.9/hour + 71.1 p < 0.001* 

Design Revisions 15.3 ± 2.1/hour 9.2 ± 1.4/hour − 39.9 p < 0.01* 

 

Figure 6. Error rates analysis. 

Table 9. User adaptation patterns over time (4-week period). 

Metric Week 1 Week 2 Week 3 Week 4 Learning Rate (%) 

Task Completion Time (Min) 45.3 ± 5.2 38.7 ± 4.6 32.4 ± 3.8 28.9 ± 3.2 36.2 

AIGC Command Accuracy (%) 65.4 ± 7.8 75.2 ± 8.3 84.6 ± 8.9 91.3 ± 9.2 39.6 

Tool Switching Speed (s) 4.8 ± 0.6 3.9 ± 0.5 3.2 ± 0.4 2.8 ± 0.3 41.7 

Error Recovery Time (s) 28.6 ± 3.4 22.3 ± 2.8 17.5 ± 2.2 14.2 ± 1.8 50.3 

 
Figure 7. User adaptation patterns over time. 
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Workflow integration analysis (Table 10) revealed substantial improvements 

between initial and adapted phases. AIGC tool usage frequency more than doubled (+ 

132.5%), while Traditional-AIGC switching efficiency improved by 31.1%. The most 

striking improvement was in custom shortcut implementation, showing an 184.6% 

increase, suggesting that users actively optimized their workflows over time. The 

overall workflow optimization score improved from 6.4/10 to 8.7/10, representing a 

35.9% enhancement in overall workflow efficiency. These findings suggest a clear 

pattern of adaptation and optimization in user interaction with AIGC tools, 

characterized by initial challenges followed by significant improvements in efficiency 

and accuracy. The substantial differences between novice and experienced users 

highlight the importance of proper training and support during the initial 

implementation phase of AIGC tools in design workflows. The data also indicates that 

while specific errors may increase with AIGC integration, the overall efficiency and 

quality of design work improves as users adapt to the new workflow paradigm. 

Table 10. Workflow integration analysis. 

Integration Aspect Initial Phase Adapted Phase Improvement (%) 

AIGC Tool Usage Frequency (Per hour) 12.3 ± 1.8 28.6 ± 3.2 + 132.5 

Traditional-AIGC Switching Efficiency 68.4% ± 7.2 89.7% ± 8.4 + 31.1 

Custom Shortcut Implementation 5.2 ± 0.8 14.8 ± 1.6 + 184.6 

Workflow Optimization Score 6.4/10 ± 0.7 8.7/10 ± 0.9 + 35.9 

3.3. AIGC integration impact results 

Integrating AIGC into the design workflow demonstrated substantial 

improvements across efficiency metrics, quality outcomes, and user satisfaction 

measurements. Our analysis revealed several significant patterns and transformations 

in design practices. Analysis of workflow efficiency metrics (Table 11 and Figure 8) 

showed remarkable improvements across all measured parameters. Task completion 

time has decreased significantly from 95.3 ± 12.4 min to 68.7 ± 8.9 min, representing 

a 27.9% reduction with a large effect size (d = 0.84, p < 0.001). The number of 

iterations required per design showed the most substantial improvement, decreasing 

by 33.3% (from 8.4 to 5.6 iterations). Resource usage efficiency improved 

considerably, with a 32.7% reduction in storage requirements, while team 

collaboration time decreased by 28.3%, suggesting more streamlined communication 

and decision-making processes. 

Table 11. Workflow efficiency metrics comparison (N = 23). 

Efficiency Metric Pre-AIGC Post-AIGC Change (%) Effect Size (d) 

Task Completion Time (min) 95.3 ± 12.4 68.7 ± 8.9 − 27.9 0.84* 

Iterations per Design 8.4 ± 1.2 5.6 ± 0.8 − 33.3 0.76* 

Resource Usage (MB) 842 ± 156 567 ± 98 − 32.7 0.69* 

Team Collaboration Time 45.2 ± 6.8 32.4 ± 4.9 − 28.3 0.72* 

Note: * p < 0.001. 
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Figure 8. Workflow efficiency metrics comparison. 

The study found that mean scores for Creative IIGC novation increased by a 1.8 

on a scale of 10 when AIGC tools were in use. Increased ideation speed, different 

design options, and iterative improvement were on the list of factors that made a 

difference. There also feelings of increased satisfaction from participants because of 

the ease of incorporation of the AI suggestions into their work. It also established that 

AIGC was able to present novel styles and combinations which encouraged 

originality. Also, the continuous feedback with the AI allowed for better exploration 

and improvement of risks. Such developments assert the significance of AIGC to 

enhance creative tasks, thus an ideal platform for introducing AIGC in the learning 

and practice of design. 

Quality assessment scores (Table 12 and Figure 9) consistently improved across 

all dimensions when comparing traditional and AIGC-assisted approaches. The most 

notable enhancement was observed in Creative Innovation, which increased by 1.8 

points (from 6.9 to 8.7, p < 0.001). Visual Coherence showed the second-largest 

improvement (+ 1.2 points, p < 0.001), while Technical Precision improved by 0.8 

points (p = 0.003). Even Brand Alignment, which typically requires careful human 

oversight, showed a modest but significant improvement of 0.6 points (p = 0.015). 

Table 12. Quality assessment scores (scale 1–10). 

Quality Dimension Traditional AIGC-Assisted Mean Difference p-value 

Visual Coherence 7.2 ± 0.8 8.4 ± 0.9 + 1.2 < 0.001* 

Technical Precision 7.8 ± 0.9 8.6 ± 0.8 + 0.8 0.003* 

Creative Innovation 6.9 ± 1.1 8.7 ± 0.7 + 1.8 < 0.001* 

Brand Alignment 7.5 ± 0.8 8.1 ± 0.9 + 0.6 0.015* 

User Experience 7.3 ± 0.9 8.3 ± 0.8 + 1.0 0.002* 

Time distribution analysis (Table 13 and Figure 10) revealed varying efficiency 

gains across task phases. Initial conception showed the most dramatic improvement, 

with a 45.1% reduction in time required (from 28.4 to 15.6 min). Design development 

and refinement phases showed moderate improvements of 26.8% and 36.4%, 

respectively. Client revision time has decreased by 27.5%, suggesting that AIGC-

assisted designs require fewer iterative adjustments to meet client expectations. 
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Figure 9. Quality assessment scores. 

Table 13. Time distribution analysis (average minutes per task). 

Task Phase Traditional Workflow AIGC-Assisted Time Saved (%) 

Initial Concepting 28.4 ± 4.2 15.6 ± 2.3 45.1 

Design Development 42.6 ± 6.3 31.2 ± 4.6 26.8 

Refinement 35.2 ± 5.1 22.4 ± 3.3 36.4 

Client Revisions 25.8 ± 3.8 18.7 ± 2.8 27.5 

 
Figure 10. Time distribution analysis. 

User satisfaction metrics (Table 14 and Figure 11) showed consistent and 

significant improvements across all measured dimensions over the four-week study 

period. All satisfaction metrics improved by 1.1 points on a 5-point scale (p < 0.001 

for all metrics). Output Quality received the highest final rating (4.6/5), followed by 

Work Satisfaction (4.5/5). The uniformity of improvement (+ 1.1 points across all 

metrics) suggests a holistic enhancement of the user experience rather than 

improvements in isolated aspects. The findings indicate a strong positive impact of 

AIGC integration across multiple dimensions of design work. The consistent pattern 

of improvement in both objective metrics (efficiency and quality) and subjective 

assessments (user satisfaction) suggests that AIGC integration offers substantial 
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benefits to visual communication design workflows. The significant effect sizes 

observed in efficiency metrics, combined with significant quality improvements and 

positive user feedback, provide strong evidence of AIGC integration’s value in 

professional design practices. Particularly noteworthy is the balanced improvement 

across different aspects of the design process, suggesting that AIGC integration 

enhances not only the speed of execution but also the quality and user experience of 

design work. Reducing resource usage and team collaboration time indicates potential 

cost savings and operational efficiencies that extend beyond individual designer 

productivity. 

Table 14. User satisfaction survey results (scale 1–5). 

Satisfaction Metric Initial Rating After 4 Weeks Change Significance 

Ease of Use 3.2 ± 0.4 4.3 ± 0.3 + 1.1 p < 0.001* 

Work Satisfaction 3.4 ± 0.5 4.5 ± 0.4 + 1.1 p < 0.001* 

Creative Freedom 3.1 ± 0.6 4.2 ± 0.4 + 1.1 p < 0.001* 

Time Management 3.3 ± 0.4 4.4 ± 0.3 + 1.1 p < 0.001* 

Output Quality 3.5 ± 0.5 4.6 ± 0.4 + 1.1 p < 0.001* 

 
Figure 11. User satisfaction survey results. 

4. Conclusion and future work 

This biomechanical study examining AIGC integration in visual communication 

design has yielded significant insights into AI-assisted design workflows’ ergonomic 

and operational impacts. Our investigation of 23 professional designers over 12 weeks 

has documented substantial improvements in physical stress reduction and workflow 

efficiency. 

The findings demonstrate significant reductions in muscle activity, particularly 

in the upper trapezius (−3.6% MVC, p < 0.001), and a 25.9% improvement in postural 

risk scores. These physical benefits coincided with enhanced workflow efficiency, 

shown by a 27.9% reduction in task completion time and a 33.3% decrease in design 
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iterations. Quality metrics also improved significantly, with Creative Innovation 

showing the most substantial gain (+1.8 points, p < 0.001). 

Based on these findings, we recommend a phased implementation approach to 

AIGC integration, with particular attention to experience-specific training programs, 

given the significant performance differences between novice and experienced users. 

Regular ergonomic assessments and structured training protocols are essential for 

optimal outcomes. However, the study also revealed potential challenges, including 

increased input errors (+51.2%) and workflow disruptions. These challenges were 

primarily mitigated through adaptation over the study period, with significant 

improvements in user satisfaction across all measured dimensions (+1.1 points on a 5-

point scale, p < 0.001).  

Further research is needed to investigate the long-term effects of AIGC 

integration on designer health and creativity. The development of real-time 

biomechanical feedback systems and ergonomically optimized interfaces could further 

enhance the benefits of AIGC integration. 
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