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Abstract: This study provides an in-depth discussion of non-native accent correction 

techniques, combining phonological principles with insights from biomechanics and machine 

learning algorithms. By examining the physical aspects of speech production, such as 

articulatory movements and vocal tract dynamics, the research highlights how biomechanical 

factors influence the pronunciation characteristics of non-native speakers. The study reports on 

the current state of the art in accent correction technology, detailing how biomechanical 

analysis can enhance the understanding of speech patterns and contribute to more effective 

correction techniques. Experimental investigations verify the effectiveness of these methods 

across different language contexts, demonstrating significant improvements in pronunciation 

accuracy, fluency, and user satisfaction. By incorporating biomechanical principles, this 

research provides a new theoretical basis and technical support for the field of non-native 

accent correction, which is of positive significance for the promotion of cross-cultural 

communication, as they address the physical challenges faced by non-native speakers in 

articulating sounds specific to different languages. 

Keywords: phonetics; biomechanics; machine learning; non-native accents; correction 
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1. Introduction 

In today’s era of globalisation, the activity of non-native speakers in the 

international arena has increased significantly, and they play an important role in a 

variety of fields such as cross-cultural communication, business communication and 

educational cooperation [1]. However, differences in language accents often become 

a bottleneck affecting the communication efficiency and quality of non-native 

speakers. Traditional accent correction methods, such as one-on-one language tutoring 

and imitation exercises, are not only time-consuming and labour-intensive, but also 

have great limitations in terms of effectiveness. In this case, the accent problem of 

non-native speakers is in dire need of a more efficient and precise solution [2]. Inoue 

et al. generates transliterated text using a large language model (llm), which is then 

fed into a multilingual TTS model to synthesize accented English speech. As a 

reference system, a sequence-to-sequence stress transformation model is established 

on the synthetic parallel corpus. The validity of the selected data set in the study of 

accent switching is further verified by subjective and objective evaluation. Kaleem 

Kashif et al. proposes a multi-core extreme Learning machine (MKELM) based FAID 

multi-classification framework. The MKELM model uses a novel weighting scheme 

to classify a variety of non-native English accents, including Arabic, Chinese, Korean, 

French, and Spanish. The model first combines the MEL cepstrum coefficient (MFCC) 

and prosodic features as inputs to train pairs of binary classifiers independently, and 
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then uses a weighting scheme to distinguish categories and identify accents. Through 

experiments, the accuracy of the model reaches 84. 72% used the matching weighting 

scheme. In contrast, when using the traditional unweighted multi-classification 

scheme, the accuracy drops to 66.5%. Comparison with other models shows that the 

proposed model has significant advantages in FAID multi-class classification. 

Ghorbani et al. utilizes the embedding of advanced pre-trained language recognition 

(LID) and Speaker recognition (SID) models to improve the accuracy of accent 

classification and non-native accent assessment. The results show that using pre-

trained LID and SID models can effectively encode accent/dialect information in 

speech. In addition, the accent information encoded by LID and SID complements the 

end-to-end (E2E) accent recognition (AID) model trained from scratch. By combining 

all three embeddings, the proposed multi-embed AID system achieves excellent 

accuracy in AID. 

With the rapid development in the fields of phonetics and machine learning, 

researchers have begun to explore the application of theories and methods from these 

two disciplines to the correction of non-native accents. Research in phonetics has 

provided the scientific basis for understanding the physiological and acoustic 

underpinnings of accent differences, while advances in machine learning technology 

have provided powerful tools for automated and personalised accent correction [3]. 

The purpose of this paper is to provide insights into a non-native accent correction 

technique that incorporates phonological principles and advanced machine learning 

algorithms, aiming to enhance the automation of accent correction while ensuring 

professionalism and accuracy of the correction results. 

2. Analysis of related work and technology 

2.1. Principles of phonetics 

Phonetics is a comprehensive science that studies in depth many aspects of 

speech phenomena, including articulatory physiology, speech physics and speech 

perception [4]. In terms of articulatory physiology, phonetics studies the structure and 

function of articulatory organs such as the vocal cords, tongue and lips, and how they 

produce various phonological features through different positions and movements. For 

example, phonemes in different languages may require differences in the position of 

the tongue in the mouth. Speech physics, on the other hand, is concerned with the 

propagation properties of sound waves, such as frequency, amplitude and resonance 

peak parameters, which are important for recognising and correcting accents, 

especially the resonance peak, which reflects the resonance frequency of the vocal 

tract [5]. Finally, speech perception studies how the auditory system processes and 

understands speech signals and involves phoneme recognition, intonation and rhythm 

perception, which is important for designing more effective accent correction methods 

and ensuring that listeners can accurately understand corrected speech [6]. 

2.2. Machine learning algorithms 

Machine learning has made significant progress in the field of speech recognition 

and synthesis, mainly thanks to the application of the following classes of algorithms. 
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Deep learning algorithms, especially Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), have excelled in this field [7]. CNNs are effective 

in extracting the spatial features of speech signals: CNN carries out multiple 

convolution operations on the speech waveform through the convolution layer to 

extract the time domain and frequency domain features of the speech signal, such as 

the Maier frequency cepstrum coefficient (MFCCs), which are crucial for speech 

recognition. The voice signal may be interfered with due to ambient noise or recording 

equipment limitations. CNN can remove noise by self-learning and improve the 

quality of subsequent processing. RNNs excel in processing the time series 

information of speech signals: RNNS can process the sequence data of speech and 

capture the dependencies between different phonemes in speech, which is essential for 

synthesising natural and smooth speech. During accent correction, the RNN can 

predict the next phoneme based on the input speech sequence, thus achieving a smooth 

transition of speech. With training, RNNS can also learn to adjust the acoustic features 

of synthetic speech to match the target accent, enabling them to generate a more 

natural and native-like speech when a non-native speaker corrects the accent. 

Combining the two, such as Convolutional Long Short-Term Memory Network 

(ConvLSTM), can construct an efficient accent correction model [8]. In addition, 

Support Vector Machine (SVM), as a supervised learning algorithm, has an advantage 

in dealing with high-dimensional data and classification tasks, and through the kernel 

function trick, SVM can find the optimal classification hyperplane in nonlinearly 

differentiable problems, which is suitable for classification and correction of accent 

features [9]. Hidden Markov Models (HMMs), on the other hand, model speech 

sequences through state transfer probabilities and observation probabilities, and are 

good at handling time series data. Combining HMMs with neural network approaches 

(e.g., hybrid HMM-DNN) can further enhance the effectiveness of accent recognition 

and correction [10]. 

3. Research methods 

3.1. Data collection and pre-processing 

In conducting the collection and pre-processing of pronunciation data for non-

native speakers, we need to follow the following steps and adopt some professional 

methods and tools to ensure the quality and usability of the data. 

3.1.1. Data collection 

Compared with the use of CNN or LSTM alone, the hybrid structure has more 

advantages: 1) the information in the speech signal can be captured more 

comprehensively, thus improving the accuracy of accent correction. 2) In the process 

of accent correction, the mixed structure can assist the speech recognition system to 

better recognize the speech signal and improve the recognition accuracy. 3) The hybrid 

structure can recognize and correct errors in speech, making the speaker more 

confident in the pronunciation process, thus improving the speed and fluency of speech. 

4) Compared with the traditional accent correction method, the hybrid structure can 

reduce the computational complexity and improve the operation efficiency of the 
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model while ensuring the correction effect. Based on this, this paper chooses this 

hybrid structure to study. 

To ensure the accuracy and data diversity of the study, rigorous measures were 

taken in participant selection, recording environment setting, pronunciation content 

design and recording equipment. In terms of participant selection, we applied the 

Language Distance Scale (e.g., LESA) to quantify the difference between the native 

language and the target language, selected participants with different linguistic 

backgrounds, and assessed their pronunciation ability through standardised 

pronunciation tests (e.g., Praat Speech Analyzer software) to ensure that there was a 

difference in the pronunciation ability of the participants. For the recording 

environment, we used professional acoustic treatments, such as the use of sound-

absorbing materials to reduce reverberation time in order to meet the ISO 3382-1 

standard, and monitored the sound level meter to ensure that the background noise 

level was below the NC-15 curve [11]. For pronunciation content design, we utilise 

speech balance scales (e.g., CETRA) to ensure that the distribution of phonemes is 

balanced and includes a variety of tones, intonations, emotional states and speeds of 

speech. As for the recording equipment, we regularly calibrate the microphones to 

ensure that they comply with IEC 60268-4 and check the signal chain integrity to avoid 

distortion, thus ensuring the quality of the recordings and providing a high standard 

and quality of data for speech research projects [12]. 

3.1.2. Pre-processing 

(1) Noise Reduction 

Noise estimation: in spectral subtraction, accurate estimation of the noise 

spectrum is critical. The noise spectrum can be estimated using the minimum statistic 

method, which estimates the noise by tracking the minimum value in the Short Time 

Fourier Transform (STFT) spectrum. The pseudo-code for minimum statistic 

estimation is given below: 

def estimate_noise_spectrum(spectra, threshold = 0.1): 

noise_spectrum = np.min(spectra, axis = 0) 

noise_spectrum[noise_spectrum < threshold * np.max(noise_spectrum)] = 0 

return noise spectrum 

Power Spectrum Estimation: The Wiener filter requires accurate speech and noise 

power spectrum estimates. The power spectrum estimates can be updated using a 

recursive averaging method such as the Levinson-Dubin algorithm. The update 

Equation for the Levinson-Dubin algorithm is: 

𝑃𝑠𝑠(𝑘, 𝑛 + 1) = 𝛼𝑆𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
2 (𝑘, 𝑛) + (1 − 𝛼)𝑃𝑠𝑠(𝑘, 𝑛) 

where 𝑃𝑠𝑠(𝑘, 𝑛) is the speech power spectrum estimate at the 𝑘 frequency of the 𝑛 

frame, 𝑆𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑘, 𝑛) is the enhanced spectrum, and 𝛼 is the update factor. 

(2) Framing 

Pre-emphasis: Before sub-framing, the signal is usually pre-emphasised to 

enhance the high-frequency part of the signal and reduce the lip radiation effect. The 

Equation for pre-emphasis is: 

𝑠′(𝑛) = 𝑠(𝑛) − 𝛼𝑠(𝑛 − 1) 
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where 𝑠(𝑛) is the original signal, 𝑠′(𝑛) is the pre-emphasised signal, and 𝛼 is the pre-

emphasis coefficient (usually taking values between 0.9 and 0.98). 

Accurate frame splitting: When splitting frames, the Overlap Preservation 

Approach (OLA) can be used to ensure continuity between frames, while linear 

interpolation is used to handle frame boundaries and reduce phase distortion caused 

by frame splitting. The pseudo-code for linear interpolation is as follows: 

def linear interpolation (frame1, frame2, overlap): 

return np.linspace (frame1[-overlap:], frame2[:overlap], overlap) 

(3) Adding Windows 

Window function optimisation: In addition to the standard Hamming window, 

more complex window functions such as Blackman windows or triangular windows 

can be considered to further reduce edge effects. The Equation for the Blackman 

window is: 

w(𝑛) = 0.42 − 0.5 cos (
2𝜋𝑛

𝑁 − 1
) + 0.08 cos (

4𝜋𝑛

𝑁 − 1
) 

In general, the Blackman window function expression is obtained on the interval 

of 0 ≤ n ≤ M, where N = M/2, N is any non-zero integer, is the number of data inserted 

between the central maximum and the zero, and the interpolation width is 2N + 1. 

Window function design: Custom window functions can be designed according 

to specific application requirements, e.g. to reduce spectral leakage by optimising the 

window function’s sidelobe stage. The pseudo-code for custom window function 

design is as follows:  

def custom window (N, alpha, beta): 

n = np.arange (N) 

window= alpha − beta*np.cos (2*np.pi*n/ (N − 1)) 

return window /np.sum (window) 

3.2. Accent feature extraction 

In order to correct accents of non-native speakers more accurately, we need to 

extract and analyse accent features in depth. Below are detailed extraction methods 

for each type of accent feature, including relevant technicalities: 

3.2.1. Acoustic feature extraction 

Autocorrelation function (ACF) calculation at frame level: In order to extract the 

fundamental frequency more accurately, the speech signal is usually processed in 

frames and then the ACF is calculated on each frame. 

Pre-processing optimisation: Before calculating the ACF, the following pre-

processing steps can be used to improve the accuracy of the fundamental frequency 

extraction: 

Pre-emphasis: enhance the signal in the high frequency part with the following 

Equation: 

y[𝑛] = 𝑥[𝑛] − 𝛼𝑥[𝑛 − 1] 

where 𝑦[𝑛] is the pre-emphasised signal, 𝑥[𝑛] is the original signal, and 𝛼 is the pre-

emphasis factor (usually between 0.9 and 0.98). Noise subtraction: spectral subtraction 

or Wiener filtering is used to reduce the effect of background noise. 
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Base Frequency Estimation: The following Equation can be used to estimate the 

base frequency: 

𝐹0 =
𝑓𝑠

Δ𝑘
 

where 𝐹0 is the fundamental frequency, 𝑓𝑠 is the sampling frequency, and Δ𝑘 is the 

sample interval between peaks of the autocorrelation function. 

Resonance Peak Extraction: Optimisation of LPC coefficients: In order to 

improve the accuracy of the LPC model, the LPC coefficients can be computed using 

the recursive least squares (RLS) method or the Levinson-Durbin algorithm. 

Optimisation of prediction error: the goal of the LPC model is to minimise the 

prediction error and the following Equation can be used: 

ϵ = ∑  

𝑁

𝑛=𝑝+1

(𝑠[𝑛] − ∑  

𝑝

𝑖=1

𝑎𝑖𝑠[𝑛 − 𝑖])

2

 

where 𝜖 is the prediction error, 𝑁 is the signal length, and 𝑝 is the prediction order. 

Accuracy of resonance peak extraction: the roots of the prediction polynomial 

obtained using the LPC coefficients are calculated and then converted to resonance 

peak frequencies. The following Equation can be used: 

𝐹𝑖 =
−𝑐𝑜𝑠(𝜃𝑖)

2𝜋𝑇
 

where 𝐹𝑖  is the frequency of the 𝑖 resonance peak, 𝜃𝑖  is the 𝑖 root of the prediction 

polynomial, and 𝑇 is the sampling period. 

Duration extraction: Energy normalisation: Before calculating the duration, the 

energy of each frame can be normalised to eliminate energy differences between 

different phonemes. 

Silent frame detection: Silent frames can be excluded when calculating phoneme 

durations to avoid interference with duration estimation. 

Duration dynamic range adjustment: the dynamic range of the duration feature 

may be large, and the range can be compressed using a logarithmic transformation 

with the following Equation: 

𝐷𝑙𝑜𝑔 = log(𝐷 + 1) 

where 𝐷 is the original duration and 𝐷𝑙𝑜𝑔 is the log-transformed duration. 

3.2.2. Rhyme feature extraction 

Intonation extraction: Intonation extraction involves not only changes in 

fundamental frequency, but also dynamic changes in pitch and intonation patterns of 

speech. Smoothing of fundamental frequency contour: In order to track the 

fundamental frequency contour more accurately, the fundamental frequency data can 

be smoothed using a sliding average or a low-pass filter to reduce the effect of noise. 

Segmentation of intonation units: Dynamic Time Warping (DTW) algorithm can 

be used to align the intonation units of different speakers to extract intonation patterns. 
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Intonation modelling: Hidden Markov Models (HMM) or Recurrent Neural 

Networks (RNN) can be used to model the dynamics of intonation, as shown in the 

following equation: 

P(𝜋𝑡|𝜋𝑡−1, 𝜋𝑡−2, … , 𝜋1) = ∏  

𝑡

𝑖=1

𝑝(𝜋𝑖|𝜋𝑖−1) 

where 𝜋𝑡 denotes the value of the fundamental frequency at the 𝑡 moment. 

Stress extraction: energy-duration composite feature: stress is not only related to 

the energy and duration of the syllable, but also to the pitch and intensity of the syllable. 

Here is a more comprehensive Equation for accent detection: 

S = 𝑤𝐸 ⋅
𝐸

𝐸𝑚𝑒𝑎𝑛
+ 𝑤𝐷 ⋅

𝐷

𝐷𝑚𝑒𝑎𝑛
+ 𝑤𝐹 ⋅

𝐹0

𝐹0,𝑚𝑒𝑎𝑛
 

where 𝑤𝐸, 𝑤𝐷 and 𝑤𝐹 are the weighting coefficients, 𝐸 is the energy of the syllable, 

𝐷 is the duration of the syllable, 𝐹0 is the fundamental frequency of the syllable, and 

𝐸𝑚𝑒𝑎𝑛, 𝐷𝑚𝑒𝑎𝑛 and 𝐹0,𝑚𝑒𝑎𝑛 are the average of these features, respectively. 

Pitch and Intensity Changes: Changes in pitch and intensity can be analysed to 

aid accent detection, as shown in the following Equation: 

Δ𝐹0 = 𝐹0(𝑡) − 𝐹0(𝑡 − 1) 

Δ𝐼 = 𝐼(𝑡) − 𝐼(𝑡 − 1) 

where Δ𝐹0 is the fundamental frequency variation and Δ𝐼 is the intensity variation. 

Rhythm extraction: Beat Synchronisation Analysis: Beat Synchronization 

Analysis (BSA) can be used to identify rhythmic patterns in speech. 

Rhythm Modelling: Probabilistic models such as Hidden Markov Models (HMM) 

or Conditional Random Fields (CRF) can be used to model the sequential properties 

of rhythms. 

Rhythm Variation Analysis: To analyse the variation in time intervals between 

consonants, the following Equation can be used to calculate the coefficient of variation 

of rhythm: 

CV(𝑅) =
𝜎𝑅

𝜇𝑅
 

where 𝐶𝑉(𝑅) is the rhythmic rate, 𝑡𝑖 is the time point of the 𝑖 consonant, and 𝑁 is the 

total number of consonants. 

3.2.3. Phoneme feature extraction 

Phonological feature extraction is a very crucial step in accent correction because 

it involves how to accurately distinguish and imitate different speech units. 

Consonant feature extraction: The articulatory features of consonants include the 

place of articulation (e.g., bilabial, dental, etc.) and the manner of articulation (e.g., 

stop, fricative, etc.). 

Refinement of spectral centre of mass: When calculating the spectral centre of 

mass, the weighting of the spectrum can be further considered to better reflect the 

spectral characteristics of consonants. For example, the following Equation can be 

used: 
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𝐶𝑤 =
∑  𝐾

𝑘=1 𝑓𝑘
𝑤 ⋅ 𝑃(𝑓𝑘)

∑  𝐾
𝑘=1 𝑓𝑘

𝑤 ⋅ 𝑃(𝑓𝑘)
 

where 𝐶𝑤  is the weighted spectral centre of mass and 𝑤  is a weighting factor to 

emphasise the contribution of a particular frequency band. 

Spectral Difference Characterisation: the spectral difference of consonants can 

be calculated as shown in the following equation: 

SD = √
1

𝐾
∑  

𝐾

𝑘=1

(𝑃(𝑓𝑘) − 𝑃)2 

where 𝑆𝐷 is the spectral difference and 𝑃 is the average power. Acoustic transition 

analysis: the articulation of consonants is usually accompanied by rapid changes in the 

vocal tract, and features can be extracted by analysing these acoustic transitions. 

Vowel feature extraction: the articulatory features of vowels mainly depend on 

the position of the resonance peaks. Resonance peak trajectory analysis: in addition to 

the position of the resonance peaks alone, the trajectory of the resonance peaks over 

time can be analysed as shown in the following equation: 

T(𝐹𝑛) = {𝐹𝑛,𝑡1
, 𝐹𝑛,𝑡2

, … , 𝐹𝑛,𝑡𝑇
} 

where 𝑇(𝐹𝑛) is the time trajectory of the 𝑛 resonance peak, and 𝐹𝑛,𝑡𝑖
 is the resonance 

peak frequency at time point 𝑡𝑖. Resonance peak bandwidth analysis: the bandwidth 

of the resonance peaks is also an important feature for distinguishing vowels and can 

be calculated using the following Equation: 

B𝑊𝑛 = 𝐹𝑛,𝑝𝑒𝑎𝑘 − 𝐹𝑛,𝑏𝑎𝑠𝑒 

where 𝐵𝑊𝑛 is the bandwidth of the 𝑛 resonance peak, 𝐹𝑛,𝑝𝑒𝑎𝑘 is the peak frequency, 

and 𝐹𝑛,𝑏𝑎𝑠𝑒  is the baseline frequency. Vowel space modelling: either 

Multidimensional Scaling (MDS) or Principal Component Analysis (PCA) can be 

used to reduce the dimensionality of the resonance peak data and create a model of the 

vowel space for better understanding and correction of vowel articulation. 

3.3. Accent correction modelling 

A deep learning algorithm is used to construct an accent correction model, which 

consists of the following steps: 

3.3.1. Design of the model structure 

The model uses Convolutional Neural Network (CNN) and Long Short-Term 

Memory Network (LSTM), which is a hybrid model that combines the spatial feature 

extraction capability of CNN and the time series processing capability of LSTM. The 

specific structure is as follows: 

Input Layer: The input layer receives preprocessed speech signals, which are 

usually represented as acoustic spectrograms or Mayer spectrograms. These 

representations convert time-series speech signals into two-dimensional data, where 

one dimension is time and the other is frequency. 
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Convolutional Layer: A convolutional layer uses multiple convolutional kernels 

to extract local features of the speech signal. These convolution kernels can be of 

different sizes to capture features on different time scales. The convolution operation 

can be represented as: 

(𝑓 ∗ 𝑔)(𝑡) = ∑  

𝜏

𝑓(𝜏)𝑔(𝑡 − 𝜏) 

where 𝑓 is the input signal (in this case the acoustic spectrogram), 𝑔 is the convolution 

kernel, 𝑡 is the time index, and 𝜏 is the displacement of the convolution kernel. To 

better handle the temporal dynamics of speech signals, we can use either one-

dimensional convolution (1D CNN) or two-dimensional convolution (2D CNN) to 

capture features on both the time and frequency axes. 

Pooling Layer: The pooling layer is usually followed by the convolutional layer 

and is used to reduce the spatial dimensionality of the features while retaining the most 

important information. Commonly used pooling methods include Max Pooling and 

Average Pooling. The operation of Max Pooling can be expressed as: 

P(𝑥) = 𝑚𝑎𝑥
𝑡∈𝑥

𝑥(𝑡) 

where 𝑥 is the input feature within the pooling window and 𝑃(𝑥) is the output feature 

after pooling. 

LSTM Layer: The LSTM layer is used to process time series data and capture 

temporal dependencies. The formulation of the LSTM unit has been given earlier and 

here we emphasise on how the LSTM layer remembers the long term dependencies 

through its gating mechanism. While processing speech signals, the LSTM layer is 

able to learn the long-term temporal features in speech, which is crucial for accent 

recognition and correction. 

Fully Connected Layer: The Fully Connected Layer maps the output of the LSTM 

layer to the target dimension for the final classification or regression task. This layer 

can be represented as: 

y = 𝑊 ⋅ ℎ + 𝑏 

where 𝑦 is the output, 𝑊 is the weight matrix, ℎ is the last element of the hidden state 

sequence from the LSTM layer, and 𝑏 is the bias term in. 

3.3.2. Model training 

During the model training process, we need to focus on several key points to 

ensure the effectiveness and accuracy of the model. Below is a detailed pseudo-code 

example of the model training process based on the PyTorch framework, including 

some advanced training techniques: 

import torch 

import torch.nn as nn 

import torch.optim as optim 

from torch.utils.data import DataLoader 

from torch.utils.data.sampler import WeightedRandomSampler 

from torch.utils.tensorboard import SummaryWriter 

model= MyCNNLSTMModel0 
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if torch.cuda.is available0: 

model = model.cuda() 

criterion = nn.MSELoss() 

optimizer = optim.Adam(model.parameters0), lr=0.001, weight decay=1e-5) 

scheduler = optim.r scheduler.StepLR(optimizer, step size=10, gamma=0.1 

train loader = DataLoader(train dataset, batch size=32, shuffle=True) 

writer =SummaryWriter() 

for epoch in range(num epochs): 

model.train0 

for inputs, targets in train loader: 

if torch.cuda.is available0: 

inputs, targets =inputs.cuda(), targets.cuda() 

optimizer.zero qrad0 

outputs = model(inputs) 

loss = criterion(outputs, targets) 

loss.backward() 

optimizer.step() 

writer.add scalar('Training Loss', loss.item0, epoch * len(train loader)+ i) 

scheduler.step() 

model.eval() 

with torch.no_grad(): 

val_loss=0 

for inputs, targets in val_loader: 

if torch.cuda.is_available(): 

inputs, targets = inputs.cuda0, targets.cuda() 

outputs = model(inputs) 

val_loss += criterion(outputs, targets).item() 

val_loss /= len(val_loader) 

writer.add_scalar("Validation Loss', val_loss, epoch) 

torch.save(model.state dict(),f'model_epoch_{epoch}.pth") 

writer.close() 

3.3.3. Model optimization 

Model optimisation is a key step in improving the performance of deep learning 

models. Here are some methods for optimising CNN-LSTM models: 

Custom Loss Functions: in addition to standard loss functions such as MSE or 

CrossEntropy, loss functions can be customised according to the needs of a particular 

task. For example, for accent correction, a loss function may be needed to take into 

account both accuracy and fluency of pronunciation. 

class CustomLoss(nn.Module): 

def_init_(self): 

(CustomLoss, self)._init() 

Self.mse_loss = nn.MSELoss() 

self.ce_loss = nn.CrossEntropyLoss() 

def forward(self, outputs, targets): 

mse_loss= self.mse_loss(outputs[0], targets[0]) 
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ce_loss = self.ce_loss(outputs[1], targets[1].long()) 

return mse_loss + ce_loss 

Use different optimisers: in addition to Adam, try SGD, RMSprop, etc. Each 

optimiser has its own characteristics and may have a different impact on model 

performance. 

Momentum and weight decay: in SGD, momentum can help speed up training, 

while weight decay can reduce overfitting. 

Optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.9,weight_decay=1e-5) 

Adaptive Learning Rate Adjustment: using ReduceLROnPlateau the learning rate 

can be automatically adjusted based on the performance of the validation set. 

scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, ‘min”) 

Dropout: Adding a Dropout layer to the model can reduce overfitting. 

class MyCNNLSTMModel(nn.Module):  

#... 

self.dropout = nn.Dropout(0.5) 

#... 

Batch Normalization: Adding a Batch Normalisation layer after the CNN and 

LSTM layers can improve the stability and speed of training. 

class MyCNNLSTMModel(nn.Module): 

#... 

self.batch_norm= nn.BatchNorm1d(num_features) 

#... 

Model fusion: training multiple models and fusing their predictions can improve 

the accuracy and robustness of the final results. 

def ensemble_predictions(models, data_loader) 

predictions=[] 

for model in models: 

model.eval() 

preds=[] 

with torch.no grad(): 

for inputs in data_loader: 

preds.append(model(inputs).cpu().numpy()) 

predictions.append(np.vstack(preds)) 

return np.mean(predictions, axis=0) 

Adding an attention layer: the attention mechanism helps the model to focus on 

the important parts of the input data, which is particularly useful for speech recognition 

and accent correction. 

class Attention(nn.Module): 

def_init_(self, hidden size): 

super(Attention, self)._init_() 

self.hidden size = hidden_size 

self.attention = nn.Linear(hidden_size, 1) 

def forward(self, lstm_output): 

attention_weights = torch.softmax(self.attention(lstm_output), dim=0) 

context_vector = attention_weights * lstm_output 

context_vector = torch.sum(context_vector, dim=0) 
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return_context vector, attention weights 

4. Experiment and analysis 

4.1. Experimental data 

The data collection for this experiment followed the standards of the International 

Phonetic Association (IPA) to ensure the accuracy and consistency of the 

pronunciation data. The 100 non-native speakers were selected from different 

linguistic backgrounds, and their pronunciation data covered five languages, including 

English, French, German, Japanese and Chinese. The division of the dataset follows 

the general principles of machine learning to ensure the generalisation ability of the 

model (See Table 1). 

Table 1. Distribution of experimental data sets. 

data set English (language) French (language) German (language) Japanese (language) Chinese (language) (grand) total 

training set 35 15 10 5 5 70 

validation set 5 3 2 1 1 12 

test set 5 3 2 1 1 12 

(grand) total 45 21 14 7 7 100 

During the data acquisition process, all participants were recorded in a 

professional studio, using a uniform model of condenser microphone (e.g., Neumann 

U87) and sound card (e.g., Apogee Symphony I/O) to ensure the quality of the sound 

acquisition. The recordings were made at a sampling rate of 44.1 kHz and a resolution 

of 16 bits. In order to better understand the acoustic characteristics of the data, a 

preliminary acoustic analysis of the dataset was performed, including statistics of 

parameters such as fundamental frequency (F0), phoneme duration, and resonance 

peak frequency [13]. The following is a brief description of the acoustic characteristics 

of the training set: fundamental frequency (F0): the mean value is 140 Hz, and the 

standard deviation is 30 Hz. phoneme duration: the mean duration is 0.15 s, with a 

maximum of 0.5 s. Resonance peak frequency: the average frequency of the first 

resonance peak was 700 Hz and the average frequency of the second resonance peak 

was 1200 Hz. 

4.2. Experimental process 

1) Selection criteria for participants 

(1) Language background: Participants with different native language 

backgrounds were selected to ensure the diversity and representativeness of 

experimental data. This includes but is not limited to Chinese, English, Spanish, 

French, Arabic, etc. 

(2) Age and gender: Taking into account the possible influence of age and gender 

on pronunciation, participants of different ages were selected in the experiment, and a 

balanced ratio of men and women was ensured. 
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(3) Language level: Participants need to have a certain level of language to be 

able to understand the purpose and instructions of the experiment. Specific 

requirements for non-native speakers of the language level at least intermediate. 

(4) Listening and pronunciation ability: Participants with relatively strong 

listening and pronunciation ability were selected through listening and pronunciation 

test to ensure the smooth progress of the experiment. 

(5) Willingness to participate in the experiment: All participants are required to 

participate in the experiment voluntarily and sign informed consent. 

2) Training the model using a training set: This experiment adopts a deep learning 

architecture that combines the advantages of Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory Networks (LSTMs) in order to capture local features 

and time-series dependencies in speech signals. The specific model structure is as 

follows: 

Input layer: the inputs are acoustic feature vectors, including 39-dimensional 

MFCC features (including first-order and second-order differences), as well as 

fundamental frequency (F0) and glottal closure (GCI) extracted from the speech signal. 

Convolutional layer: multiple 1D convolutional layers are used to extract local 

features with convolutional kernel size of 3–5, step size of 1, and activation function 

of ReLU. 

Pooling layer: the convolutional layer is followed by a maximum pooling layer 

with a pooling window size of 2 to reduce the feature dimension. 

LSTM layer: the output of the convolutional layer is fed into the LSTM layer to 

learn the long term dependencies. the number of LSTM cells is 128 and a bidirectional 

LSTM is used to capture the bidirectional information of the time series. 

Fully Connected Layer: the output of the LSTM layer is spread and passed 

through two fully connected layers with the number of neurons in each layer being 

512 and 256 respectively, Dropout regularisation is used to prevent overfitting. 

Output layer: the classification results are output using softmax activation 

function, corresponding to different phoneme categories. 

During training, an Adam optimiser was used with an initial learning rate of 0.001 

and dynamically adjusted according to the performance on the validation set. The 

batch size was set to 32, and the learning rate decay rate after each epoch was 0.95. In 

addition, in order to improve the convergence speed and stability of the model, an 

Early Stopping (ESP) strategy was used, which stops the training when there is no 

improvement in the performance on the validation set for 5 consecutive epochs. 

3) Model tuning using validation sets: During the training process, validation sets 

are used to monitor the generalisation ability of the model and hyperparameter tuning 

is performed accordingly. The tuning strategies include: 

Network structure tuning: Based on the performance on the validation set, the 

depth and width of the CNN and LSTM layers are adjusted to find the best network 

configuration. 

Regularisation parameter optimisation: balancing model complexity and 

generalisation ability by adjusting the L2 regularisation factor and Dropout rate. 

Learning Rate Adjustment: use a learning rate decay strategy and dynamically 

adjust the learning rate based on the loss function values on the validation set. 
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4) Evaluating model performance on a test set: After model training is completed, 

performance is evaluated using an independent test set. The evaluation metrics include: 

Pronunciation accuracy: The accuracy of the phoneme sequences predicted by 

the model to the actual phoneme sequences is calculated, using Edit Distance as the 

evaluation metric. 

Fluency: The fluency of pronunciation is evaluated by calculating the correlation 

between the duration of predicted phonemes and the duration of actual pronunciation. 

User Satisfaction: A subjective evaluation was conducted by inviting a group of 

non-native listeners to rate the corrected pronunciation on a scale of 1–5, where 5 

means very satisfied. 

4.3. Analysis of results 

The experimental results are shown in Table 2. The accent correction technique 

proposed in this paper achieves significant improvement in pronunciation accuracy, 

fluency, and user satisfaction, showing its advancement and practicality in the field of 

non-native accent correction. 

Table 2. Comparison of experimental results. 

norm Pronunciation accuracy (%) Fluidity (%) User satisfaction (%) 

Traditional methods 75.2 68.4 70.1 

Methodology of this paper 89.6 82.3 85.7 

As can be seen from Table 2, this paper’s method significantly outperforms the 

traditional method in terms of pronunciation accuracy, fluency and user satisfaction. 

The following is a detailed analysis of the experimental results: 

(1) Pronunciation accuracy: The pronunciation accuracy of this paper’s method 

reaches 89.6%, which is 14.4 percentage points higher than the traditional method. 

This significant improvement indicates that the accent correction technique proposed 

in this paper can effectively identify and correct the pronunciation errors of non-native 

speakers, thus improving the accuracy of pronunciation. The improvement in accuracy 

is mainly attributed to the deep learning model’s in-depth understanding of acoustic 

features and learning ability [14]. 

(2) Fluency: The fluency of this paper’s method is 82.3%, which is 13.9 

percentage points higher than the traditional method. This result shows that the method 

in this paper not only focuses on the accuracy of individual phonemes, but also 

maintains the natural fluency of the entire speech sequence. The improvement in 

smoothness is due to the LSTM network’s ability to process time series data, which 

makes the transition between phonemes smoother. 

(3) User satisfaction: The user satisfaction of this paper’s method is 85.7%, which 

is 15.6 percentage points higher than the traditional method. The increase in user 

satisfaction reflects the high practical value of this paper’s method in real-world 

applications, and the users are more satisfied with the corrected pronunciation, which 

is of great significance for non-native speakers’ language learning and communication. 

To further demonstrate the effectiveness of this paper’s method, Figure 1 gives 

a graph comparing the pronunciation accuracy between the traditional method and this 
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paper’s method on the test set. The figure shows the accuracy comparison in different 

language contexts in detail, which can show the general applicability of this paper’s 

method in multilingual contexts. 

 
Figure 1. Comparison of pronunciation accuracy between the traditional method and the method in this paper. 

It is obvious from Figure 1 that the pronunciation accuracy of this paper’s 

method is better than the traditional method on all languages, which further validates 

the effectiveness of the accent correction technique proposed in this paper in non-

native accent correction. The detailed data points in the figure demonstrate the 

differences between different languages and the stable performance of this paper’s 

method on different languages. 

5. Conclusion and outlook 

In this paper, through in-depth research and innovative applications in the fields 

of phonetics and machine learning, a technical method for non-native accent 

correction is successfully proposed, and significant results have been achieved in 

experiments, significantly improving the quality of non-native speakers’ 

pronunciation [15]. The technology integrates the principles of phonetics and deep 

learning algorithms to achieve accurate recognition and effective correction of non-

native speakers’ pronunciation, which has obvious advantages compared with 

traditional methods. Future research can expand to more languages, optimise the 

model performance, develop personalised correction solutions, and apply the 

technology to education, customer service and other fields, as well as establish a data 

resource sharing platform, in order to promote the universality and practicability of 

the non-native accent correction technology, and to further play its important role in 

society. 

The hybrid structure model of CNN and LSTM may have the problem of gradient 

disappearing or gradient explosion when processing long series data. This is because 

when LSTM processes long sequence, gradient disappearance or explosion may occur 
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in its internal state update process, which makes it difficult for the model to learn 

effective features in long sequence data. 

Future improvements can be made in the following areas: 

1) Optimization loss function: Design a more robust loss function, such as 

adaptive weight loss function, to reduce the impact of noise on model performance. 

2) Simplify the model structure and reduce the complexity of the model, thereby 

improving the model reasoning speed. 

3) Adopt lightweight networks: Use lightweight networks, such as MobileNet or 

SqueezeNet, to reduce computing costs and improve real-time performance. 
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