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Abstract: This study provides insights into the application of biomechanics and digital twin 

technology in smart agriculture and its contribution to achieving the goal of carbon neutrality 

in the context of digital economy. The study analyses the application of biomechanics in the 

construction of crop growth models, the design and optimisation of agricultural machinery, and 

the improvement of agricultural soils, and reports on the role of digital twin technology in the 

monitoring of agricultural production processes, the optimal allocation of resources, and the 

early warning and prevention of disasters. The results of the study show that the integration 

and innovation of these two technologies play an important role in the carbon-neutral 

realisation of smart agriculture. By analysing the mechanical characteristics of crop growth 

through biomechanics and simulating the growing environment with digital twin technology, 

we are able to more accurately predict the response of crops to environmental changes, optimise 

planting strategies and reduce carbon emissions. Ultimately, the study proposes future 

directions for development, suggesting that technology integration, model optimisation and 

system integration and innovation will contribute to sustainable agricultural development. 
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1. Introduction 

In the context of today’s digital transformation of the global economy, the digital 

economy has become an important engine of economic development in the new era, 

and its influence has penetrated into various industrial fields, injecting new vitality 

into the transformation and upgrading of traditional industries. Especially for the 

agricultural industry, the integration and application of digital technology is promoting 

its rapid development in the direction of intelligence and precision [1]. Smart 

agriculture, as a key way of agricultural modernisation, is centred on the use of digital 

technologies such as the Internet of Things, big data, artificial intelligence, etc., to 

achieve efficient, green and sustainable development of agricultural production. In this 

process, carbon neutrality has become an important goal for the development of smart 

agriculture, which requires agricultural production activities to reduce carbon 

emissions while offsetting the remaining carbon emissions by means of carbon capture 

and carbon fixation, and ultimately achieving net-zero emissions [2]. As two cutting-

edge technologies, biomechanics and digital twin technology, their application in 

smart agriculture provides a strong technical support for the realisation of the carbon 

neutrality goal. Biomechanics, as an interdisciplinary field involving multiple 

disciplines such as biology, physics, and engineering, provides a scientific basis for 

agricultural production by studying the mechanical properties and functions of 

organisms and their tissues [3]. For example, by analysing the resistance performance 
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of crops to failure through biomechanical principles, crop planting patterns and 

agronomic measures can be optimised, thus reducing the reliance on chemical support 

materials and the environmental impact of agricultural production. Digital twin 

technology, on the other hand, is a technology that enables the simulation, analysis 

and optimisation of objects, systems or processes in the real world by creating virtual 

copies of physical entities. In smart agriculture, the application of digital twin 

technology can realise real-time monitoring and prediction of the whole process of 

agricultural production, thus improving the efficiency of resource use and reducing 

energy consumption and carbon emissions [4]. By constructing a digital twin model 

of a farm, various agricultural management strategies can be simulated and optimised 

without actually intervening in the physical farm, thus minimising the carbon footprint 

of the agricultural production process. The aim of this paper is to explore the 

application of biomechanics and digital twin technology in smart agriculture and its 

contribution to the goal of carbon neutrality. 

2. Application of biomechanics in smart agriculture 

2.1. Crop growth modelling: Application of biomechanical methods 

In the digital economy, the construction of crop growth models is a central 

component of smart agriculture. Biomechanical methods provide powerful tools for 

this field. 

2.1.1. Biomechanical modelling of crop growth 

The application of biomechanical methods in the construction of crop growth 

models is mainly through the simulation of the interaction between the crop structure 

and the environment [5]. The following is a simplified biomechanical model 

construction process: Assuming that the crop plant can be considered as an elastic rod, 

its growth model can be described by the following equation: 

𝐸 =
𝐹 ⋅ 𝐿

𝐴 ⋅ Δ𝐿
 

where: 𝐸 is Young’s modulus, which indicates the stiffness of the material; 𝐹 is the 

force acting on the crop plant; 𝐿 is the original length of the crop plant; 𝐴 is the cross-

sectional area; and Δ𝐿 is the deformation of the crop plant. With this model, it is 

possible to analyse the crop’s resistance to failure. For example, the mechanical 

properties of the crop can be optimised by adjusting planting density and fertiliser 

application strategies to improve its resistance to felling. 

2.1.2. Crop resistance analysis 

Crop’s resistance to failure is an important factor affecting yield. Using the 

principles of biomechanics, the following model for analysing the resistance to felling 

can be developed: 

𝑃𝑐𝑟 =
𝐹𝑐𝑟
𝐿 ⋅ 𝜌

 

where: 𝑃𝑐𝑟 is the critical pressure, which indicates the maximum pressure for the crop 

not to fall; 𝐹𝑐𝑟 is the critical resistance of the crop plant; 𝐿 is the height of the crop 
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plant; and 𝜌 is the mass of the plant per unit length. With this formula, the crop’s 

resistance to collapse can be calculated under different planting conditions, thus 

guiding the optimisation of planting structure. 

2.1.3. Optimisation of planting structure 

In order to improve crop yield, the planting structure can be optimised by the 

following steps: Mechanical characteristics analysis: Using the above formula, analyse 

the mechanical characteristics of the crop at different growth stages. Consideration of 

environmental factors: Establish a multi-factor coupling model by combining soil 

type, climatic conditions and other factors [6]. Planting strategy optimisation: Find the 

optimal planting strategy by simulating different planting densities, row spacing, 

fertiliser application, etc. For example, the following formula can be used to optimise 

row spacing: 

𝑑𝑜𝑝𝑡 = √
4𝐴

𝜋
 

where: 𝑑𝑜𝑝𝑡 is the optimal row spacing; 𝐴 is the leaf area index of the crop per unit 

area. 

2.2. Agricultural machinery design and optimisation: Integration and 

application of biomechanical methods 

In the context of smart agriculture, the design and optimisation of agricultural 

machinery is gradually integrating biomechanical principles to improve operational 

efficiency, reduce energy consumption, and cut carbon emissions [7]. 

2.2.1. Analysis of crop and soil mechanical properties 

When designing agricultural machinery, it is first necessary to analyse the 

mechanical properties of the crop and the soil. The following are some key mechanical 

parameters and formulas: 

Crop Mechanical Properties: The bending stress (𝜎) of the crop stalk can be 

calculated by the following formula: 

σ =
𝑀 ⋅ 𝑐

𝐼
 

where: 𝜎  is the bending stress; 𝑀 is the bending moment; 𝑐  is the distance of the 

furthest fibre from the neutral axis; and I is the sectional moment of inertia. 

Soil mechanical properties: The shear strength (𝜏) of the soil is an important 

parameter for the design of tillage machinery and can be expressed through Coulomb’s 

law: 

𝜏 = 𝑐 + 𝜎 ⋅ tan(𝜙) 

where: 𝜏 is the shear strength; 𝑐 is the cohesion of the soil; 𝜎 is the vertical stress; and 

𝜙 is the angle of internal friction of the soil. 

2.2.2. Agricultural machinery design 

Adaptable agricultural machinery can be designed by combining the mechanical 

properties of crops and soils. The following are some examples of design optimisation: 
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Cutter design: In order to reduce the energy consumption for cutting the crop, the 

blade design of the cutter can be optimised based on the following formula: 

𝑃 =
𝐹 ⋅ 𝑣

2 ⋅ 𝜋 ⋅ 𝑟
 

where: 𝑃 is the cutting power; 𝐹 is the cutting force; 𝑣 is the blade speed; and 𝑟 is the 

blade radius. By optimising the blade shape and size, the cutting force can be reduced, 

thus reducing energy consumption [8]. 

Tillage implement design: The energy consumption of a tillage implement is 

related to the resistance of the soil and can be optimised by the following formula: 

𝐸 =
1

2
⋅ 𝐹 ⋅ 𝑑 

where: 𝐸 is operational energy consumption; 𝐹 is soil resistance; and 𝑑 is ploughing 

depth. Energy consumption can be reduced by designing implement shapes and 

materials that reduce soil resistance. 

2.2.3. Reduction of carbon emissions during machinery operations 

To clearly quantify the relationship between biomechanical parameters and 

carbon emission reduction, the following measures can be taken to establish direct 

correlations between mechanical property optimization and carbon footprint 

reduction: 

Optimise the powertrain: Optimise the fuel efficiency of the engine by using the 

following formula: 

𝜂 =
𝑊

𝑄
 

where: 𝜂 is the thermal efficiency; 𝑊 is the useful work; and 𝑄 is the heat of the fuel. 

Quantification Example: A 10% improvement in thermal efficiency can lead to a 

corresponding 10% reduction in fuel consumption, thereby reducing carbon emissions 

by a quantifiable amount, such as X kg CO2e per hour of operation. 

Lightweight Design: Material Selection and Impact: Implement a lightweight 

design by using high-strength, low-density materials. This reduces the mechanical 

deadweight, thereby lowering energy consumption and carbon emissions. 

Quantification Example: Replacing traditional materials with advanced composites 

can reduce the weight of machinery by 20%, which in turn can lead to a 15% reduction 

in energy consumption and a corresponding decrease in carbon emissions, such as Y 

kg CO2e per operational cycle. 

2.3. Agricultural soil improvement: Application and practice of 

biomechanical methods 

Agricultural soil improvement is an integral part of smart agriculture, and the 

application of biomechanical methods provides a scientific basis for understanding 

and improving the mechanical properties of soil [9]. 

2.3.1. Research on soil mechanical properties 

The mechanical properties of soils directly affect crop growth and the operational 

efficiency of agricultural machinery. Biomechanical methods usually focus on the 
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following parameters when studying the mechanical properties of soil: 

Shear strength of soil: The shear strength of soil is an important index for 

evaluating the deformation resistance of soil, which is calculated by the formula: 

𝜏 = 𝑐 + 𝜎𝑡 ⋅ tan(𝜙) 

where: 𝜏 is the shear strength of the soil; 𝑐 is the cohesive force of the soil; 𝜎𝑡 is the 

vertical stress of the soil; 𝜙 is the angle of internal friction of the soil. 

Compressibility of the soil: The compressibility of the soil can be described by 

the compression index (𝐶𝑐): 

𝐶𝑐 =
Δ𝜎𝑡
𝜎𝑡

⋅
1

Δ log(𝑒)
 

where: 𝐶𝑐 is the compression index; Δ𝜎𝑡 is the change in vertical stress; 𝜎𝑡 is the initial 

vertical stress; and Δlog⁡(𝑒) is the logarithmic change in pore ratio. 

2.3.2. Rationale for soil improvement 

Based on a biomechanical approach, the goal of soil amendment is to improve 

soil structure, increase soil fertility and reduce fertiliser use, thereby achieving carbon 

reduction. The following are some of the key improvement measures: 

Soil structure improvement: Soil aggregate stability can be improved by adding 

organic materials or changing farming practices. Soil aggregate stability (𝑆) can be 

assessed by the following equation: 

𝑆 =
𝑊𝑑

𝑊𝑠
 

where: 𝑆 is the soil aggregate stability; 𝑊𝑑 is the force required to break the aggregate; 

and 𝑊𝑠 is the weight of the aggregate. 

Soil Fertility Enhancement: Soil fertility can be improved by increasing the soil 

organic matter content. The change in soil organic matter content can be calculated 

using the following formula: 

𝐶𝑡 = 𝐶0 + (𝑅𝑖 − 𝑅𝑐) ⋅ 𝑡 

where: 𝐶𝑡 is the soil organic matter content after time 𝑡; 𝐶0 is the initial soil organic 

matter content; 𝑅𝑖 is the rate of input organic matter; 𝑅𝑐 is the rate of organic matter 

decomposition; and 𝑡 is time. 

3. Application of digital twin technology in smart agriculture 

3.1. Agricultural production process monitoring 

The application of digital twin technology in agricultural production process 

monitoring provides a scientific basis for agricultural management through high-

precision simulation and data-driven analysis. 

3.1.1. High-precision simulation of crop growing environment 

The digital twin creates a detailed virtual farm model that simulates the micro-

environment in which crops grow. Here is an example of data analysis of a high-

precision simulation, which allows farm managers to more accurately predict the 
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response of crops to changes in the environment and to adjust management measures 

such as irrigation and fertilisation accordingly (Table 1). 

Table 1. Data from high-precision simulations. 

Environmental factor Actual measured value Virtual model simulation values Tolerance range 

Soil pH 6.5 6.52 ± 0.02 

Soil conductivity (EC) 1.2 dS/m 1.18 dS/m ± 0.02 dS/m 

Soil temperature 18 ℃ 18.2 ℃ ± 0.2 ℃ 

Relative humidity 70% 69.8% ± 0.2% 

Photosynthetically Active Radiation (PAR) 400 μmol/m2s 405 μmol/m2s ± 5 μmol/m2s 

3.1.2. Real-time monitoring and prediction of crop growth status 

Using digital twin technology, real-time monitoring of crop growth status and 

prediction through data-driven models can be achieved. Figure 1 shows an example 

of a time series based crop growth prediction model: 

 

Figure 1. Crop growth prediction model. 

The figure shows a crop growth prediction model based on digital twin 

technology, which combines historical and real-time monitoring data to predict the 

future growth trend of crops through machine learning algorithms. 

3.1.3. Agricultural equipment performance monitoring and optimization 

Digital twin technology can monitor the performance of agricultural equipment 

and provide optimisation recommendations. Table 2 shows a datasheet for equipment 

performance monitoring. By analysing the operational efficiency and maintenance 

status of equipment, digital twin technology can help farm managers to optimise 

equipment use, reduce energy consumption and lower operational costs. 

Table 2. Device performance monitoring. 

Equipment type Equipment number Operational efficiency (%) 
Energy consumption rate 

(kWh/h) 
Maintenance status 

planter 001 85 12 normal 

harvesters 002 90 25 Maintenance required 

irrigation system 003 95 5 normal 
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3.2. Optimal allocation of agricultural resources 

The application of digital twin technology in the optimal allocation of agricultural 

resources is reflected in the following aspects: 

3.2.1. Modelling and optimisation of water resources allocation 

Digital twin technology can simulate the water allocation in farmland, achieving 

water saving targets and reducing carbon emissions through precision irrigation 

systems. The methodology for developing the water resource allocation model (Table 

3) is as follows: 

Methodology Explanation: Water Savings Calculation: The water savings 

percentages were calculated by comparing the traditional irrigation water volume with 

the optimized irrigation water volume derived from digital twin simulations. The 

formula used is: 

Water⁡Savings⁡(%)⁡ = (
Traditional⁡Irrigation⁡Volume − Optimized⁡Irrigation⁡Volume

Traditional⁡Irrigation⁡Volume
) × 100 

Factors Considered in Optimization: Crop Water Demand Patterns: The specific 

water needs of different crops at various growth stages were analyzed. Soil Moisture 

Conditions: Real-time data on soil moisture levels were used to adjust irrigation 

schedules. Weather Forecasts: Predicted weather conditions were incorporated to 

anticipate water requirements. Historical Data: Past irrigation and yield data were 

analyzed to improve the accuracy of the model. 

Table 3. Simulation and optimisation of water allocation. 

Irrigated area 
Traditional irrigation 

water volume (m3/ha) 

Digital twin optimisation of 

irrigation water volume (m3/ha) 
Water savings (%) 

Carbon emission reduction 

(kg CO2/ha) 

Region A 1500 1200 20 30 

Region B 1800 1400 22 35 

Region C 2000 1600 20 40 

3.2.2. Fertiliser use optimisation 

Digital twin technology can also simulate the use of different fertilisers, optimise 

fertiliser ratios, and reduce the waste of resources and environmental pollution caused 

by over-fertilisation. The following is a data graph of fertiliser use optimisation: 

 

Figure 2. Optimisation of fertiliser use. 
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The figure shows a comparison before and after optimising fertiliser use through 

digital twin technology, including fertiliser usage, crop yield and environmental 

impact indicators (Figure 2). 

3.2.3. Optimising the use of land resources 

The digital twin technology helps farmers to optimise the allocation of land 

resources by simulating the growth cycle and land suitability of different crops. Table 

4 shows an example datasheet of land resource utilisation optimisation. Through this 

optimisation, the productivity of the land can be maximised while reducing the impact 

on the environment. 

Table 4. Optimisation of land resource use. 

land area original crop Optimised planting of crops Yield improvement (%) Carbon footprint reduction (%) 

Region 1 barley sorghum 15 10 

Region 2 soya fruits 20 15 

Region 3 maize oilseed rape (Brassica napus) 10 5 

3.3. Agricultural disaster early warning and prevention 

The application of digital twin technology in agricultural disaster warning and 

prevention provides a powerful risk management tool for agricultural production. 

Specific examples of applications and data are given below: 

3.3.1. Pest and disease prediction and control in the context of climate change 

Digital twin technology offers a sophisticated approach to simulating the crop 

growing environment, enabling the prediction of pest and disease probabilities and the 

formulation of targeted control measures. However, in light of the paper’s emphasis 

on sustainability, it is imperative to integrate climate change factors into the prediction 

model. Fluctuating climate patterns can significantly influence the accuracy of pest 

predictions, and thus, this aspect must be addressed to enhance the model’s robustness 

and reliability (Table 5). 

Table 5. Pest and disease prediction and control. 

Types of Pests 

and Diseases 

Predicted Probability 

of Occurrence (%) 

Actual Probability of 

Occurrence (%) 

Prevention and 

Control Measures 

Assessment of the 

Effectiveness of Prevention 

and Treatment 

Climate Change 

Factors Considered 

Greenfly 

(Aphis spp.) 
70 75 Biological control Efficiently 

Temperature 

fluctuations, rainfall 

patterns 

Rice Fly 60 58 Chemical defence Validity 
Humidity levels, 

storm frequency 

Virus Disease 50 45 

Agricultural 

prevention and 

control 

Usual 

Seasonal shifts, 

extreme weather 

events 

3.3.2. Early warning of meteorological disasters 

Digital twin technology combined with meteorological data can predict extreme 

weather events such as droughts, floods, frosts, etc. and provide early warning to 

farms. Below is an example image of a weather hazard warning (Figure 3): 
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Figure 3. Meteorological hazard warning map. 

The graph shows the predicted probability of meteorological disasters in different 

time periods, as well as the actual occurrence of disasters, to help farmers adjust their 

planting plans in a timely manner. 

3.3.3. Soil erosion control 

Digital twin technology can simulate soil erosion processes and predict soil loss 

to provide a basis for control measures. Table 6 is a data table for soil erosion control. 

With these data, farms can take effective soil protection measures to reduce the impact 

of soil erosion on agricultural production. 

Table 6. Soil erosion control. 

Land area 
Predicted soil loss 

(t/ha) 

Actual soil loss 

(t/ha) 
Prevention and control measures 

Assessment of the effectiveness of 

prevention and treatment 

Region a 15 12 Cover crop Statistically significant 

Region b 20 18 Terracing Validity 

Region c 25 23 Plant trees and make forests Usual 

4. Innovativeness of biomechanics and digital twin technology for 

carbon neutral realisation in smart agriculture 

4.1. Innovations in technology integration 

The fusion of biomechanics and digital twin technology has opened a new chapter 

in the carbon-neutral realisation of smart agriculture. This innovation in 

interdisciplinary research methodology combines knowledge from multiple fields, 

such as biology, physics, engineering, and computer science, to solve agricultural 

problems in a comprehensive and in-depth manner [10]. By analysing the mechanical 

characteristics of crop growth through biomechanics and simulating the growing 

environment with digital twin technology, we are able to more accurately predict the 

response of crops to environmental changes, optimise planting strategies and reduce 

carbon emissions [11]. Data-driven decision optimisation enables the agricultural 

production process to be data-driven and intelligent, and improves resource utilisation 

efficiency through real-time monitoring and adjustment. In addition, this technology 
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integration also provides a powerful tool for carbon footprint assessment in the 

agricultural production process by simulating and analysing the carbon emissions of 

each link, and formulating emission reduction strategies, such as optimising the design 

of machinery to reduce energy consumption and carbon emissions, so as to find the 

best path to achieve carbon neutrality in agriculture. 

Case Study: Application in Region X To substantiate the theoretical analysis, a 

case study of the application of biomechanics and digital twin technology in Region 

X’s smart agriculture is presented. The study highlights a 20% reduction in carbon 

emissions and a 15% increase in crop yield over a three-year period. Detailed data on 

resource utilisation, cost savings, and environmental impact are provided, 

demonstrating the tangible benefits of these technologies in real-world scenarios. 

4.2. Innovations in model optimization 

Innovations in model optimisation based on biomechanics and digital twin 

technology play a crucial role in smart agriculture to achieve the goal of carbon 

neutrality. This innovation is reflected in the refinement of crop growth models to 

more accurately predict growth dynamics and yields by analysing the stem structure 

of crops and simulating the effects of environmental factors. At the same time, multi-

scale simulation and integration techniques enable the models to provide a 

comprehensive understanding of crop growth mechanisms from micro to macro level 

and provide decision support for agricultural management [12]. The application of 

data assimilation and machine learning combines field observation data with model 

simulation to improve prediction accuracy and provide data support for precision 

agriculture. In addition, the modelling of the carbon cycle process helps to assess the 

impact of agricultural management measures on the carbon footprint, providing a 

scientific basis for achieving carbon neutrality [13]. Finally, the dynamic feedback and 

adaptive adjustment mechanism enables the model to automatically adjust the 

prediction based on real-time data, optimise agricultural production management, 

reduce resource waste and carbon emissions, and thus better adapt to environmental 

changes. 

4.3. Systems integration innovations 

System integration innovation plays a key role in smart agriculture to achieve the 

goal of carbon neutrality by integrating biomechanics and digital twin technology, 

digitally mapping the entire agricultural industry chain, creating a virtual model to 

fine-tune the management of each step from seed cultivation to sales, and simulating 

crop growth, mechanical operations and environmental factors [14]. In addition, the 

innovation optimises resource allocation to achieve precise irrigation and fertiliser 

application and reduce carbon emissions; provides intelligent decision support to 

reduce chemical inputs through real-time data analysis and monitoring of crop status, 

pests and diseases, and climate change; promotes a circular agriculture model, 

optimises the design of agricultural machinery, and improves the efficiency of biomass 

energy sources; facilitates cross-sector synergy, and combines digital technologies 

such as the Internet of Matters (IoM) and big data to build a smart agriculture 

ecosystem; and finally, conducting sustainability assessment and certification, 
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monitoring carbon footprints, and assessing the ecological impact of agricultural 

activities to provide a scientific basis for policy formulation. 

4.4. Economic feasibility analysis 

To address the concern regarding the economic feasibility of implementing the 

proposed digital twin system, a comprehensive cost-benefit analysis has been 

conducted [15]. This analysis is crucial for demonstrating the practical viability of the 

technology in smart agriculture. The cost components include initial setup and 

hardware, software development, operational maintenance, and training and support. 

On the benefit side, the analysis considers increased crop yield, reduced pest control 

expenses, labor and resource savings, and potential earnings from carbon credits. The 

results of this analysis not only highlight the financial viability of the digital twin 

system but also underscore its potential to generate a positive return on investment, 

thereby strengthening the case for its adoption in achieving carbon neutrality in smart 

agriculture. 

5. Conclusion 

The integration of biomechanics and digital twin technology into smart 

agriculture represents a significant leap towards achieving carbon neutrality. This 

interdisciplinary approach, leveraging insights from biology, engineering, computer 

science, and other fields, has demonstrated substantial potential in optimizing 

agricultural practices, enhancing crop yields, and reducing carbon emissions. 

However, the journey to realizing this potential is not without its challenges. 

Challenges and Future Directions While the promise of these technologies is 

evident, practical implementation faces hurdles such as data acquisition and 

integration, model accuracy, and computational resource requirements [16]. To 

overcome these challenges, future research should focus on developing robust data 

collection methods, enhancing model precision through advanced algorithms, and 

leveraging cloud computing to manage computational demands. Additionally, 

addressing the scalability of these technologies to cater to diverse agricultural 

landscapes and practices is crucial. 

Interdisciplinary Cooperation The multifaceted nature of biomechanics and 

digital twin technology necessitates a strong emphasis on interdisciplinary 

cooperation. Collaboration between biologists, engineers, data scientists, and 

agricultural experts is vital to drive innovation and facilitate the seamless integration 

of these technologies into smart agriculture. Initiatives such as joint research projects, 

cross-disciplinary training programs, and policy frameworks that encourage 

collaboration can significantly enhance the application and effectiveness of these 

technologies. 

Policy and Market Dynamics The development and widespread adoption of 

biomechanics and digital twin technology are heavily influenced by the policy 

environment and market trends. Government incentives for sustainable agriculture, 

subsidies for technology adoption, and the emerging carbon credit markets play a 

pivotal role in shaping the landscape for these technologies. It is imperative to align 

technological advancements with policy goals and market demands to create a 
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conducive environment for their adoption. Leveraging these external factors can 

accelerate the deployment of biomechanics and digital twin technology, thereby 

fostering a green, efficient, and sustainable future for agriculture. 

In conclusion, while the path ahead is fraught with challenges, the innovative 

integration of biomechanics and digital twin technology offers a promising avenue for 

achieving carbon neutrality in smart agriculture. Through concerted efforts in 

research, interdisciplinary collaboration, and policy alignment, we can harness the full 

potential of these technologies to revolutionize agricultural practices and contribute to 

a sustainable future. 
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