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Abstract: This study explores the application of Internet of Things (IoT) devices and 

biochemical sensors in sports performance monitoring, focusing on the biomechanical force 

characteristics of athletes to address limitations in traditional methods, such as limited data 

types, poor real-time accuracy, and insufficient visualization. Emphasizing 

mechanobiological principles, the analysis targets key force-producing regions of the 

body—such as the feet, legs, and torso—to optimize energy efficiency, motion precision, and 

overall athletic performance. Biochemical sensors were employed to monitor real-time 

biomechanical and physiological data, while IoT devices ensured accurate data transmission, 

visualization, and feedback. Data accuracy was enhanced through methods such as zero 

correction, timestamp synchronization, and Kalman filtering, while data transmission 

efficiency was optimized using a lossless compression algorithm, hierarchical structuring, the 

MQTT protocol, and encryption via the AES algorithm. Data organization utilized a 

star-structured MySQL database with composite indexing for swift access. Analytical tools 

such as the Apriori algorithm for data correlation, linear discriminant analysis for feature 

extraction, and multi-source data fusion enabled detailed visualization of performance 

metrics. Experimental applications in football and sprinting demonstrated the effectiveness of 

IoT-based monitoring. Football experiments captured multi-dimensional data on technical 

characteristics, while sprint tests recorded precise performance metrics, including real-time 

speed profiling and timing accuracy. For instance, in a 100-meter sprint test, an IoT system 

measured an athlete's performance at 12.54 seconds with 100% accuracy, surpassing manual 

timing methods. These findings highlight the transformative potential of IoT devices and 

biochemical sensors in sports analytics, offering enhanced accuracy, real-time tracking, and 

actionable insights to refine athletic performance and decision-making. 

Keywords: IoT devices; sports performance monitoring; biomechanical force analysis; 

mechanobiology; data visualization; data transmission efficiency; MQTT protocol; advanced 

encryption standard 

1. Introduction 

With the continuous advancement of competitive sports, the performance levels 

of athletes have significantly improved, making the monitoring and analysis of sports 

performance increasingly critical. Accurate tracking of sports performance and 

understanding its biomechanical patterns not only helps athletes optimize their 

training outcomes but also provides coaching teams with valuable insights for 

refining training strategies. However, traditional methods of monitoring and 

analyzing sports performance often face significant challenges, including reliance on 

single data types, limited real-time accuracy, and insufficient visualization, which 

hinder their ability to provide comprehensive and actionable insights. 

In recent years, numerous studies have sought to address these limitations by 
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enhancing sports performance monitoring and analysis through advanced 

technologies and methodologies. For instance, researchers have analyzed key factors 

influencing athletic performance by monitoring various parameters during training 

sessions [1–3]. Kocakulak et al. [4] utilized nanobiosensors to collect biological data 

from athletes, exploring their applications in sports medicine and doping detection. 

Rana et al. [5] systematically reviewed wearable sensor technologies, focusing on 

their roles in communication, data fusion, and analysis across various sports 

disciplines. Plesa et al. [6] examined biomechanical variables such as eccentricity 

utilization, force-velocity relationships, and response intensity index, demonstrating 

their potential for evaluating exercise performance, with the exception of eccentricity 

utilization. Bian et al. [7] introduced wearable surface microfluidic systems for 

physiological monitoring, addressing the limitations of traditional inspection cycles 

and laboratory reliance, while enabling continuous monitoring. Raza et al. [8] 

developed graphene-based fabric sensors for applications like volleyball training, 

including spike force measurements, detecting receiving errors, and monitoring 

player positions. Similarly, Barbosa et al. [9] emphasized the contributions of 

swimming analysts to elite athlete performance, and Clemente et al. [10] tracked 

professional volleyball players, highlighting the health pressures athletes face as 

seasons progress. While these studies have significantly advanced the field, 

challenges related to real-time data accuracy and comprehensive visualization 

persist. 

Emerging technologies like the Internet of Things (IoT) present promising 

solutions to these challenges by integrating diverse systems and structures capable of 

connecting and interacting with physical objects through the Internet. IoT systems, 

comprising sensors, software, and devices, enable real-time data collection, 

transmission, and processing, creating more intelligent and efficient monitoring 

systems [11–13]. IoT has been widely applied across various domains. For example, 

Baucas et al. [14] used IoT devices to provide wireless access to healthcare services, 

addressing gaps in healthcare delivery. Hadidi et al. [15] leveraged local 

collaborative networks to utilize the computational power of IoT devices for 

vision-based applications. In industrial settings, Gungor et al. [16] proposed an 

ensemble learning framework to enhance maintenance speed and accuracy using 

Industrial IoT technologies. IoT’s ability to enhance system security has also been 

demonstrated by Cao et al. [17], who developed a remote proof scheme to ensure the 

integrity of IoT systems. Hubrechsen et al. [18] underscored the importance of 

flexible testing facilities to improve IoT device performance, while Jusak et al. [19] 

introduced a semi-automatic heart sound recognition method using IoT for disease 

detection. Furthermore, Nie et al. [20] analyzed IoT applications in agriculture, 

demonstrating their effectiveness across perception, transmission, processing, and 

application layers. 

Building on these advances, this study explores the application of IoT 

technologies to overcome the limitations of traditional sports performance 

monitoring systems. By integrating IoT with the principles of mechanobiology, this 

research aims to enhance real-time monitoring capabilities, improve data accuracy, 

and provide comprehensive visualization. Through multi-dimensional data analysis 

and innovative methodologies, this study not only advances sports performance 
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analysis but also contributes to the broader understanding of mechanobiological 

processes, paving the way for future interdisciplinary research and practical 

applications. 

2. Implementation of IoT device 

2.1. Application process 

Comprehensive monitoring and analysis of athletes’ sports performance not 

only involves analyzing the final results but also focuses on the entire biomechanical 

process of creating these results. Emphasizing the mechanobiological principles of 

force generation, such as identifying key regions like the feet, legs, and torso, the 

monitoring process integrates real-time data collection using IoT devices and 

biochemical sensors. Figure 1 summarizes the enhanced workflow of using IoT 

devices for multi-dimensional sports performance monitoring and detailed 

biomechanical analysis. 

Sensor deployment

Data collection

Data processing

Result 
visualization and 
decision making

 

Figure 1. Application process of IoT devices. 

Figure 1 illustrates the process of monitoring and analyzing sports performance 

using IoT devices. First, sensors are selected and deployed according to the specific 

data requirements for monitoring. Sensors are generally categorized as contact or 

non-contact types. Contact sensors, worn by athletes, are designed to be lightweight 

and comfortable to prevent interference with performance. Non-contact sensors, 

installed in the environment or on-site, require higher precision due to their greater 

monitoring distances to ensure data accuracy. 

During exercise, these sensors capture a variety of data points related to the 

athletes. Physiological indicators such as heart rate, blood pressure, and body 

temperature are monitored alongside technical indicators like movement speed, body 

rotation angles, and pressure distribution across key body regions. These technical 

indicators provide insights into improving movement efficiency and refining athletic 

skills. For team sports, additional tactical data, such as movement trajectories and 
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spatial coverage, is also gathered to evaluate and optimize tactical strategies. 

The collected data is transmitted to cloud computing platforms via IoT devices, 

ensuring high-speed and real-time data availability. Once uploaded, the data is 

standardized into a unified format, processed for analysis, and presented visually. 

This visualization enables athletes and coaches to interpret results quickly and 

accurately, driving more effective performance analysis. The insights derived from 

this process inform training strategies, enhance tactical planning, and contribute to 

improving overall sports performance. 

2.2. Improving the quality of data collection 

The advantage of IoT devices over manual recording is that they do not 

generate human errors, such as typing errors when inputting data or miscalculating 

results during calculations. However, no matter how precise the equipment is, errors 

cannot be completely eliminated. In order to ensure the accuracy of motion data as 

much as possible, first of all, when selecting sensors, select sensors with high 

accuracy, and it is necessary to calibrate the sensors. 

For an ideal sensor, the value of the measured data is the input value of the 

sensor, and the value read is the output value of the sensor. So, if the input value is 

set to X0 and the output value is set to Y0, the relationship between the input value 

and the output value can be recorded as: 

𝑌0 = 𝑘 ∙ 𝑋0 (1) 

Among them, 𝑘 is called the sensitivity coefficient of this sensor. According to 

the equation, the closer the sensitivity coefficient is to 1, the closer the value read by 

the sensor is to the value of the measured data. Due to environmental impact and 

aging of equipment inside sensors, sensitivity errors ∆k and zero position errors ∆𝑋 

may occur. At this time, the actual sensitivity coefficient becomes 𝑘 + ∆𝑘 and the 

input value becomes X0 + ∆X. The output value at this time is: 

𝑌1 = (𝑘 + ∆𝑘) ∙ (𝑋0 + ∆𝑋) (2) 

The value of error is the absolute difference between 𝑌0 and 𝑌1, which is: 

|𝑌1 − 𝑌0| = |𝑘 ∙ ∆𝑋 + ∆𝑘 ∙ 𝑋0 + ∆𝑘 ∙ ∆𝑋| (3) 

The final error size, as derived from the equation, is influenced by both 

sensitivity errors and zero position errors. Sensitivity errors can be mitigated using 

scaling factor correction [21], while zero position errors are addressed through zero 

correction methods. By applying these corrections, the overall error can be 

minimized, significantly enhancing data accuracy. 

In motion monitoring scenarios, the use of numerous IoT devices poses the 

challenge of maintaining data consistency across time points. Without proper 

synchronization, discrepancies can arise, leading to inaccuracies in analysis. To 

ensure data synchronization, a combination of timestamp marking and 

synchronization signals is implemented. 

Timestamp marking involves associating each data point with a precise 

timestamp, indicating the exact moment of data collection. For IoT devices, 

timestamps are generated using NTP (Network Time Protocol), providing a 
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consistent and accurate time reference. Data points with identical timestamps are 

considered as being collected simultaneously, ensuring temporal alignment. 

Synchronization signals, on the other hand, coordinate the timing of data 

collection across multiple devices. One sensor is designated as the synchronization 

source, sending signals to control the initiation or termination of data collection for 

all connected devices. This study employs electromagnetic wave signals as the 

synchronization medium due to their superior reliability compared to electrical 

signals. Electromagnetic waves are less susceptible to interference from conductor 

materials and cable designs, and their propagation speed—approaching the speed of 

light—ensures high synchronization accuracy under normal monitoring conditions. 

Figure 2 illustrates the waveform of the synchronization signal used to control 

sensor operation, highlighting the effectiveness of this method in maintaining 

synchronization and reducing errors during motion monitoring. 

 

Figure 2. Synchronous signal and sensor working waveform diagram. 

Figure 2 illustrates the waveform of a synchronization signal controlling the 

operation of three sensors. Waveform (a) represents the synchronization signal, while 

waveforms (b), (c), and (d) correspond to the outputs of three different sensors. The 

synchronization signal exhibits a periodic pattern, with the rising edge marking the 

beginning of a new recording cycle. This edge can be adjusted as needed. At the start 

of a new cycle, all three sensors’ waveforms transition from a low level to a high 

level simultaneously, signaling the commencement of data recording and ensuring 

synchronization and consistency across sensors. 

The ending times of the waveforms for sensors (b), (c), and (d) vary, as each 

sensor is configured to monitor specific types of data. For example, sensor (b) 

records blood pressure, sensor (c) monitors speed, and sensor (d) tracks heart rate 

during the athlete’s run. When the athlete finishes running, the speed sensor (c) stops 

recording since further data collection is unnecessary. However, blood pressure and 

heart rate sensors (b and d) continue recording to monitor the athlete’s recovery. If 

required, synchronization signals can also be used to align the end times of these 

sensors for specific analyses. 

To ensure the accuracy of data collected by the sensors, a Kalman filter is 

applied to reduce the effects of environmental noise and abrupt changes during the 

data collection process. These inconsistencies can compromise data stability and the 

accuracy of subsequent analyses. The Kalman filter is a recursive algorithm that 

efficiently processes noise, smooths abrupt variations, and produces stable and 
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reliable data for analysis [22,23]. 

Figure 3 illustrates the effectiveness of the Kalman filter in processing sensor 

data, showing a comparison between raw data and filtered data. The filter effectively 

reduces noise and mitigates sudden fluctuations, providing cleaner and more 

accurate data for analysis. This not only improves the reliability of the monitoring 

process but also supports more precise evaluations of athletic performance. 

 

Figure 3. Comparison of Kalman filter processing effects. 

Figure 3 presents a schematic diagram comparing the original data with the 

data processed through Kalman filtering, where the lines represent the trends of the 

data over time. Observing Figure 3, it is evident that the original data contains 

significant noise and abrupt outliers, resulting in poor stability and inconsistencies 

throughout the dataset. 

After applying the Kalman filter, the noise and outliers are significantly reduced, 

leading to a much smoother data trend. The processed data exhibits enhanced 

stability and improved readability, making it more suitable for analysis and 

interpretation. This improvement ensures that the data can reliably support 

performance evaluations and decision-making processes. 

2.3. Data transmission 

Due to the intense nature and strong adversarial nature of sports, the efficiency 

of data transmission is highly required for real-time monitoring of the sports process. 

The entire process requires real-time data transmission, and in order to improve 

transmission efficiency, network bandwidth and network latency need to be 

considered. So, this article uses compression encoding to reduce the size of data 

during transmission, specifically using the lossless compression algorithm LZW 

(Lempel-Ziv-Welch). The LZW [24,25] algorithm uses encoded data to construct 

new encoding combinations to represent repeated data sequences. This compression 

method is very suitable for compressing motion data, as there is often a large amount 

of duplicate data in motion data. For example, the movement trajectory of a football 

player on the field is continuous and has a large number of overlapping areas. The 

position data that has already passed through can be represented using encoded data, 

which improves the efficiency of compression. Table 1 shows the encoding principle 

of LZW: 
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Table 1. Encoding principles of LZW algorithm. 

Input data Indexes Content Encoded output Encoding length Encoding path 

12 A 12 A 2 - 

567 B 567 B 3 - 

90 C 90 C 2 - 

12 A 12 - 2 A-2 

7 D 7 D 1 - 

12 A 12 - 2 A-3 

90 C 90 - 2 C-4 

Table 1 illustrates an encoding method that assigns indexes to numbers during 

data compression to improve transmission efficiency. When numbers such as 12, 567, 

or 90 are encountered for the first time, they are assigned unique indexes (e.g., A, B, 

and C). For instance, when the number 12 appears again, it is automatically assigned 

the encoded index A, and represented with a new path, such as A-2, to differentiate it 

from its initial occurrence. Similarly, a second occurrence of 90 would generate a 

path like C-4. This approach ensures that continuous data is not mistakenly identified 

as duplicates when passing through the same location, enhancing the clarity of data 

encoding and reducing redundancy during transmission. 

The focus of data collection differs depending on the sport, and even within the 

same activity, different types of data hold varying levels of importance. To improve 

real-time accuracy, prioritizing the transmission of high-priority data is essential. 

This study applies hierarchical optimization [26] to process motion data, assigning 

higher priority to more critical data for efficient transmission. Figure 4 illustrates the 

specific hierarchical optimization process, showcasing how data is categorized, 

prioritized, and transmitted in a structured manner to ensure timely and accurate 

delivery of key performance metrics. 

Data classification

Data importance 

judgment

Formulate 

transmission policy

Layered 
optimization

Data monitoring  

Figure 4. Process of layered optimization. 

The process of data layering optimization is illustrated in Figure 4. Sports data 

is categorized into three main types: physiological indicators, technical indicators, 

and tactical data. The significance of these categories varies depending on the sport 

and analysis objectives. For instance, in team sports like football and basketball, 
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tactical data is often more critical than physiological indicators. Conversely, in 

individual sports such as athletics and swimming, technical indicators take 

precedence over tactical data. By assessing the relative importance of these data 

types across different sports scenarios, this study prioritizes data transmission in a 

hierarchical manner, ensuring high-priority data is transmitted first. 

During hierarchical optimization, the system continuously monitors the network 

flow status. In the event of congestion, high-priority data is promptly transmitted to 

maintain system efficiency and avoid delays in critical information delivery. 

Efficient data transmission to the cloud platform requires a reliable 

communication protocol. This study employs the MQTT communication protocol to 

connect IoT devices to the cloud. MQTT [27,28] is a lightweight protocol optimized 

for low-bandwidth environments, making it particularly suitable for IoT devices. It 

facilitates one-to-many message publishing, minimizes transmission overhead, and 

uses a streamlined protocol exchange, enabling efficient communication between 

sensors and cloud systems. Additionally, MQTT features a "Last Will and Testament" 

mechanism to notify connected clients of abnormal interruptions, enhancing system 

reliability. 

However, MQTT has a notable limitation: it lacks built-in encryption 

mechanisms, transmitting data in plaintext format, which exposes sensitive athlete 

data to risks of theft and tampering. To overcome these security challenges, this 

study integrates the AES (Advanced Encryption Standard) encryption algorithm with 

the MQTT protocol. 

AES [29,30] is a widely adopted encryption standard that succeeds the older 

DES algorithm. Its ability to process partitioned data aligns well with the 

hierarchical optimization framework of this study. The AES encryption process for 

layered data involves two stages: data preparation and encryption. In the preparation 

stage, the AES algorithm expands its default 128-bit key by generating 10 additional 

128-bit keys, resulting in a total of 11 keys. During encryption, plaintext data (e.g., 

sports motion data) is divided into 128-bit groups. Each group undergoes modulo 2 

addition with a corresponding key, producing an intermediate result. This result is 

transformed by substituting its 16 bytes with values from the S-box and reshaping 

the data into a 4×4 matrix. Subsequent transformations, including row shifting and 

column mixing, generate a new 128-bit result. This process is repeated for all keys, 

producing the final ciphertext, which secures the data for transmission. 

By integrating AES encryption with MQTT, the system ensures secure and 

efficient data transmission, addressing the security vulnerabilities of MQTT while 

maintaining the advantages of hierarchical optimization. This approach enhances the 

reliability and integrity of real-time sports performance monitoring systems, offering 

a robust solution for applying IoT technologies in biomechanical research and sports 

analytics. 

2.4. Data storage and indexing 

After data collection is completed, it must be effectively analyzed. The first step 

involves converting data collected by different IoT devices into a unified format, 

enabling seamless analysis of all datasets simultaneously. In this study, all data is 
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converted into JSON (JavaScript Object Notation) format, a lightweight and widely 

used data exchange format. JSON structures data using objects and arrays, with 

content enclosed within “{}” for objects and “[]” for arrays, providing a simple yet 

powerful representation for structured data. 

Once the data is converted into JSON format, it is stored in a multidimensional 

database. For managing athlete sports performance data, this study utilizes a 

relational database, MySQL. Unlike traditional databases that store all data in a 

single large repository, MySQL organizes data into multiple tables, significantly 

enhancing query speed and flexibility. To optimize data storage and retrieval, this 

study employs a star schema model, which includes a central fact table connected to 

multiple dimension tables. This star schema structure provides efficient organization 

and accessibility for complex queries and data analysis. 

Figure 5 illustrates the star schema model used in this study. The fact table 

stores core performance metrics, such as speed, heart rate, and pressure distribution, 

while the dimension tables contain supporting information, such as athlete profiles, 

event types, and environmental conditions. This structure allows for rapid and 

flexible queries, enabling detailed analysis of athlete performance from multiple 

perspectives, such as comparing performance across different events or assessing the 

impact of environmental factors on results. 

The combination of JSON for data unification and the star schema in MySQL 

ensures efficient storage, retrieval, and analysis of complex, multidimensional sports 

performance data, supporting comprehensive evaluations and informed 

decision-making. 

Fact 
table

Dimension 
table 1

Dimension 
table 3

Dimension 
table 2

Dimension 
table 4

 

Figure 5. Star model structure diagram. 

Figure 5 illustrates the basic structure of the star model used in this study. In 

the star model, fact tables primarily store numerical data or metrics that can be 

calculated, such as final scores in athletics or game scores in team sports. Dimension 

tables, on the other hand, record descriptive or textual data, such as the competition 

date, athlete names, event types, and other contextual details. This separation 

between fact and dimension tables facilitates efficient queries and supports 

multidimensional data analysis. 

To enhance query performance, the data stored in the database is indexed. This 
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study employs a composite indexing approach to create optimized indexes for 

frequently queried data. Composite indexing combines multiple frequently used 

fields into a single index to streamline query steps and improve retrieval efficiency. 

For example, when querying an athlete’s performance results over a specific 

period, a composite index can combine fields such as the athlete’s name, competition 

date, and results into a single information segment. This composite segment can be 

cached to minimize the number of direct queries to the database, significantly 

reducing query time and enhancing overall system performance. 

By integrating the star schema with composite indexing, the database system 

supports rapid and flexible queries, enabling detailed and efficient analysis of sports 

performance data. This approach ensures that large datasets can be processed 

effectively, supporting comprehensive evaluations and faster decision-making in 

sports analytics. 

2.5. Comprehensive analysis of data 

Data analysis is a critical step in enhancing sports performance, as it enables the 

refinement of training methods and technical movements based on empirical 

evidence. A fundamental requirement of data analysis is identifying correlations 

between different types of data. In this study, the Apriori algorithm [31,32] is 

employed to establish these correlations. In the context of association rule mining, 

each data type is treated as a dimension. A single-dimensional association rule 

involves only one type of data, while a multidimensional association rule involves 

two or more data types appearing together. 

The Apriori algorithm relies on two key concepts: support and confidence. 

Support represents the proportion of a particular data set appearing within the total 

data set. A higher support value indicates a greater prevalence of that data set. For 

example, in a 100 m sprint analysis, consider four data sets: A (good starting skills), 

B (long daily training time), C (strong sprinting ability), and D (sufficient rest before 

the race). Among 100 athletes, the numbers corresponding to these attributes are as 

follows: 30 athletes with good starting skills, 40 with long training times, 50 with 

strong sprinting ability, and 60 with sufficient rest. The support values for A, B, C, 

and D are 30%, 40%, 50%, and 60%, respectively. 

Confidence, on the other hand, represents the likelihood of one data set 

appearing given the presence of another. For example, among the 60 athletes who 

had sufficient rest (D), only 15 also had good starting skills (A). Thus, the 

confidence for the correlation between D (sufficient rest) and A (good starting skills) 

is 25%. A low confidence value, such as this one, indicates a weak correlation 

between the two data sets. 

Association rules are determined by both support and confidence, which 

together indicate the strength of the correlation between different data types. For 

instance, higher support and confidence values suggest a stronger relationship, 

providing insights into critical factors that influence performance outcomes. By 

leveraging the Apriori algorithm, this study identifies meaningful correlations in 

sports data, enabling targeted interventions to improve athlete performance. 

After associating the data, it is necessary to extract the features of the data and 
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select meaningful features for fusion. The feature set that affects sports performance 

is set to an , and the equation for calculating the athlete performance feature 

parameter δ is: 

𝛿 =
∑ 𝑎𝑛
𝑛
𝑛=1

𝜇𝑛
 (4) 

In the equation, μ represents the proportion of features for each parameter, 

representing the importance of this feature on the athlete’s performance. The feature 

extraction method used in this article is linear discriminant analysis (LDA). It 

characterizes two types of data by linearly combining their features, and then 

performs dimensionality reduction processing on them. Figure 6 shows the analysis 

principle of linear discriminant analysis. 

 

Figure 6. Principle of linear discriminant analysis. 

From Figure 6, it can be observed that linear discriminant analysis (LDA) 

projects two types of data onto the same straight line. This projection ensures that 

data points of the same type are as close to their respective projections as possible, 

while data points of different types are kept as far apart as possible. 

In the context of motion data feature extraction, LDA identifies the most 

representative features and reduces the dimensionality of the data. By focusing on 

the most impactful features, LDA minimizes the influence of non-representative data 

on the analysis results, ensuring a more accurate reflection of the athlete's 

performance. After feature extraction, the selected features are fused and presented 

in a visual format. This visualization provides an intuitive and comprehensive 

overview of an athlete’s performance, highlighting key metrics and their 

contributions to overall sports performance. Such a representation enables coaches 

and athletes to better understand and interpret performance data, facilitating targeted 

improvements in training and technique. 

3. Experimental monitoring and sports performance 

In order to explore the use of Internet equipment on sports performance 

detection and analysis, different experimental designs were conducted for different 

sports in this experiment. 

Firstly, a football match was selected for the experiment, with 11 randomly 

selected players on the field as the subjects. Each player wears a system chip to 
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collect physical data of athletes during exercise. The system chip integrates 

physiological detection and position tracking, and high-speed cameras are installed 

on the sidelines to record the player’s technical data. After the competition, the 

collected data was collected and the specific results are shown in Table 2: 

Table 2. Competition data statistics of 11 athletes. 

Player number 
Running distance 

(m) 

Average running speed 

(m/s) 

Maximum sprint speed 

(m/s) 

Fastest heart rate 

(times/min) 
Mean body temperature (℃) 

1 8364 2.3 5.4 178 36.8 

2 7643 2.4 6.2 187 37.1 

3 8143 2.7 5.9 177 37.3 

4 5646 1.6 6.4 182 36.9 

5 9773 2.6 5.8 176 37.2 

6 5874 2.1 5.2 173 37 

7 6743 1.8 7.2 191 36.7 

8 2654 1.3 3.6 156 36.5 

9 11,347 2 5.9 184 37.4 

10 8554 1.7 4.8 173 36.9 

11 7647 2.6 5 175 36.8 

Table 2 presents the statistical data of 11 football players during the 

competition, highlighting key performance metrics for each athlete. A detailed 

analysis reveals significant observations. Athlete 9 recorded the longest running 

distance, covering 11,347 m, which indicates excellent physical endurance. In 

contrast, Athlete 8, the goalkeeper, demonstrated the shortest running distance at 

2654 m. This aligns with the reduced physical demands of the goalkeeper's role, as 

also reflected in his lower average running speed and maximum sprint speed. 

Athlete 7 achieved the highest sprint speed of 7.2 m/s, showcasing exceptional 

explosive power. However, his total running distance was relatively short at 6743 m, 

suggesting a specialized role requiring critical and short bursts of speed during the 

game. Another crucial metric, the fastest heart rate, provides insights into the players’ 

physical exertion during competition. Extremely high heart rates may signal 

overexertion, necessitating post-match physical adjustments to mitigate 

fatigue-related risks such as injuries or illness. Additionally, average body 

temperature is an important physiological indicator of the players' physical condition. 

Maintaining a stable body temperature within the normal range is essential for 

optimal performance throughout the match. 

These findings underscore the potential of IoT devices to collect 

multi-dimensional performance data, enabling a comprehensive analysis of athletic 

performance. Such insights are invaluable for coaching teams, as they facilitate the 

development of more scientific and personalized training programs, ultimately 

enhancing the overall performance of the team. 

Beyond the metrics in Table 2, this study integrates additional performance data 

for Athlete 10, including passing accuracy, shooting conversion rate, activity area, 

and defensive contributions. These metrics were selected as key indicators for 
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in-depth analysis and are visually represented through radar and heat maps. Figure 7 

illustrates Athlete 10's performance during the match, offering a clear and intuitive 

depiction of his contributions across various aspects of gameplay. This visualization 

enables a more nuanced understanding of the athlete’s strengths and areas for 

improvement, supporting more targeted training and tactical adjustments. 

 

Figure 7. Visualization of football player data. 

In Figure 7, the metrics ATT (Attack), TEC (Technique), TAC (Tactics), DEF 

(Defense), and CRE (Creativity) represent the player's offensive ability, technical 

proficiency, tactical awareness, defensive capability, and creativity, respectively. 

Additionally, the hotspot map illustrates the player's primary activity areas on the 

field. Analysis of Figure 7 reveals that the player excels in offensive ability, technical 

skill, and creativity, but shows weaknesses in defensive ability and tactical 

awareness. The hotspot map indicates that the player’s main activity is concentrated 

in the attacking second zone, just in front of the opponent’s penalty area. These 

characteristics suggest that the player is particularly effective at creating offensive 

opportunities, generating threats, and scoring goals. However, their defensive 

shortcomings highlight the need for targeted defensive training to enhance overall 

performance. 

The visual representation of sports data, as demonstrated in Figure 7, provides 

an intuitive understanding of a player’s technical and tactical characteristics. Such 

visualizations facilitate detailed performance analysis and the development of 

targeted training plans, as well as more effective competition strategies. These 

methods are invaluable tools for coaches and analysts, offering actionable insights 

into athletes’ strengths and areas for improvement. 

To assess the real-time accuracy and reliability of IoT devices in sports 

performance monitoring, experiments were conducted using the 100 m sprint as a 

test scenario. Five professional sprinters and five college students participated in the 

experiment, wearing smart vests equipped with IoT devices to capture exercise 

parameters. Sensors were placed at the starting and finishing points of the track to 

record precise completion times. Simultaneously, ten professional referees manually 

timed the sprint events to provide a baseline for comparison. The results of this 

experiment are presented in Figure 8. 

This experimental setup underscores the capability of IoT devices to deliver 

high-precision, real-time data in sports monitoring. The findings validate the 

accuracy of IoT-based monitoring systems and demonstrate their potential to replace 
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traditional manual timing methods, offering superior consistency and granularity. 

These attributes make IoT devices an invaluable tool for applications in professional 

sports performance analysis and biomechanical research, enabling enhanced training, 

competition strategies, and overall athlete development. 

 

Figure 8. Timing results of 10 contestants in different ways. 

In Figure 8, numbers 1–5 represent the performance of five professional 

sprinters, while numbers 6–10 correspond to five ordinary college students. The 

recorded times are categorized into three data sets: A, the accurate time recorded by 

sensors placed on the track; B, the time recorded by the IoT smart vest; and C, the 

time recorded manually by referees. Upon analyzing Figure 8, it becomes clear that 

IoT devices provide times much closer to the accurate values compared to manual 

recordings. For instance, Contestant 9 achieved 100% accuracy with a recorded time 

of 12.54 seconds using the IoT smart vest, matching the track sensor’s measurement 

precisely. In contrast, manual timing showed significant inaccuracies, with the 

smallest discrepancy being 0.21 seconds for Contestant 4, and the largest being 0.71 

seconds for Contestant 10. 

These experimental results highlight the superior accuracy and reliability of IoT 

devices over manual timing methods in sports performance monitoring. By 

minimizing time discrepancies, IoT devices offer a critical advantage in precisely 

measuring athlete performance, which is beneficial for professional competitions and 

scientific analysis alike. 

In addition to timing data, the speed variation of the five professional sprinters 

during their 100 m sprint was analyzed, as shown in Figure 9. This data provides 

insights into athletes' speed fluctuations throughout the race, offering a deeper 

understanding of their performance dynamics and physical capabilities. Key metrics 

such as acceleration phases, peak speed, and deceleration patterns can be observed, 

shedding light on biomechanical factors affecting performance. 

By integrating precise time measurements with real-time speed monitoring, IoT 

devices demonstrate their ability to deliver multi-dimensional performance data. This 
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enables coaches and analysts to assess critical factors such as acceleration, peak 

velocity, and fatigue during a sprint. The application of IoT technology enhances the 

accuracy of performance assessments and supports the design of targeted training 

programs and strategies to optimize athletic performance. Such advancements in 

monitoring and analysis tools pave the way for more effective athletic development 

and competition preparation. 

 

Figure 9. Speed variation diagram of athletes during running process. 

Figure 9 illustrates the speed variations of athletes during the 100-meter sprint. 

Due to the similar professional training backgrounds of the athletes, their speed 

trajectories follow a generally consistent pattern. Most athletes demonstrate a rapid 

acceleration phase from the starting point to the 20-meter mark, reaching their peak 

speed between 20 and 40 meters. Following this peak, a deceleration phase is 

observed, with its intensity varying based on individual factors such as technique, 

endurance, and physical condition. In the final segment of the sprint, between 90 and 

100 meters, many athletes exhibit a finishing kick, a slight increase in speed 

resulting from their final exertion. 

The capability of IoT devices to record real-time speed variations across the 

sprint provides unmatched insights into performance dynamics during distinct phases, 

including acceleration, peak speed, deceleration, and finishing effort. This granular 

data empowers coaches to develop individualized training programs tailored to the 

specific strengths and weaknesses of each athlete. For instance, athletes with 

extended deceleration phases can benefit from targeted endurance training, while 

those exhibiting slower acceleration may require focused training to enhance 

explosive power. 

This interval-specific, real-time data collection goes beyond the limitations of 

traditional manual methods, which lack the precision and granularity to capture such 

detailed performance variations. The experimental results confirm the superior 

accuracy and responsiveness of IoT devices in tracking athletic performance. 

Furthermore, these devices are invaluable for preventing abnormalities and injuries 

by monitoring critical biomechanical data during high-intensity activities. 

By leveraging IoT technology, coaches and analysts gain the ability to make 

data-driven decisions that not only improve athletic performance but also enhance 
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athlete safety. The integration of IoT-based performance monitoring into training and 

competition settings offers transformative potential for optimizing athlete 

development and minimizing injury risks, ensuring a more scientific and 

comprehensive approach to sports analytics. 

4. Discussion 

The implementation of IoT devices in sports performance monitoring has 

revolutionized the understanding of individual athlete performance while laying the 

groundwork for advancing sports science as a discipline. By combining real-time 

data acquisition, advanced analytics, and visualization tools, IoT devices enable 

researchers to analyze the intricate relationships between physiological, technical, 

and tactical factors in greater detail than ever before. For instance, the integration of 

data such as speed, heart rate, and positional metrics can illuminate how physical and 

tactical demands during high-intensity intervals influence overall performance. 

Additionally, cross-athlete analysis allows sports scientists to identify universal 

performance trends and sport-specific requirements, leading to more refined training 

methods and competition strategies. 

Beyond performance analysis, the widespread adoption of IoT devices presents 

significant opportunities for predictive and preventive measures in sports. 

Continuous monitoring of key metrics like heart rate variability, hydration levels, 

and muscle workload allows these systems to detect early signs of fatigue, injury risk, 

or performance decline. This proactive approach ensures that athletes receive timely 

interventions, minimizing downtime and improving long-term health outcomes. 

Moreover, the integration of machine learning algorithms into IoT systems enhances 

their predictive capabilities. These algorithms can analyze historical and real-time 

data to forecast performance trajectories or identify injury risks, enabling a more 

personalized and data-driven approach to athlete management. 

These advancements benefit not only individual athletes but also the broader 

field of sports science. By incorporating elements of biomechanics, data science, and 

human physiology, IoT-driven systems foster innovation in performance 

enhancement and injury prevention. The ability to translate real-time insights into 

actionable strategies ensures that IoT technology continues to elevate the standards 

of athlete performance management while contributing to the multidisciplinary 

growth of sports science. 

5. Conclusions 

Monitoring and analyzing sports performance is a vital aspect of advancing the 

sports industry and enhancing athletic achievements. This study successfully 

demonstrated the application of IoT devices, communication protocols, and feature 

analysis technologies in collecting, analyzing, and visualizing multi-dimensional 

sports performance data. Experimental results showed that IoT devices effectively 

extracted comprehensive data during football matches and presented it through 

intuitive visual representations. These visualizations provided clearer insights into 

players' technical and tactical characteristics, facilitating improved assessments. In 

sprint event tests, IoT devices exhibited exceptional accuracy in timing 
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measurements, significantly outperforming traditional manual methods. Moreover, 

their ability to monitor real-time speed variations across different sprint phases 

deepened the understanding of athletes' biomechanical and physiological 

performance dynamics. 

Despite these promising outcomes, this study's focus on specific sports limits 

the generalizability of its findings. Future research should broaden the application of 

IoT devices to include a wider range of sports disciplines, particularly those with 

more complex performance dynamics. Additionally, the integration of advanced 

machine learning models with IoT systems could enhance data analysis and 

predictive capabilities, enabling the development of more personalized and precise 

training programs. These efforts will not only refine the insights gained from this 

study but also contribute to the broader evolution of sports performance monitoring 

technologies, further optimizing athletic performance and advancing sports science. 
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