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Abstract: This study investigates the impact of Artificial Intelligence Generated Content 

(AIGC) on teaching realistic human movement simulation in film and television education, 

with a focus on biomechanical principles. Through a 12-week randomized controlled study 

involving 46 students from three leading Chinese film academies, we examined the 

effectiveness of AIGC-based motion simulation systems compared to traditional teaching 

methods. Using a mixed-method approach, the study evaluated learning outcomes, technical 

accuracy, and user experience, emphasizing the biomechanical accuracy of simulated 

movements. Results demonstrated significantly higher performance in the AIGC group across 

multiple metrics, including motion accuracy (94.3% vs. 82.5%, p < 0.001), skill acquisition 

rates (improvement rate: 46.1% vs. 33.8%, p < 0.001), and knowledge retention (96.4% vs. 

91.1%, p < 0.001). The AIGC system showed superior technical performance with 99.7% 

uptime and motion-to-photon latency below 20 ms, ensuring real-time responsiveness crucial 

for biomechanical training. Student engagement levels were notably higher in the AIGC group 

(92.4% vs. 78.6%, p < 0.001), with improved system usability scores (SUS: 87.3/100) 

compared to industry benchmarks. This research provides empirical evidence supporting the 

integration of AIGC technologies in film and television education, particularly in simulating 

realistic human movements grounded in biomechanical principles. The findings offer valuable 

insights for curriculum development and educational technology implementation in creative 

fields. 

Keywords: Artificial Intelligence Generated Content; motion simulation; immersive learning; 

film education; virtual reality; biomechanics; educational technology 

1. Introduction 

Integrating Artificial Intelligence Generated Content (AIGC) into educational 

frameworks has emerged as a transformative force in specialized fields of study, 

particularly in film and television education, where practical skill development is 

paramount [1–3]. The simulation of realistic human movement, a cornerstone of 

animation and digital media production, has traditionally posed significant challenges 

in educational settings due to the complex nature of human motion and the technical 

limitations of conventional teaching tools [4,5]. Recent advancements in AIGC 

technologies have opened new possibilities for creating and manipulating realistic 

human movements in virtual environments [6–8]. These developments coincide with 

the growing demand for immersive learning experiences in higher education, 

particularly in disciplines requiring sophisticated visual and technical skills [9–11]. 

The film and television industry’s rapid transition towards digital production 

methodologies has further emphasized the need for innovative educational approaches 
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to effectively bridge the gap between theoretical understanding and practical 

application [12–14]. 

Despite the potential benefits of AIGC in educational contexts, there remains a 

significant research gap in understanding its effectiveness in teaching complex motion 

principles and technical skills [15–17]. While previous studies have examined the 

broader applications of artificial intelligence in education [18,19], few have 

specifically investigated the impact of AIGC on motion simulation learning within the 

context of film and television education. Furthermore, the relationship between AIGC-

based instruction and student learning outcomes in specialized creative fields remains 

largely unexplored. This study addresses these research gaps by examining the impact 

of AIGC-based motion simulation systems on learning outcomes in film and television 

education. Specifically, we investigate how AIGC technologies influence students’ 

understanding of human movement principles, ability to create realistic animations, 

and overall learning experience. The research focuses on three key aspects: (a) The 

technical accuracy and reliability of AIGC-generated motion simulations; (b) the 

educational effectiveness of AIGC-based learning systems compared to traditional 

teaching methods; and (c) the impact on student engagement and skill retention [20–

23]. 

Here is how the AIGC tools for simulating human motion improve the 

progression of student learning in film and television education mechanisms. 

Graphics, simulations, and dynamic models enhance the experience by allowing the 

learner to grasp the vital content faster than conventional learning. First of all, the 

system could be complicated for students to utilize due to the lack of practice with 

these tools, though after practice and guidance, efficiency rises. Interactive tutorials 

and specific feedback increase the learning pace even more, which makes AIGC tools 

a valuable platform for building creativity and skills [24–26]. 

The significance of this research lies in its potential to inform the development 

of more effective teaching methodologies in film and television education. As the 

industry continues to evolve with technological advancements, educational 

institutions must adapt their curricula and teaching methods to prepare students for the 

changing landscape of digital media production. Understanding the impact of AIGC 

on learning outcomes could provide valuable insights for educators and institutions 

seeking to enhance their educational programs through technology integration [27–

30]. This study employs a mixed-method approach, combining quantitative analysis 

of learning outcomes with qualitative user experience and system usability assessment. 

The research was conducted at three leading film and television academies in China, 

involving 46 students over 12 weeks. By examining the technical and pedagogical 

aspects of AIGC implementation, this study aims to comprehensively understand its 

potential as an educational tool in specialized creative fields. The findings of this 

research have implications not only for film and television education but also for the 

broader field of immersive learning and technology-enhanced education. As 

educational institutions increasingly embrace digital transformation, understanding 

the effectiveness of AIGC-based learning systems becomes crucial for informed 

decision-making in curriculum development and educational technology investment 

[31–33]. 
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The rest of the paper is organized as follows: Section 2 presents the methodology, 

Section 3 presents the results and analysis, and Section 4 concludes the paper. 

2. Methodology 

2.1. Participants 

Power analysis was calculated to assess the study’s feasibility for drawing 

definitive conclusions. An expected medium effect size of 0.5 and a desired power 

level of 0.8 meant that 50 participants were enough to ensure valid results would be 

obtained. This allows sufficient sensitivity to capture differences in human movement 

and learning accuracy.  

46 participants were recruited from China’s leading film and television 

academies: Beijing Film Academy, Shanghai Theatre Academy, and Communication 

University of China. The participants comprised 28 undergraduate students (60.9%) 

and 18 graduate students (39.1%) aged between 19 and 26 years (M = 22.4, SD = 2.1). 

The gender distribution included 25 females (54.3%) and 21 males (45.7%). All 

participants majored in either Film Production (n = 19), Television Direction (n = 15), 

or Digital Media Arts (n = 12) and had completed at least one year of professional 

study in their respective fields. To ensure relevant experience levels, inclusion criteria 

required participants to complete at least one introductory animation or motion studies 

course. None of the participants reported extensive experience with AIGC tools for 

motion simulation, though 34 (73.9%) indicated basic familiarity with traditional 

animation software. The participants were randomly assigned to either the 

experimental group (n = 23) or the control group (n = 23), with care taken to maintain 

balanced distributions of academic levels, majors, and gender across both groups. 

Before the study, all participants provided written informed consent, and the respective 

institutional review boards approved the research protocol of the participating 

academies. 

SUS is a standardized questionnaire that measures the usability of a system. They 

are a 10-item scale measured on the 5-point Likert scale, with the responses being on 

the ‘Strongly Disagree’ and ‘Strongly Agree’ continuum. The final SUS score can be 

obtained between 0 and 100; the higher the score, the better the usability. In the context 

of AIGC-driven systems designed for mimicking human motion, SUS offers a 

numerical assessment of user satisfaction and interface simplicity. A SUS score above 

68 is usually above average, suggesting that the system facilitates delivering an 

engaging learning experience free of severe usability flaws. 

2.2. Measurements and variables 

The study employed multiple measurement instruments and variables to assess 

the technical efficacy of AIGC-based motion simulation and its educational impact. 

The dependent variables were categorized into three primary domains: Learning 

performance, motion accuracy, and user experience. Learning Performance was 

measured through three instruments: (1) A standardized Motion Analysis Test (MAT) 

consisting of 30 multiple-choice items (Cronbach’s α = 0.87) that evaluated students’ 

theoretical understanding of human movement principles; (2) a Practical Skills 
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Assessment (PSA) where participants analyzed and recreated five standardized motion 

sequences, rated by three independent industry experts using a validated rubric (inter-

rater reliability: ICC = 0.89); and (3) a Project-Based Evaluation (PBE) requiring 

students to create a complete character movement sequence, assessed using a 

comprehensive scoring matrix (reliability coefficient: 0.84). 

Motion Accuracy was quantified using both objective and subjective measures. 

The objective assessment utilized the Motion Deviation Index (MDI), a computational 

metric comparing AI-generated movements with professional motion-capture data 

across 18 key body points, measured at 60 Hz. The subjective evaluation employed 

the Industry Standard Movement Rating Scale (ISMRS), a 7-point Likert scale 

assessment conducted by a panel of five professional animators (internal consistency: 

α = 0.91). User Experience was evaluated through three instruments: (1) The System 

Usability Scale (SUS), a standardized 10-item questionnaire measuring the perceived 

ease of use of the AIGC system (reliability: α = 0.88); (2) the Learning Experience 

Questionnaire (LEQ), a 25-item survey assessing engagement, motivation, and 

perceived learning effectiveness (validity coefficient: 0.86); and (3) Semi-structured 

interviews conducted with a subset of participants (n = 15) to gather qualitative 

insights about their learning experience. 

Control Variables included participants’ prior academic performance (GPA), 

previous experience with animation software (measured in months), and technological 

proficiency (assessed through a pre-study computer literacy test). Demographic 

variables such as age, gender, and academic major were also recorded and controlled 

for in the analysis. Environmental Variables were standardized across all testing 

sessions, including hardware specifications (workstations with NVIDIA RTX 3080 

GPUs), software versions (AIGC Platform v2.4), and physical workspace conditions 

(lighting, temperature, and seating arrangements). All sessions were conducted in 

dedicated computer laboratories at the participating institutions to maintain 

consistency in testing conditions. 

The measurement timeline consisted of pre-test assessments (T0), mid-

intervention evaluations at 6 weeks (T1), and post-intervention assessments at 12 

weeks (T2), allowing for the tracking of progressive changes in participant 

performance and system proficiency. All quantitative data was processed using 

Statistical Package for the Social Sciences (SPSS) version 28.0, with appropriate 

statistical tests selected based on data distribution and research questions. 

From Table 1 were occasional crashes throughout the study resulting from 

memory management issues related to generating high-fidelity movements. These 

problems have been solved using such optimization techniques as distributed 

computing and GPU acceleration. Other temporary stoppages were caused by software 

updates and collisions between two or more versions of the same software program. 

Thorough problem-solving reduced the interference, thereby maintaining data 

accuracy and participant uniformity throughout the research. 
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Table 1. Variables and measurements. 

Domain Variable Instrument Description Reliability/Validity 

Learning 

Performance 

Theoretical 

Knowledge 
Motion Analysis Test (MAT) 

30 Multiple-Choice Items Assessing 

Understanding of Human Movement 

Principles 

Cronbach’s α = 0.87 

Practical Skills 
Practical Skills Assessment 

(PSA) 

Analysis and Recreation of 5 

Standardized Motion Sequences 
ICC = 0.89 

Project 

Execution 
Project-Based Evaluation (PBE) 

Complete Character Movement Sequence 

Creation 
Reliability Coef = 0.84 

Motion Accuracy 

Technical 

Precision 
Motion Deviation Index (MDI) 

Computational comparison of 18 body 

points with professional motion-capture 

data at 60 Hz 

Technical Accuracy ± 

0.5cm 

Professional 

Assessment 

Industry Standard Movement 

Rating Scale (ISMRS) 

7-point Likert scale Evaluation by 

Professional Animators 
α = 0.91 

User Experience 

System Usability System Usability Scale (SUS) 
10-Item Questionnaire on AIGC System 

Ease of Use 
α = 0.88 

Learning 

Experience 

Learning Experience 

Questionnaire (LEQ) 

25-Item Survey on Engagement, 

Motivation, and Effectiveness 
Validity coef = 0.86 

Qualitative 

Feedback 
Semi-structured Interviews In-depth Interviews with 15 Participants Thematic Analysis 

Control Variables 

Academic 

Background 
Academic Record Review GPA and course history N/A 

Technical 

Experience 
Software Experience Survey 

Previous Animation Software Experience 

(Months) 
Test-retest r = 0.92 

Computer 

Literacy 
Computer Proficiency Test Basic Technical Competency Assessment KR-20 = 0.85 

Environmental 

Variables 

Hardware 

Performance 
System Monitoring Tools GPU, CPU, and Memory Usage Metrics Technical Logging 

Physical 

Environment 
Environmental Checklist Standardized workspace Conditions Inter-Rater κ = 0.94 

Time Points 

T0 Pre-Test Assessment Baseline Measurements N/A 

T1 
Mid-Intervention  

(6 Weeks) 
Progress Tracking N/A 

T2 Post-Intervention (12 Weeks)   

2.3. AIGC implementation framework 

Experience is a factor in using AIGC systems because younger people are more 

perceptive of new technologies, noticing the simple design and the capability to 

identify with the tools. Older learners are likely to take longer to adopt the new 

learning tools because they have rarely used such tools before receiving some level of 

assistance and training. 

The AIGC Implementation Framework was designed as a three-tier architecture 

integrating motion synthesis, data processing, and immersive delivery capabilities. 

The system architecture employed a distributed computing model with a high-

performance backend server (Intel Xeon E5-2680 v4, 256GB RAM) handling the AI 

computations, a middleware layer managing data flow and processing, and a client-

side interface running on VR-ready workstations (NVIDIA RTX 3080, 32GB RAM). 

The framework utilized TensorFlow 2.8 for deep learning operations and Unity 2022.3 

for real-time rendering, connected through a custom API layer that maintained 
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consistent data throughput at 90 FPS to ensure smooth VR experiences. The movement 

data processing pipeline incorporated three key stages. In the first stage, raw motion 

data was captured using a combination of markerless tracking via Azure Kinect DK 

sensors and traditional marker-based motion capture systems (OptiTrack Prime 41). 

This dual-input approach enabled the system to build a comprehensive motion 

database while validating the accuracy of markerless tracking. The second stage 

implemented a novel deep learning model based on a modified transformer 

architecture, processing the captured movements through a series of attention layers 

to generate natural human motion patterns. The final stage employed a post-processing 

algorithm that applied physical constraints and biomechanical rules to ensure 

movement authenticity, achieving a motion accuracy rate of 94.3% compared to 

professional reference recordings. 

Integration with immersive platforms was accomplished through a modular 

framework supporting multiple VR devices (Oculus Quest 2, HTC Vive Pro) and 

augmented reality displays (Microsoft HoloLens 2). The integration layer utilized 

OpenXR for device compatibility and implemented a custom latency compensation 

system that maintained motion-to-photon latency below 20 ms. Real-time rendering 

was optimized using Level-of-Detail (LOD) techniques and dynamic resolution 

scaling, ensuring consistent performance across different hardware configurations. 

The immersive environment supported multi-user interactions through a dedicated 

network layer using PhotonPUN, allowing up to 16 concurrent users to collaborate in 

the same virtual space with synchronized motion data. The system implemented 

WebRTC for low-latency communication, featuring a fallback mechanism to maintain 

session stability during network fluctuations. 

The framework incorporated extensive data collection and analytics capabilities, 

tracking user interactions, motion accuracy metrics, and system performance 

parameters. All data was encrypted using AES-256 and stored in a PostgreSQL 

database with automated backup systems and data versioning. The implementation 

included comprehensive logging and monitoring tools, enabling instructors to review 

student progress and system performance through a web-based dashboard. Regular 

system health checks and automated performance optimization routines were 

implemented to maintain optimal operation, with an achieved system uptime of 99.7% 

during the study period. 

This work adopts constructivism learning theory because it is an active form of 

learning that involves learners’ participation in an educative process. Employing 

simulation realism of immersive learning using AIGC (AI-generated content): 

Situated learning theory supports learning in context. AIGC makes scenarios more 

realistic with accurate human-related movements that engage learners in real-life 

situations critical in film and television learning. The reinforcement learning 

algorithms allow changes to be made in real time while the GANs enhance the visuals, 

making the learning process more interactive. Thanks to the scalability of AIGC, it is 

possible to create quality simulation copies at a relatively low cost, making education 

accessible to everyone. The use of movement, dialogue, and environmental cues in the 

learning ecosystem is made more accessible by the current developments in 

Multimodal AI systems. Thus, integrating these theories and the most progressive 
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AIGC approaches, the study synchronizes the dissemination of pedagogical theories 

with technological possibilities. 

2.4. Experimental design 

The study employed a mixed-method, randomized, controlled design over 12 

weeks. Participants were randomly assigned to either the experimental group (n = 23) 

using the AIGC-based motion simulation system or the control group (n = 23) using 

traditional animation teaching methods. Both groups received 24 instructional 

sessions, each lasting 120 min, scheduled twice weekly (Table 2). 

Table 2. Experimental design structure and schedule. 

Week Phase Session Type Experimental Group (n = 23) Control Group (n = 23) Duration Assessment Activities 

1–4 
Phase 1: 

Foundation 
Theory 

• AIGC system orientation 

• Motion principle lectures 

• VR interface training 

• Traditional 

animation tools 

• Motion principle 

lectures 

• Software training 

2 × 120 

min/week 

• Weekly MAT (30 min) 

• Practice exercises (90 

min) 

  Practical 

• AIGC motion analysis 

• Virtual movement labs 

• Real-time feedback sessions 

• Video analysis 

• Manual animation 

practice 

• Instructor feedback 

sessions 

2 × 120 

min/week 

• Skill observation logs 

• Weekly progress reports 

5–8 
Phase 2: 

Creation 
Task-based 

• VR motion generation 

• Real-time modification 

• Collaborative sessions 

• Keyframe animation 

• Traditional 

modification 

• • Individual work 

2 × 120 

min/week 

• PSA at week 6 and 8 

• Motion accuracy tests 

  Workshop 

• Virtual studio practice 

• Group critiques in VR 

• Motion library building 

• Animation 

workspace 

• Group critiques 

• Reference library 

use 

2 × 120 

min/week 

• Peer evaluations 

• Technical assessments 

9–12 
Phase 3: 

Project 
Development 

• VR project creation 

• Multi-user collaboration 

• Real-time iterations 

• Individual projects 

• Traditional 

workflow 

• Sequential iterations 

2 × 120 

min/week 

• Weekly progress review 

• Technical validation 

  Integration 

• Scene composition in VR 

• Motion sequence 

finalization 

   

The experimental protocol consisted of three distinct phases. In Phase 1 (Weeks 

1–4), both groups received foundational training in human movement principles. The 

experimental group utilized the AIGC system to analyze and manipulate pre-generated 

motion sequences, while the control group studied the same movements through 

traditional video analysis and manual animation techniques. During this phase, 

participants completed weekly Motion Analysis Tests (MAT) to assess their 

theoretical understanding (Table 3). 

Phase 2 (Weeks 5–8) focused on motion creation and manipulation. The 

experimental group used the AIGC platform’s real-time motion generation capabilities 

to create and modify character movements in VR, while the control group employed 

traditional keyframe animation techniques. Each participant completed three 

standardized tasks per week: (1) Replicating a given motion sequence; (2) modifying 
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existing movements to achieve specific emotional qualities; and (3) creating original 

movement sequences based on written scenarios. Performance was evaluated using 

the Practical Skills Assessment (PSA) rubric at weeks 6 and 8. Phase 3 (Weeks 9–12) 

emphasized project-based learning, where participants developed complete character 

movement sequences for short film scenes. The experimental group leveraged the 

AIGC system’s collaborative features to work in virtual spaces, while the control 

group used standard animation software. Weekly progress was tracked through 

instructor evaluations and peer reviews, culminating in the Project-Based Evaluation 

(PBE) in week 12. 

Table 3. Timeline of data collection points for various performance metrics. 

Week Experimental Group Activities Control Group Activities Assessment Points 

1–4 AIGC-based motion analysis and manipulation Traditional video analysis and manual animation Weekly MAT scores 

5–8 VR motion generation and modification Keyframe animation techniques PSA at weeks 6 and 8 

9–12 Collaborative VR project development Standard animation software project Weekly evaluations, Final PBE 

Table 3 shows the timeline of data collection points for various performance 

metrics throughout the study period. Performance measurements were conducted at 

three distinct time points: Baseline (T0), mid-intervention (T1), and post-intervention 

(T2), utilizing the comprehensive measurement framework. Data collection procedures 

were standardized across all sessions. Motion accuracy was continuously monitored 

through the MDI system for the experimental group, while control group animations 

were evaluated using traditional frame-by-frame analysis. User experience data was 

gathered through automated system logs for the experimental group and manual 

activity logs for the control group. Both groups completed identical assessment tasks 

at each evaluation point to ensure comparable performance metrics. Specific task 

parameters were carefully controlled. Participants worked with standardized reference 

movements from a professional motion capture database for motion replication tasks. 

Modification tasks used a predefined set of emotional qualities (happy, sad, angry, 

fearful) rated on the ISMRS by professional animators. Original movement creation 

tasks were based on standardized scenario descriptions, ensuring consistent 

complexity levels across both groups. All sessions were conducted in specially 

equipped laboratories with standardized environmental conditions to minimize 

confounding variables. The experimental group’s VR sessions utilized identical 

hardware configurations (as detailed in Table 1), while the control group worked on 

standardized animation workstations. Technical support was equally available to both 

groups throughout the study period. 

3. Results and analysis 

3.1. Technical performance 

In the comparative analysis outlined in Table 4, the AIGC system demonstrates 

significantly superior performance across all measured metrics in simulating realistic 

human movement compared to traditional methods. Notably, joint position accuracy 

shows a mean difference of −7.5 mm, favoring the AIGC system, with a high t-value 
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(−13.45) and an effect size (Cohen’s d) of 1.86, indicating a substantial improvement 

in spatial precision. Similarly, motion smoothness (measured in jerk/s) is markedly 

enhanced in the AIGC system, with a reduction of 0.47 jerk/s compared to the control 

group. This smoothness difference is statistically significant (t = −11.23, p < 0.001), 

with a robust effect size of 1.64, underscoring AIGC’s capability in creating fluid, 

lifelike movements. Timing precision further emphasizes AIGC’s advantages, with a 

mean timing difference of −17.5 ms and a Cohen’s d of 2.03, indicating a highly 

significant improvement in temporal accuracy. Additionally, biomechanical accuracy 

rates are considerably higher in the AIGC system, achieving an average of 94.3% 

compared to 82.5% in the control group, a difference of 11.8% (t = 12.89, p < 0.001). 

These findings collectively highlight AIGC’s effectiveness in enhancing spatial and 

biomechanical aspects of movement simulation, facilitating a more immersive 

learning experience in film and television education (see Table 4). 

The study established a moderate to big effect size (Cohen’s d = 0.5–0.8) in the 

participants’ realism of movement analysis and learning interest. These values echo 

prior simulation research motivated by AIGC, stating that realistic movements 

significantly affect simulated learning. Estimating effect size justifies the study’s 

ability to pick out relevant outcomes. 

Table 4. Movement accuracy comparison between AIGC and traditional methods. 

Metric AIGC System (n = 23) Control Group (n = 23) Mean Difference t-value p-value 
Effect Size (Cohen’s 

d) 

Joint Position 

Accuracy (mm) 
8.2 ± 1.3 15.7 ± 2.4 −7.5 −13.45 < 0.001* 1.86 

Motion Smoothness 

(jerk/s) 
0.42 ± 0.08 0.89 ± 0.15 −0.47 −11.23 < 0.001* 1.64 

Timing Precision (ms) 16.3 ± 2.1 33.8 ± 4.2 −17.5 −15.78 < 0.001* 2.03 

Biomechanical 

Accuracy (%) 
94.3 ± 2.1 82.5 ± 3.8 11.8 12.89 < 0.001* 1.78 

Note: *p < 0.001; Values presented as Mean ± SD. 

The AIGC system’s real-time rendering performance metrics align closely with 

target thresholds, highlighting its efficiency in supporting immersive experiences 

(Table 5 and Figure 1). The frame rate achieved (88.7 FPS on average) is near the 

target of 90 FPS, with a high success rate of 98.5%, ensuring smooth visual 

performance. Motion-to-photon latency is well within the optimal threshold (< 20 ms), 

averaging 18.3 ms and achieving a 97.8% success rate, which is crucial for minimizing 

visual delay and enhancing user immersion. GPU utilization and memory usage also 

remain within acceptable levels (78.4% and 13.8 GB, respectively), confirming the 

system’s capacity to handle high computational loads without compromising 

performance. These metrics demonstrate the system’s reliability in real-time 

responsiveness, which is essential for immersive learning environments. 
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Table 5. Real-time rendering performance metrics. 

Performance Metric Target Threshold Achieved Performance (Mean ± SD) Success Rate (%) System Load (%) 

Frame Rate (FPS) 90 88.7 ± 2.3 98.5 72.4 ± 5.2 

Motion-to-Photon Latency (ms) < 20 18.3 ± 1.2 97.8 65.8 ± 4.7 

GPU Utilization (%) < 85 78.4 ± 4.6 99.1 78.4 ± 4.6 

Memory Usage (GB) < 16 13.8 ± 1.7 99.4 86.3 ± 3.9 

Asset Loading Time (s) < 2.0 1.78 ± 0.24 96.7 59.2 ± 6.1 

 
Figure 1. Movement accuracy comparison between AIGC and traditional methods. 

The AIGC system exhibits strong stability and reliability over 12 weeks, as 

shown in Table 6 and Figure 2. System uptime is exceptionally high at 99.7%, 

surpassing the industry benchmark of 99.0%, which reflects the system’s robustness 

in sustained operations. The mean time between failures (487.3 h) and mean time to 

recovery (4.2 min) further underscore its reliability, with both metrics exceeding 

industry standards (> 400 h and < 10 min, respectively). Additionally, the error rate is 

low at 0.42 per 1000 operations, while data integrity is nearly perfect at 99.99%, 

surpassing the benchmark of 99.95%. These results demonstrate the AIGC system’s 

dependability for prolonged educational sessions, where system stability is crucial. 

Table 6. System stability and reliability analysis (12-week period). 

Reliability Metric Value 95% CI Industry Benchmark 

System Uptime (%) 99.7 [99.5, 99.8] > 99.0 

Mean Time Between Failures (h) 487.3 [462.8, 511.7] > 400 

Mean Time To Recovery (min) 4.2 [3.8, 4.6] < 10 

Error Rate (Per 1000 Operations) 0.42 [0.38, 0.46] < 1.0 

Data Integrity (%) 99.99 [99.98, 100] > 99.95 
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Figure 2. Real-time rendering performance metrics. 

Regression analysis in Table 7 and Figure 3 reveals the factors affecting 

movement accuracy and rendering speed. Movement accuracy is negatively 

influenced by user load and network latency, with β coefficients of −0.14 and −0.23, 

respectively, both highly significant (p < 0.001). In contrast, GPU performance 

positively impacts movement accuracy (β = 0.31, p < 0.001), underscoring the 

importance of high GPU capacity for precise movement simulation. Rendering speed 

is similarly impacted by user load and asset complexity, with negative β coefficients 

(−0.19 and −0.28), while hardware configuration positively affects rendering speed (β 

= 0.35). These findings (R2 = 0.82 for movement accuracy and R2 = 0.78 for rendering 

speed) highlight the significant influence of system resources and network conditions 

on performance, indicating areas for optimization to enhance AIGC’s effectiveness in 

immersive learning contexts. 

Table 7. Regression analysis of system performance factors. 

Dependent Variable Predictor β Coefficient Standard Error t-value p-value R2 

Movement Accuracy 

User Load −0.14 0.03 −4.67 < 0.001 0.82 

Network Latency −0.23 0.05 −4.60 < 0.001  

GPU Performance 0.31 0.06 5.17 < 0.001  

Rendering Speed 

User Load −0.19 0.04 −4.75 < 0.001 0.78 

Asset Complexity −0.28 0.05 −5.60 < 0.001  

Hardware Config 0.35 0.07 5.00 < 0.001  
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Figure 3. Regression analysis. 

3.2. Educational impact 

For the Educational Impact analysis, the findings from Tables 8–11 provide 

comprehensive insights into the effectiveness of AIGC-based learning interventions 

compared to traditional methods. Table 8 and Figure 4 highlight significant 

improvements in student learning outcomes for the AIGC group across all domains. 

Theoretical knowledge, practical skills, project execution, and overall performance 

scores are consistently higher in the AIGC group, with mean differences ranging from 

10.6 to 12.3 points. These differences are statistically significant, with effect sizes 

(Cohen’s d) all above 1.7, indicating substantial educational benefits of using AIGC 

to enhance theoretical and practical competencies in immersive learning contexts. 

Table 8. Student learning outcomes comparison (experimental vs. control groups). 

Learning Domain 
AIGC Group (n = 23) 

Mean ± SD 

Control Group (n = 23) 

Mean ± SD 
Mean Difference t-value p-value 

Effect Size (Cohen’s 

d) 

Theoretical Knowledge 

(MAT Score) 
87.4 ± 5.2 76.8 ± 6.7 10.6 6.34 < 0.001* 1.78 

Practical Skills (PSA 

Score) 
84.6 ± 4.8 72.3 ± 7.1 12.3 7.12 < 0.001* 2.03 

Project Execution (PBE 

Score) 
88.9 ± 5.6 77.5 ± 6.9 11.4 6.89 < 0.001* 1.82 

Overall Performance 86.9 ± 4.9 75.5 ± 6.2 11.4 7.23 < 0.001* 2.07 

*p < 0.001. 
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Figure 4. Student learning outcomes comparison. 

Table 9 and Figure 5 presents the progression of skill acquisition over 12 weeks. 

For all skill components (motion analysis, movement creation, and technical 

proficiency), the AIGC group demonstrates a more rapid improvement from baseline 

(T0) through 6 weeks (T1) and 12 weeks (T2), with higher mean scores at each time 

point compared to the control group. The F-values are significant, and the effect sizes 

(η2) for the AIGC group are all above 0.45, indicating a strong effect of AIGC on 

accelerating skill development over time. 

Table 9. Skill acquisition rates over time (mean scores at different time points). 

Skill Component Group T0 (Baseline) T1 (6 weeks) T2 (12 weeks) F-value p-value η2 

Motion Analysis AIGC 42.3 ± 5.4 76.8 ± 6.2 88.4 ± 4.8 24.67 < 0.001* 0.46 

 Control 41.8 ± 5.2 65.4 ± 7.1 75.6 ± 6.3 18.34 < 0.001* 0.38 

Movement Creation AIGC 38.7 ± 6.1 72.5 ± 5.8 85.9 ± 5.2 26.89 < 0.001* 0.49 

 Control 39.1 ± 5.9 61.8 ± 6.7 73.2 ± 7.1 19.45 < 0.001* 0.41 

Technical Proficiency AIGC 45.2 ± 4.8 79.4 ± 5.5 89.7 ± 4.6 28.56 < 0.001* 0.52 

 Control 44.8 ± 4.9 68.2 ± 6.4 76.8 ± 5.9 20.78 < 0.001* 0.43 

*p < 0.001; η2 = partial eta squared effect size. 
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Figure 5. Skill acquisition rates over time. 

In Table 10 and Figure 6, the AIGC group shows better knowledge retention 

three months after the intervention, particularly in practical application and technical 

skills, with 96% and 96.1% retention rates, respectively. Theoretical knowledge 

retention is slightly lower but still high at 97%. Although retention rates are also 

significant in the control group, they are generally lower, especially for technical skills 

(89.7%), suggesting AIGC’s role in promoting longer-lasting learning effects. Table 

11 illustrates that key predictors—such as system usage time, practice frequency, prior 

experience, and engagement level—significantly influence learning outcomes across 

all domains. System usage time and practice frequency are particularly influential, 

with β coefficients around 0.4–0.5 for all outcome variables. These results (R2 values 

ranging from 0.72 to 0.81) imply that frequent interaction with AIGC systems 

enhances learning outcomes, emphasizing the importance of practice and engagement 

in maximizing the educational impact of AIGC-based simulations. In summary, the 

results in Tables 8–11 underscore the substantial educational benefits of AIGC in 

immersive learning. The observed improvements in learning outcomes, skill 

acquisition rates, retention, and predictive factors highlight AIGC’s efficacy in 

providing a robust, engaging learning environment in film and television education. 

 
Figure 6. Knowledge retention analysis. 
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Table 10. Knowledge retention analysis (3-month follow-up assessment). 

Assessment Area Initial Score (T2) Follow-up Score Retention Rate (%) t-value p-value 

AIGC Group (n = 23) 

Theoretical Knowledge 87.4 ± 5.2 84.8 ± 5.7 97.0 1.89 0.064 

Practical Application 84.6 ± 4.8 81.2 ± 5.2 96.0 2.12 0.045* 

Technical Skills 88.9 ± 5.6 85.4 ± 5.9 96.1 2.04 0.048* 

Control Group (n = 23) 

Theoretical Knowledge 76.8 ± 6.7 71.2 ± 7.1 92.7 2.78 0.010* 

Practical Application 72.3 ± 7.1 65.8 ± 7.4 91.0 3.12 0.005* 

Technical Skills 77.5 ± 6.9 69.5 ± 7.2 89.7 3.45 0.002* 

*p < 0.05. 

Table 11. Multiple regression analysis of learning outcome predictors. 

Note: *p < 0.001; η2 = partial eta squared effect size. 

3.3. User experience 

For the User Experience analysis, Tables 12–15 provide insights into student 

engagement, instructor feedback, system usability, and factors influencing usability 

for the AIGC system. Table 12 reveals that students using the AIGC system 

demonstrate significantly higher engagement levels across all metrics than the control 

group. Active participation is notably greater, with a mean difference of 13.8% (t = 

8.45, p < 0.001) and a substantial effect size (Cohen’s d = 1.96), suggesting that AIGC 

fosters active involvement. Similarly, students in the AIGC group spend more time on 

tasks (mean difference of 18.6 min per session) and dedicate more voluntary practice 

hours, with a mean difference of 8.8 h (t = 6.92, p < 0.001, d = 1.74). Peer collaboration 

Dependent Variable Predictor β Coefficient Standard Error t-value p-value R2 

Theoretical Knowledge (MAT) 

System Usage Time 0.38 0.07 5.43 < 0.001* 0.72 

Practice Frequency 0.32 0.06 5.33 < 0.001*  

Prior Experience 0.18 0.04 4.50 < 0.001*  

Engagement Level 0.28 0.05 5.60 < 0.001*  

Practical Skills (PSA) 

System Usage Time 0.45 0.08 5.63 < 0.001* 0.78 

Practice Frequency 0.41 0.07 5.86 < 0.001*  

Prior Experience 0.12 0.03 4.00 < 0.001*  

Engagement Level 0.35 0.06 5.83 < 0.001*  

Project Execution (PBE) 

System Usage Time 0.42 0.08 5.25 < 0.001* 0.75 

Practice Frequency 0.39 0.07 5.57 < 0.001*  

Prior Experience 0.15 0.04 3.75 < 0.001*  

Engagement Level 0.33 0.06 5.50 < 0.001*  

Motion Accuracy (MDI) 

System Usage Time 0.48 0.09 5.33 < 0.001* 0.81 

Practice Frequency 0.43 0.08 5.38 < 0.001*  

Prior Experience 0.16 0.04 4.00 < 0.001*  

Engagement Level 0.37 0.07 5.29 < 0.001*  
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and question-asking frequency are also significantly higher, indicating that AIGC 

encourages a collaborative learning environment that actively engages students. 

Table 12. Student engagement level analysis (N = 46). 

Engagement Metric AIGC Group (n = 23) Control Group (n = 23) Mean Difference t-value p-value Effect Size (d) 

Active Participation (%) 92.4 ± 4.8 78.6 ± 6.3 13.8 8.45 < 0.001* 1.96 

Time on Task (min/session) 108.3 ± 12.4 89.7 ± 15.2 18.6 7.89 < 0.001* 1.82 

Voluntary Practice Hours 24.6 ± 5.2 15.8 ± 4.9 8.8 6.92 < 0.001* 1.74 

Peer Collaboration Events 18.4 ± 3.6 11.2 ± 3.2 7.2 7.34 < 0.001* 1.88 

Question-Asking Frequency 8.2 ± 1.8 5.4 ± 1.6 2.8 5.67 < 0.001* 1.64 

*p < 0.001. 

Table 13 and Figure 7 show that instructor feedback reflects a steady 

improvement in student progress, motivation, technical competence, and creative 

application for the AIGC group over 12 weeks. Scores for student progress increased 

from 3.8 to 4.6 (F = 18.45, p < 0.001, η2 = 0.42), showing a significant improvement 

in perceived progress. Learning motivation and technical competence also show strong 

growth, with η2 values of 0.38 and 0.44, respectively, indicating a considerable effect 

of AIGC on these areas. The control group shows improvement but at a lower rate, 

suggesting that the AIGC system fosters a more dynamic and motivating learning 

environment. The System Usability Scores (SUS) in Table 14 indicate that the AIGC 

system exceeds industry benchmarks across all usability components. Scores for ease 

of use, learnability, efficiency, error prevention, and user satisfaction are significantly 

higher than benchmarks, with overall SUS scores reaching 87.3, compared to the 

industry standard of 77.8 (t = 7.12, p < .001). This high usability rating underscores 

the AIGC system’s ability to offer an intuitive, efficient, and user-friendly experience, 

which likely contributes to enhanced engagement and satisfaction in learning. 

 
Figure 7. Instructor feedback analysis. 
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Table 13. Instructor feedback analysis (5-point likert scale). 

Assessment Category Week 4 Week 8 Week 12 F-value p-value η2 

AIGC Group (n = 23) 

Student Progress 3.8 ± 0.4 4.2 ± 0.3 4.6 ± 0.3 18.45 < 0.001* 0.42 

Learning Motivation 4.1 ± 0.3 4.4 ± 0.4 4.7 ± 0.2 16.78 < 0.001* 0.38 

Technical Competence 3.6 ± 0.5 4.3 ± 0.3 4.5 ± 0.3 19.23 < 0.001* 0.44 

Creative Application 3.7 ± 0.4 4.1 ± 0.4 4.4 ± 0.3 15.67 < 0.001* 0.36 

Control Group (n = 23) 

Student Progress 3.6 ± 0.5 3.8 ± 0.4 4.0 ± 0.4 12.34 < 0.001* 0.29 

Learning Motivation 3.5 ± 0.4 3.7 ± 0.5 3.9 ± 0.4 11.56 < 0.001* 0.27 

Technical Competence 3.4 ± 0.5 3.7 ± 0.4 3.9 ± 0.4 13.45 < 0.001* 0.31 

Creative Application 3.5 ± 0.4 3.8 ± 0.4 4.0 ± 0.3 12.89 < 0.001* 0.30 

*p < 0.001. 

Table 14. System usability scores (SUS) analysis. 

Usability Component AIGC System Score Industry Benchmark t-value p-value 

Ease of Use 87.4 ± 4.2 78.0 6.78 < 0.001* 

Learnability 84.6 ± 5.1 75.0 5.89 < 0.001* 

Efficiency 88.9 ± 3.8 80.0 7.23 < 0.001* 

Error Prevention 86.2 ± 4.5 77.0 6.34 < 0.001* 

User Satisfaction 89.3 ± 4.0 79.0 7.56 < 0.001* 

Overall SUS Score 87.3 ± 4.3 77.8 7.12 < 0.001* 

Note: *p < 0.001; η2 = partial eta squared effect size. 

The correlation matrix in Table 15 illustrates strong, positive relationships 

between usability factors, with user satisfaction showing the highest correlations with 

ease of use (0.76) and efficiency (0.75). These correlations (all significant at p < 0.001) 

suggest that ease of use, efficiency, and error prevention are key contributors to user 

satisfaction. This alignment among usability factors underscores the interconnected 

nature of usability elements, where improvements in one area, like ease of use, 

positively influence overall satisfaction and usability perception. In summary, findings 

from Tables 12–15 indicate that the AIGC system provides an engaging and 

supportive learning environment with high usability. The system’s positive impact on 

student engagement and instructor-assessed outcomes, coupled with high usability 

scores, highlights its effectiveness in enhancing the user experience in immersive 

learning for film and television education. 

Table 15. System usability factors correlation matrix. 

Factor 1 2 3 4 5 

1. Ease of Use 1.00     

2. Learnability 0.72* 1.00    

3. Efficiency 0.68* 0.65* 1.00   

4. Error Prevention 0.64* 0.59* 0.71* 1.00  

5. User Satisfaction 0.76* 0.70* 0.75* 0.67* 1.00 

*p < 0.001. 



Molecular & Cellular Biomechanics 2025, 22(1), 765.  

18 

Implementing AIGC in film and television education replaces the teacher from a 

knowledge transmitter to a guide and a tutor. Teachers help students analyze and apply 

human movement simulated data creatively and accurately while embracing 

professional and ethical principles and technical proficiency. AIGC leads to automatic 

and activities-based learning with minimal direct instruction. Nevertheless, teachers 

will have to learn to incorporate AIGC systems to offer helpful feedback and to 

incorporate the simulations within the other goals of the learning process. This 

transition encourages the development of collaborative learning spaces where ideas 

can be created, and problem-solving becomes key. 

4. Conclusion and future work 

This research has demonstrated the substantial potential of AIGC technology in 

revolutionizing the teaching of realistic human movement in film and television 

education. The comprehensive analysis of technical and educational outcomes reveals 

several significant conclusions with important implications for educational practice 

and future research. The AIGC-based system’s superior motion accuracy and technical 

reliability performance establish a strong foundation for its implementation in 

educational settings. The achievement of 94.3% motion accuracy, coupled with 

consistently low latency (18.3 ms ± 1.2) and high system stability (99.7% uptime), 

demonstrates that current AIGC technology is sufficiently mature for educational 

deployment. These technical capabilities directly translated into improved learning 

outcomes, as evidenced by the significantly higher performance of the experimental 

group across all measured metrics. Perhaps most significantly, the study revealed 

substantial improvements in student engagement and learning retention. The AIGC 

group’s higher engagement levels (92.4% vs. 78.6%) and superior knowledge 

retention rates (96.4% vs 91.1%) suggest that the technology facilitates more effective 

learning and creates a more engaging and sustainable educational experience. The 

positive correlation between system usage time and learning outcomes (R2 = 0.81) 

further supports the educational value of AIGC-based instruction. However, several 

limitations should be acknowledged. The study’s relatively small sample size (N = 46) 

and focus on Chinese institutions may limit its generalizability to other educational 

contexts. Additionally, the 12-week duration, while sufficient for observing immediate 

impacts, may not fully capture long-term learning outcomes and skill retention. 

Future research directions should include longitudinal studies examining the 

long-term impact of AIGC-based learning, investigating specific pedagogical 

strategies that optimize AIGC technology use, and exploring potential applications in 

related creative fields. Additionally, studies examining the cost-effectiveness and 

scalability of AIGC implementation in various educational settings would provide 

valuable insights for institutions considering technology adoption. 
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