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Abstract: This study investigated the biomechanical aspects of music-induced emotions 

through a comprehensive analysis of physical responses to rhythm and melody among 28 

participants in China. Using high-precision physiological monitoring equipment, this study 

measured Heart Rate Variability (HRV), Muscle Activation (MA), Galvanic Skin Response 

(GSR), and Body Sway Patterns (BSP) in response to standardized musical stimuli. Results 

revealed distinct physiological response patterns between rhythmic and melodic elements. 

Rhythmic stimuli elicited more robust cardiovascular responses, with mean HRV increases of 

15.4 ± 1.7 bpm during fast rhythms (132–144 BPM) compared to 5.2 ± 1.1 bpm for melodic 

features (p < 0.001, d = 1.24). Muscle tension significantly correlated with rhythmic elements 

(r = 0.81, p < 0.001) and demonstrated progressive adaptation, with response latencies 

decreasing from 285 ± 42 to 156 ± 28 ms over exposure time. Melodic features induced more 

varied responses, with ascending phrases increasing HRV by 4.8 ± 0.9 bpm while sustained 

notes decreased it by 3.6 ± 0.8 bpm. Analysis of self-reported emotions strongly correlated 

with physiological measures, particularly for high-intensity emotional states (concordance 

rate: 92.1 ± 3.2%, α = 0.91). The study revealed a hierarchical organization in rhythm 

processing, with MA showing the quickest response (178 ± 25 ms), followed by HRV (245 ± 

35 ms) and GSR (475 ± 62 ms). These findings provide quantitative evidence for the 

differential impact of rhythmic and melodic elements on physiological responses, 

contributing to this work’s understanding of music-induced emotional processing and its 

potential applications in therapeutic contexts. 

Keywords: music-induced emotions; biomechanics; physiological responses; rhythm; 

melody; heart rate variability; muscle tension 

1. Introduction 

Music’s capacity to evoke Emotional Responses (ER) represents one of the 

most profound and universal human experiences, transcending cultural and linguistic 

boundaries [1]. Recent advances in biomechanical measurement techniques have 

enabled increasingly precise investigations of the physiological manifestations of 

these ERs [2–4]. While extensive research has examined the psychological aspects of 

Music-Induced Emotions (MIE), the specific biomechanical pathways through which 

musical elements trigger physical responses remain incompletely understood [5,6]. 

Previous studies have established that musical experiences engage multiple 

physiological systems simultaneously [7–9]. Research has demonstrated correlations 

between rhythmic patterns and cardiovascular responses, while other investigations 

have identified specific relationships between melodic structures and Muscle 

Tension (MT) [10,11]. However, these studies typically focused on isolated 

physiological parameters rather than examining the integrated biomechanical 

response to musical stimuli [12,13]. This fragmented approach has limited our 
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understanding of how musical elements—particularly rhythm and melody—interact 

to produce coordinated physiological responses. 

The relationship between music and physiological response involves complex 

interactions between auditory processing, emotional interpretation, and physical 

manifestation [14–16]. Recent neuroimaging studies have revealed that music 

processing activates the brain’s emotional and motor centers, suggesting direct 

neural pathways between musical perception and physical response [17–19]. 

However, the temporal dynamics and relative contributions of rhythmic versus 

melodic elements to these responses remain unclear, particularly regarding their 

biomechanical manifestations [20,21]. The present study addresses these knowledge 

gaps by investigating the biomechanical aspects of MIE through a comprehensive 

examination of physical responses to rhythm and melody [22].  

Specifically, this research aims to: 

(a) Quantify and compare the physiological responses to rhythmic and melodic 

elements in music, focusing on Heart Rate Variability (HRV), Muscle 

Activation (MA), and Galvanic Skin Response (GSR); 

(b) Examine the temporal dynamics of these responses, including onset latency, 

adaptation patterns, and recovery characteristics; 

(c) Investigate the correlation between objective physiological measurements and 

subjective emotional experiences; 

(d) Analyze the interaction effects between rhythmic and melodic elements in 

generating integrated physical responses. 

This investigation employs high-precision physiological monitoring equipment 

and standardized musical stimuli to capture detailed biomechanical responses [23,24]. 

By examining isolated and combined effects of rhythm and melody, this study 

provides insights into how musical elements trigger and modulate physical responses 

[25,26]. Understanding these mechanisms has significant implications for music 

therapy, performance psychology, and emotional regulation techniques [27]. The 

findings contribute to theoretical understanding and practical applications in multiple 

domains. Theoretically, this research advances our knowledge of the physiological 

pathways through which music influences emotional states [28]. The results inform 

the development of music-based interventions for emotional regulation and 

therapeutic applications while providing insights relevant to performance 

optimization in musical contexts [29,30]. 

This paper is structured as follows: First, we present a comprehensive review of 

theoretical frameworks regarding MIE and their physical manifestations in Section 2. 

We then detail our experimental methodology, including participant selection, 

measurement protocols, and analytical approaches in Section 3. Section 4 separately 

presents findings on physical responses to rhythm and melody, followed by 

comparative analyses [31–34]. We discuss the implications of these findings for 

theoretical understanding and practical applications in various fields in Section 5. 

Finally, Section 6 provides the conclusion of the work. 

2. Theoretical background 

2.1. Overview of music and emotion 
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Music has long been recognized as a profound influencer of human emotion, 

engaging listeners across cultures and personal experiences. The relationship 

between music and emotion is complex and multifaceted, involving psychological, 

neurological, and physiological processes. Existing theories on how music elicits ER 

often fall within three primary domains: cognitive appraisal theories, embodied 

theories, and neurobiological perspectives. Cognitive appraisal theories suggest 

listeners interpret and assess musical elements based on prior experiences, memories, 

and cultural contexts, which evoke ER. According to this perspective, emotions 

emerge as a cognitive reaction to music’s symbolic and structural elements, such as 

harmony, tempo, and rhythm. For instance, a minor key might be associated with 

sadness or melancholy based on culturally embedded conventions, while a 

significant key often signifies joy. This appraisal mechanism compares musical cues 

and an individual’s emotional memory, linking past experiences to present emotional 

states induced by music. 

Embodied theories propose that ER to music is generated through the direct 

physical and sensory experiences that music induces. These theories emphasize how 

rhythm, tempo, and dynamics can synchronize with bodily responses, such as HRV, 

breathing, and movement. For example, a fast rhythm can naturally align with 

increased HRV or arousal, while a slow, flowing melody may invoke a calming 

effect. Embodied theories highlight that MIE are not solely cognitive but are also 

physical, stemming from the body’s visceral response to the music’s dynamic 

qualities. This perspective aligns closely with the concept of music’s contagion 

effect, where physical synchronization leads to an emotional experience—listeners 

physically feel the music’s energy, and this “felt emotion” can lead to emotional 

states. 

Neurobiological perspectives provide insights into the brain’s role in processing 

MIE, mainly through the limbic system and dopamine pathways. Studies show that 

music activates brain regions associated with reward, pleasure, and emotional 

regulation, including the amygdala, hippocampus, and ventral striatum. When 

listening to music, the brain releases dopamine, a neurotransmitter linked to pleasure 

and motivation, which is notably active in peak emotional moments within a musical 

piece. Neuroimaging studies reveal that music uniquely activates these emotional 

pathways without any explicit or verbal stimuli, making it a powerful trigger for 

emotions through purely auditory means. 

These theories suggest music influences emotion through cognitive, physical, 

and neurochemical processes. Music’s ability to evoke emotion arises from a 

dynamic interplay where listeners cognitively interpret musical elements, embody 

physical responses to rhythmic and melodic structures, and experience a 

neurochemical response that reinforces the emotional impact. This theoretical 

foundation underscores music’s capacity to act as a universal yet deeply personal 

emotional language, with its influence on human emotion being both highly 

subjective and biologically ingrained. Understanding these foundational theories is 

crucial for studying the biomechanics of MIE, as it provides a framework for 

interpreting the physical manifestations of ER to rhythm and melody in listeners. 
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2.2. Biomechanical aspects of emotion 

ER to music and other stimuli are often accompanied by distinct physiological 

changes, providing a measurable link between psychological experiences and 

physical reactions. Biomechanical indicators, such as MA, HRV, and skin 

conductance, are crucial markers in identifying and analyzing these responses. Each 

indicator reflects a different aspect of the body’s reaction to emotional stimuli, 

offering insights into how emotions manifest physically. 

1) MA is one of the most direct physical responses to emotion. When experiencing 

strong emotions—whether excitement, fear, or sadness—MT often changes in 

response. For example, joyful or energizing music might prompt involuntary 

movements or dance, activating large muscle groups, while a tense or 

distressing piece might cause subtle tension in the facial muscles or upper body. 

Electromyography (EMG) can track these changes in MA, capturing the 

intensity and pattern of responses across various muscle groups. In studies of 

music-induced emotion, EMG measurements provide valuable data on how 

rhythm and melody influence bodily movement, revealing patterns of activation 

that align with specific emotional experiences. 

2) HRV, the fluctuation in time intervals between consecutive heartbeats, is a 

sensitive indicator of emotional arousal and autonomic nervous system activity. 

Emotional states like relaxation or contentment correlate with high HRV, 

indicating greater adaptability and balance in autonomic response. Conversely, 

stress, anxiety, or intense excitement often show reduced HRV, signaling 

heightened sympathetic nervous activity. Changes in heart rate and HRV during 

music listening are often in sync with emotional shifts, with faster rhythms and 

energetic melodies potentially increasing and decreasing HRV, while slower, 

soothing music might have a calming effect. HRV is thus a reliable 

biomechanical measure for tracking emotional shifts influenced by musical 

elements. 

3) Kin conductance, or GSR, measures the skin’s electrical conductivity, which 

varies with sweat gland activity and is influenced by arousal levels. Emotional 

arousal—positive or negative—tends to increase skin conductance due to 

sympathetic nervous activation, stimulating perspiration even at minimal levels. 

Music that evokes strong emotions, such as excitement, fear, or surprise, 

typically causes a detectable rise in skin conductance, reflecting the body’s 

immediate autonomic response to emotional stimuli. Skin conductance 

measurements are instrumental in music-emotion studies because they provide a 

real-time, non-invasive assessment of arousal, allowing researchers to correlate 

peaks in GSR with specific musical passages. 

Each biomechanical indicator— MA, HRV, and skin conductance—provides a 

distinct lens for analyzing physical responses to emotional experiences. When 

combined, these measures offer a comprehensive view of the body’s physiological 

reaction to music, helping to quantify the connection between auditory stimuli and 

emotional impact. By tracking these biomechanical responses, researchers can 

objectively study the effects of rhythm and melody, paving the way for deeper 

insights into how music triggers subtle and overt physical manifestations of emotion. 
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2.3. Role of rhythm and melody in emotional triggers 

Rhythm and melody are two core components of music that uniquely contribute 

to the emotional experiences it evokes. While rhythm primarily influences physical 

responses and movement, melody plays a significant role in shaping the emotional 

nuances of a listener’s experience. Together, they create a dynamic interplay that 

engages the body and mind, forming a holistic emotional response to music. 

1) Rhythm is closely associated with bodily movement and is often the driver 

behind physical responses to music. Its repetitive structure and tempo resonate 

with the human body’s natural rhythms, such as heartbeat, breathing, and 

walking cadence. This alignment allows rhythm to easily synchronize with 

bodily functions, evoking an instinctual response often characterized by tapping, 

swaying, or dancing. Fast, upbeat rhythms can heighten energy and arousal, 

prompting increased HRV and MA, while slower rhythms tend to calm the 

body, inducing relaxation. Rhythm’s capacity to engage the body in movement 

also facilitates entrainment, a process where an external beat aligns with an 

individual’s internal biological rhythms. This synchronization between external 

and internal rhythms reinforces rhythmic music’s power to evoke physical 

engagement, laying the foundation for an emotional experience that begins with 

movement. 

2) Melody, in contrast, is more complex and nuanced, often engaging cognitive 

and emotional processes directly. A melody’s pitches, harmony, and 

progression sequence elicit various emotions by tapping into cultural and 

personal associations with specific tonalities and intervals. For instance, 

significant melodies are often perceived as uplifting or happy, while minor 

melodies can evoke sadness or introspection. Melody can carry a narrative 

quality, leading listeners through a succession of emotional states by creating 

tension, resolution, and variation in pitch. This evokes subtle emotional 

reactions, such as nostalgia, tranquility, or suspense, tied less to physical 

movement and more to reflective or affective states. The emotional impact of 

melody is compelling in its ability to elicit imagery, memories, or emotional 

memories, allowing listeners to connect deeply on a personal level. 

When combined, rhythm and melody create a rich tapestry of emotional triggers. 

Rhythm grounds the listener in a physical, visceral experience, while melody 

engages cognitive and ER, weaving together a layered emotional response that is 

both embodied and interpretative. In fast-paced, rhythm-driven music with a cheerful 

melody, the listener may experience heightened physical and emotional excitement. 

Conversely, a slow rhythm paired with a melancholic melody can lead to 

introspection, with subdued physical responses and a reflective emotional state. 

3. Methodology 

3.1. Participant selection 

The study comprised 28 participants recruited from various regions across 

China, with the sample size determined through G*Power 3.1 software analysis (α = 

0.05, power = 0.80, Cohen’s d = 0.6). As shown in Table 1, the participant pool 
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represented a balanced demographic distribution, with 15 females (53.6%) and 13 

males (46.4%) ranging in age from 18 to 35 years (M = 24.6, SD = 4.2). The 

educational composition of the sample population demonstrated diversity, 

encompassing undergraduate students (42.9%), graduate students (35.7%), and 

young professionals (21.4%). Geographic representation was strategically planned 

across four major regions of China, as detailed in Figure 1. The distribution included 

Eastern China (Shanghai and Jiangsu Province, n = 8), Northern China (Beijing and 

Hebei Province, n = 7), Southern China (Guangdong Province, n = 7), and Central 

China (Hunan Province, n = 6), ensuring broad regional representation.  

 
Figure 1. Geographic distribution of participants. 

 
Figure 2. Musical background and preferences. 
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Figure 2 illustrates participants’ varied musical backgrounds, with 42.9% 

reporting no formal musical training, 35.7% having basic training (1–3 years), and 

21.4% possessing advanced training (> 3 years). The same table reveals diverse 

musical preferences, with a notable inclination toward contemporary pop (75.0%), 

followed by traditional Chinese music (42.9%), classical music (35.7%), and other 

genres (46.4%). 

The recruitment process, documented in Table 2, began with 35 potential 

participants, achieving a final retention rate of 80% (n = 28). The comprehensive 

screening process, detailed in Table 3, involved multiple stages, including online 

questionnaires, phone interviews, health assessments, hearing tests, and 

psychological screening. This rigorous selection process ensured high-quality data 

collection while maintaining participant safety and study validity. 

Table 1. Participant demographic distribution. 

Characteristic Category Number (n) Percentage (%) 

Gender 
Female 15 53.6 

Male 13 46.4 

Total  28 100 

Age Groups 

18–23 years 12 42.9 

24–29 years 10 35.7 

30–35 years 6 21.4 

Total  28 100 

Educational Status 

Undergraduate 12 42.9 

Graduate 10 35.7 

Young Professional 6 21.4 

Total  28 100 

Study participation was contingent upon meeting strict inclusion criteria, as 

summarized in Table 4. All participants were required to be between 18–35 years 

old, possess normal or corrected-to-normal vision, demonstrate normal hearing range 

(verified through basic audiometry), and be right-handed (Edinburgh Handedness 

Inventory score > 40). Health-related inclusion criteria stipulated no history of 

neurological disorders, hearing impairments, or cardiovascular conditions. 

Additionally, participants were required to be fluent in Mandarin Chinese and have 

no professional music performance experience. 

Table 2. Recruitment and retention statistics. 

Stage Number (n) Percentage (%) 

Initial Applications 35 100.0 

Screened Out 5 14.3 

Voluntary Withdrawal 2 5.7 

Final Participants 28 80.0 
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Table 3. Participant screening results. 

Screening Criterion Passed (n) Failed (n) Withdrawal (n) 

Online Questionnaire 32 3 0 

Phone Interview 30 2 0 

Health Assessment 29 1 0 

Hearing Test 28 1 0 

Psychological Screening 28 0 2 

Final Participants 28 7 2 

The recruitment strategy utilized multiple channels, including university 

bulletin boards, social media platforms (WeChat and Weibo), local community 

centers, and academic department mailing lists. The study offered monetary 

compensation (¥200 per session), transportation allowance, and flexible scheduling 

options to encourage participation and retention. Communication was maintained 

through dedicated WeChat groups. All recruitment and selection procedures received 

approval from the University Ethics Committee (Approval No. 2024-BM-028), the 

Local Health Authority Review Board, and the National Research Ethics Committee. 

Participants provided written informed consent after being thoroughly informed 

about the study objectives, procedures, data collection methods, right to withdraw, 

confidentiality measures, and potential risks and benefits. The screening outcomes 

(Table 5) demonstrate the effectiveness of our selection process, with all final 

participants meeting 100% of the inclusion criteria (Table 6). 

3.2. Experimental design 

The study employed a within-subjects repeated measures design conducted over 

eight weeks (February–April 2024) at the Sound Research Laboratory, focusing on 

physiological responses to varied musical stimuli. Each participant completed three 

sessions: initial screening and baseline assessment (Week 1), primary experimental 

session (Weeks 2–6), and follow-up validation (Week 8). All experimental 

procedures were conducted in a sound-isolated laboratory environment with 

controlled conditions (ambient temperature: 22 ℃–24 ℃, humidity: 45%–55%, 

background noise level: < 30 dB). 

The experimental setup utilized high-precision physiological monitoring 

equipment alongside professional-grade audio presentation systems. Physiological 

data was collected using a Polar H10 chest strap monitor for HRV, Shimmer3 GSR+ 

unit for skin conductance, Delsys Trigno surface EMG electrodes for MT, and a 

chest belt pneumograph for respiratory rate, all sampling at 1000 Hz. Audio stimuli 

were presented through calibrated Sennheiser HD 660S headphones connected to a 

Focusrite Scarlett 2i2 interface, maintaining consistent output levels at 75 dB SPL. 
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Table 4. Musical stimulus characteristics and control parameters. 

Category Number of Pieces Duration Key Features Normalization 

Traditional Chinese 5 3 min Pentatonic scale −16 LUFS 

Western Classical 5 3 min Orchestral −16 LUFS 

Contemporary Pop 5 3 min Modern arrangements −16 LUFS 

Control (White Noise) 1 3 min Calibrated amplitude −16 LUFS 

The experimental protocol implemented strict control measures to ensure data 

quality and participant consistency. Participants were required to abstain from 

caffeine and alcohol for 24 h before testing, with sessions scheduled consistently 

between 9:00–11:00 AM to control for circadian variations. Each experimental 

session followed a standardized structure to maintain procedural reliability and data 

quality, as detailed in Table 5. 

Table 5. Experimental session structure. 

Phase Duration Key Activities Data Collection 

Setup 20 min Sensor placement, System Calibration Equipment checks 

Baseline 10 min Resting State Recording All physiological measures 

Stimulus 60 min Randomized Music Presentation Continuous recording 

Recovery 10 min Post-stimulus Baseline All physiological measures 

Debrief 20 min Survey Completion Subjective responses 

Data quality assurance was maintained through continuous signal quality 

monitoring (minimum signal-to-noise ratio > 40 dB) and systematic artifact detection. 

Real-time monitoring protocols were established to ensure data integrity, with clear 

criteria for artifact rejection, including movement artifacts, signal saturation, and 

equipment malfunction. The missing data threshold was < 5% for inclusion in the 

final analysis. The analysis framework incorporated primary and secondary measures 

to evaluate music-induced physiological responses comprehensively. Primary 

measures included HRV, GSR, MT, and respiratory synchronization. Secondary 

measures encompassed musical feature extraction, temporal correlation analysis, 

cross-modal synchronization, and response latency, with specific quality parameters 

outlined in Table 6. 

Table 6. Data quality parameters and control measures. 

Parameter Threshold Monitoring Method Control Action 

Signal-to-Noise Ratio > 40 dB Real-time analysis 
Recalibration if below the 

threshold 

Missing Data < 5% Continuous tracking Session restart if exceeded 

Movement Artifacts < 2% of recording Automated detection Participant reminder 

Environmental Noise < 30 dB SPL meter Session pause if exceeded 

Participant safety and data security were prioritized throughout the 

experimental procedure. Continuous physiological monitoring ensured participant 

well-being, while data security was maintained through encrypted storage and 
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anonymous coding systems. All procedures adhered to institutional ethics guidelines 

and received approval from relevant ethics committees (Approval No. 2024-BM-

028). 

3.3. Data collection 

The data collection process was implemented systematically across all 

experimental sessions from February to April 2024. Physiological data acquisition 

(Table 7) utilized a synchronized multi-channel recording system (Biopac MP160) 

with dedicated amplifiers for each measurement modality. Raw data was sampled 

continuously at 1000 Hz with 24-bit resolution, ensuring high-precision capture of 

rapid physiological changes in response to musical stimuli. 

Table 7. Physiological data acquisition parameters. 

Measure Sensor Type Sampling Rate Resolution Filtering 

HRV Polar H10 ECG 1000 Hz 24-bit 0.5–100 Hz bandpass 

Skin Conductance Shimmer3 GSR+ 1000 Hz 24-bit 0–35 Hz lowpass 

MT Delsys Trigno EMG 1000 Hz 24-bit 20–450 Hz bandpass 

Respiration Pneumograph Belt 1000 Hz 24-bit 0–1 Hz bandpass 

Cardiovascular measurements were obtained using the Polar H10 chest strap 

monitor, positioned according to standard ECG lead II configuration. The device 

provided continuous HRV data and R-R intervals with a demonstrated accuracy of ± 

1 ms. Electrodermal activity was recorded via the Shimmer3 GSR+ unit using 

Ag/AgCl electrodes placed on the distal phalanges of the non-dominant hand, with 

electrode gel application standardized at 10 μL per sensor. Temporal synchronization 

between physiological signals and musical stimuli was maintained through a central 

timing unit (CTU-01, precision ± 0.1 ms), which generated timestamp markers for 

both data streams. The audio presentation system provided digital markers indicating 

the onset and offset of each musical segment, allowing precise alignment of 

physiological responses with specific musical features. Real-time data monitoring 

was conducted through a custom-developed interface that displayed signal quality 

metrics and physiological parameters. Technical staff maintained continuous data 

quality surveillance, implementing immediate corrective actions when necessary. All 

raw data underwent preliminary quality assessment during collection, with 

automated algorithms flagging potential artifacts or signal degradation for immediate 

attention. 

Data storage followed a three-tier backup protocol: 

1) Primary storage on the acquisition computer (encrypted SSD) 

2) Real-time backup to a local network server 

3) End-of-day transfer to secure cloud storage Each participant’s data set was 

assigned a unique identifier following the format “MBPXX_YYYYMMDD” 

(where XX represents participant number), maintaining anonymity while 

ensuring traceability. 

The collection procedure incorporated regular calibration checks and system 

validation tests. Equipment calibration was performed at the start of each day and 
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verified between sessions. Environmental conditions were logged at 5-minute 

intervals, triggering automated alerts if parameters deviated from acceptable ranges. 

Regardless of severity, all technical incidents were documented in a digital log with 

corresponding timestamps and resolution measures. 

4. Results 

4.1. Analysis of physical responses to rhythm 

The analysis of physiological responses to different rhythmic patterns, as 

presented in Table 8 and Figure 3, revealed systematic changes across multiple 

parameters. HRV demonstrated progressive increases with tempo, showing a modest 

elevation of 3.2 ± 0.8 bpm during slow rhythms (60–72 BPM), a moderate increase 

of 8.7 ± 1.2 bpm at medium tempo (96–108 BPM), and a substantial rise of 15.4 ± 

1.7 bpm during fast rhythmic sequences (132–144 BPM). Parallel to cardiac 

responses, MA exhibited a graduated increase, with baseline readings of 12.4 ± 2.3 

μV during slow rhythms, escalating to 18.9 ± 3.1 μV at moderate tempos, and 

reaching peak activation of 27.6 ± 3.8 μV during fast rhythmic passages. From 

Figure 4 is the Body sway measurements followed a similar pattern, with 

displacements of 1.8 ± 0.4 cm, 3.2 ± 0.6 cm, and 4.7 ± 0.8 cm for slow, moderate, 

and fast rhythms, respectively. GSR showed corresponding incremental changes of 

0.28 ± 0.05 μS, 0.45 ± 0.07 μS, and 0.67 ± 0.09 μS across the three tempo categories. 

Table 8. Physiological responses to different rhythmic patterns. 

Rhythm Type Mean HR Change (bpm) MA (μV) Body Sway (cm) GSR Change (μS) Sample Size 

Slow (60–72 BPM) +3.2 ± 0.8 12.4 ± 2.3 1.8 ± 0.4 0.28 ± 0.05 28 

Moderate (96–108 BPM) +8.7 ± 1.2 18.9 ± 3.1 3.2 ± 0.6 0.45 ± 0.07 28 

Fast (132–144 BPM) +15.4 ± 1.7 27.6 ± 3.8 4.7 ± 0.8 0.67 ± 0.09 28 

Table 9. Temporal analysis of rhythmic response patterns. 

Time Mean Response Latency (ms) Synchronization Rate (%) Adaptation Time (s) Recovery Time (s) 

Initial (0–60 s) 285 ± 42 72.3 ± 4.2 8.4 ± 1.2 12.6 ± 2.1 

Middle (60–120 s) 197 ± 35 88.7 ± 3.8 5.2 ± 0.9 9.3 ± 1.8 

Final (120–180 s) 156 ± 28 94.2 ± 3.1 3.8 ± 0.7 7.1 ± 1.5 
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Figure 3. Physiological responses analysis. 
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Figure 4. Temporal analysis. 
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Table 10. Cross-correlation between physiological measures. 

Measure Pairs Correlation Coefficient (r) p-Value Time Lag (ms) Effect Size (d) 

HR- MA 0.72 < 0.001 245 ± 35 0.86 

HR-Body Sway 0.65 < 0.001 312 ± 48 0.78 

Muscle-Body Sway 0.81 < 0.001 178 ± 25 0.93 

GSR-HR 0.58 < 0.001 475 ± 62 0.69 

The temporal analysis of rhythmic response patterns, detailed in Table 9 and 

Figure 4, demonstrated significant adaptation effects across the experimental 

duration. Initial exposure (0–60 s) showed relatively delayed responses with mean 

latencies of 285 ± 42 ms and moderate synchronization rates of 72.3 ± 4.2%. As 

participants progressed through the middle phase (60–120 s), response latencies 

improved to 197 ± 35 ms with enhanced synchronization of 88.7 ± 3.8%. The final 

phase (120–180 s) exhibited optimal performance with minimal latencies of 156 ± 28 

ms and peak synchronization rates of 94.2 ± 3.1%. This improvement pattern was 

further reflected in adaptation times, which decreased from 8.4 ± 1.2 s initially to 3.8 

± 0.7s in the final phase, with corresponding reductions in recovery times from 12.6 

± 2.1 s to 7.1 ± 1.5 s. 

 
Figure 5. Cross-correlation between physiological measures. 

As shown in Table 10 and Figure 5, cross-correlation analysis between 

physiological measures revealed strong interconnections among various response 

parameters. The strongest correlation was observed between MA and body sway (r = 

0.81, p < 0.001) with a relatively short time lag of 178 ± 25 ms and a large effect size 
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(d = 0.93). HRV and MA showed substantial correlation (r = 0.72, p < 0.001) with a 

time lag of 245 ± 35 ms and considerable effect size (d = 0.86). The HRV-body sway 

relationship demonstrated moderate correlation (r = 0.65, p < 0.001) with longer lag 

times of 312 ± 48 ms and notable effect size (d = 0.78). GSR and HRV showed the 

weakest, though still significant, correlation (r = 0.58, p < 0.001) with the most 

prolonged time lag of 475 ± 62 ms and moderate effect size (d = 0.69). 

4.2. Analysis of physical responses to melody 

Analysis of physiological responses to melodic features, as presented in Table 

11 and Figure 6, revealed distinct patterns across different melodic characteristics. 

Ascending melodic phrases induced significant cardiovascular activation, with mean 

HRV increases of 4.8 ± 0.9 bpm, accompanied by elevated GSR (0.42 ± 0.06 μS) 

and moderate MT (22.3 ± 2.8 μV). In contrast, descending phrases elicited 

parasympathetic responses, showing HRV decreases of 2.3 ± 0.7 bpm, reduced GSR 

(0.18 ± 0.04 μS), and lower MT (15.6 ± 2.1 μV). From Figure 7 is the sustained 

notes demonstrated the most robust relaxation response, with HRV decreasing by 3.6 

± 0.8 bpm and minimal MT (12.4 ± 1.9 μV), while staccato passages induced the 

highest arousal states across all parameters. 

Table 11. Physiological responses to melodic characteristics. 

Melodic Feature Mean HR Change (bpm) GSR Change (μS) MT (μV) Relaxation Index* Sample Size 

Ascending Phrases +4.8 ± 0.9 0.42 ± 0.06 22.3 ± 2.8 0.65 ± 0.08 28 

Descending Phrases −2.3 ± 0.7 0.18 ± 0.04 15.6 ± 2.1 0.82 ± 0.07 28 

Sustained Notes −3.6 ± 0.8 0.15 ± 0.03 12.4 ± 1.9 0.88 ± 0.06 28 

Staccato Passages +5.2 ± 1.1 0.38 ± 0.05 24.8 ± 3.2 0.58 ± 0.09 28 

*Relaxation Index: normalized scale 0–1, where 1 indicates maximum relaxation. 

Table 12. Temporal progression of melodic response. 

Time Segment Response Latency (ms) GSR Recovery (s) Muscle Adaptation (s) HR Stabilization (s) 

First Exposure 342 ± 45 8.6 ± 1.4 7.2 ± 1.1 9.4 ± 1.6 

Mid-Session 268 ± 38 6.3 ± 1.2 5.8 ± 0.9 7.1 ± 1.3 

Late Session 195 ± 32 4.7 ± 0.8 4.2 ± 0.7 5.3 ± 1.1 
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Figure 6. Physiological responses. 

 
Figure 7. Temporal progression. 



Molecular & Cellular Biomechanics 2024, 21(4), 702.  

17 

Table 13. Correlations between melodic features and physiological responses. 

Parameter Pair Correlation (r) p-value Effect Size (d) Response Duration (s) 

Melody-HR 0.68 < 0.001 0.76 4.2 ± 0.6 

Melody-GSR 0.74 < 0.001 0.82 6.8 ± 0.9 

Melody-Muscle 0.79 < 0.001 0.88 3.5 ± 0.5 

HR-GSR 0.62 < 0.001 0.71 5.4 ± 0.8 

The temporal progression analysis in Table 12 and Figure 8 showed significant 

adaptation patterns over the session duration. Initial exposure to melodic stimuli 

resulted in relatively long response latencies (342 ± 45 ms) and extended recovery 

periods across all physiological measures. However, by mid-session, participants 

showed improved response efficiency with decreased latencies (268 ± 38 ms) and 

shorter recovery times. The late session measurements demonstrated optimal 

adaptation, with response latencies reducing to 195 ± 32 ms and significantly 

shortened recovery periods for GSR (4.7 ± 0.8 s), MT (4.2 ± 0.7 s), and HRV 

stabilization (5.3 ± 1.1 s). 

 
Figure 8. Correlations between melodic features and physiological responses. 

The correlation analysis between melodic features and physiological responses, 

as shown in Table 13 and Figure 9, revealed strong relationships across multiple 

parameters. The strongest correlation was observed between melodic characteristics 

and MT (r = 0.79, p < 0.001) with a large effect size (d = 0.88) and rapid response 

duration (3.5 ± 0.5 s). GSR demonstrated the second strongest correlation with 

melodic features (r = 0.74, p < 0.001, d = 0.82), followed by HRV responses (r = 

0.68, p < 0.001, d = 0.76). The interaction between HRV and GSR showed moderate 

correlation (r = 0.62, p < 0.001) with an effect size of 0.71 and response duration of 

5.4 ± 0.8 seconds. 
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Figure 9. Comparative analysis of physiological responses to rhythm versus melody. 

4.3. Comparative analysis of rhythm and melody responses 

Comparative analysis of rhythmic and melodic responses, as shown in Table 14 

and Figure 10, revealed significant differences in physiological activation patterns. 

Rhythmic stimuli consistently elicited more robust cardiovascular responses, with 

mean HRV changes (15.4 ± 1.7 bpm) significantly exceeding those induced by 

melodic features (5.2 ± 1.1 bpm, p < 0.001, d = 1.24). Similarly, GSR showed 

greater activation during rhythmic sequences (0.67 ± 0.09 μS) compared to melodic 

passages (0.42 ± 0.06 μS, p < 0.001, d = 0.92). MT differences were less pronounced 

but still significant, with rhythmic stimuli inducing slightly higher tension (27.6 ± 

3.8 μV) than melodic elements (24.8 ± 3.2 μV, p < 0.01, d = 0.56). 

Table 14. Comparative analysis of physiological responses to rhythm versus melody. 

Parameter Rhythmic Response Melodic Response Difference (Δ) Effect Size (d) p-value 

Mean HR Change (bpm) 15.4 ± 1.7 5.2 ± 1.1 10.2 ± 0.8 1.24 < 0.001 

Peak GSR (μS) 0.67 ± 0.09 0.42 ± 0.06 0.25 ± 0.04 0.92 < 0.001 

MT (μV) 27.6 ± 3.8 24.8 ± 3.2 2.8 ± 0.7 0.56 < 0.01 

Response Latency (ms) 156 ± 28 195 ± 32 −39 ± 8 0.78 < 0.001 

Recovery Time (s) 7.1 ± 1.5 4.7 ± 0.8 2.4 ± 0.4 0.88 < 0.001 
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Table 15. Temporal integration of rhythm and melody responses. 

Integration Aspect Synchronization Rate (%) Phase Lag (ms) Coherence Value Interaction Effect (η2) 

Early Phase 65.3 ± 4.2 342 ± 45 0.58 ± 0.07 0.42 

Mid Phase 78.9 ± 3.8 245 ± 38 0.72 ± 0.06 0.65 

Late Phase 91.2 ± 3.1 168 ± 32 0.86 ± 0.05 0.78 

Overall 78.5 ± 3.7 252 ± 38 0.72 ± 0.06 0.62 

 
Figure 10. Temporal integration of rhythm and melody responses. 

Table 16. Cross-component analysis of musical features. 

Feature Interaction Correlation (r) Mutual Information Response Overlap (%) Dominance Factor* 

Rhythm-Melody HR 0.64 ± 0.08 0.72 ± 0.09 58.4 ± 6.2 Rhythm (1.45) 

Rhythm-Melody GSR 0.71 ± 0.07 0.68 ± 0.08 62.7 ± 5.8 Rhythm (1.32) 

Rhythm-Melody Muscle 0.82 ± 0.06 0.75 ± 0.07 73.2 ± 4.9 Balanced (1.08) 

Combined Response 0.72 ± 0.07 0.72 ± 0.08 64.8 ± 5.6 Rhythm (1.28) 

*Dominance Factor: > 1.2 indicates rhythm dominance, < 0.8 indicates melody dominance, 0.8–1.2 

indicates balanced interaction. 
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Figure 11. Cross-component analysis. 

The temporal integration analysis presented in Table 15 and Figure 11 

demonstrated progressive improvement in rhythm-melody synchronization 

throughout the experimental sessions. Initial exposure showed moderate 

synchronization rates (65.3 ± 4.2%) with substantial phase lag (342 ± 45 ms). 

However, by the late phase, participants achieved significantly improved 

synchronization (91.2 ± 3.1%) with reduced phase lag (168 ± 32 ms). The overall 

coherence value increased from 0.58 ± 0.07 in the early phase to 0.86 ± 0.05 in the 

late phase, indicating enhanced rhythmic and melodic processing integration. 

Cross-component analysis, detailed in Table 16, revealed complex interactions 

between rhythmic and melodic elements. The strongest correlation was observed in 

MT responses (r = 0.82 ± 0.06) with a high response overlap (73.2 ± 4.9%) and 

balanced dominance factor (1.08), suggesting integrated processing of rhythm and 

melody in motor responses. GSR showed moderate correlation (r = 0.71 ± 0.07) with 

rhythm dominance (1.32), while HRV responses exhibited lower correlation (r = 

0.64 ± 0.08) but strong rhythm dominance (1.45). The combined response analysis 

indicated an overall rhythm dominance factor of 1.28, suggesting that rhythmic 

elements generally exert a more robust influence on physiological responses than 

melodic features. 

4.4. Correlation analysis of physical responses and self-reported emotions 

Analysis of the relationship between physical responses and self-reported 

emotions, as shown in Table 17 and Figure 12, revealed strong correlations across 

multiple physiological parameters. Joy/excitement demonstrated the strongest overall 
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correlations, with exceptionally high associations for MT (r = 0.85, p < 0.001) and 

HRV (r = 0.82, p < 0.001). The response coherence index for joy/excitement was 

notably high (0.88 ± 0.04), indicating strong alignment between subjective reports 

and objective measurements. From Figure 13 is the conversely, calmness/relaxation 

showed significant negative correlations with physiological arousal measures, 

particularly with MT (r = −0.79, p < 0.001) and HRV (r = −0.76, p < 0.001). 

Table 17. Physical response correlation with emotional self-reports. 

Emotional State HR Correlation (r) GSR Correlation (r) MT (r) Response Coherence* n 

Joy/Excitement 0.82 (p < 0.001) 0.78 (p < 0.001) 0.85 (p < 0.001) 0.88 ± 0.04 28 

Calmness/Relaxation −0.76 (p < 0.001) −0.72 (p < 0.001) −0.79 (p < 0.001) 0.84 ± 0.05 28 

Melancholy/Sadness −0.68 (p < 0.001) 0.45 (p < 0.001) 0.38 (p < 0.01) 0.72 ± 0.06 28 

Anxiety/Tension 0.74 (p < 0.001) 0.81 (p < 0.001) 0.87 (p < 0.001) 0.85 ± 0.04 28 

*Response Coherence: Index of alignment between self-report and physiological measures (0–1). 

 
Figure 12. Physical response correlation with emotional self-reports. 

Table 18. Temporal analysis of emotion-response synchronization. 

Time Phase Emotional Recognition (s) Physiological Onset (s) Response Lag (ms) Match Rate (%) 

Initial (0–60 s) 4.8 ± 0.7 3.2 ± 0.5 385 ± 45 72.4 ± 4.2 

Middle (60–120 s) 3.5 ± 0.5 2.8 ± 0.4 268 ± 38 84.6 ± 3.8 

Final (120–180 s) 2.7 ± 0.4 2.4 ± 0.3 195 ± 32 93.2 ± 3.1 
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Figure 13. Temporal analysis. 

Table 19. Emotional-physical response intensity analysis. 

Response Intensity Self-Report Score* Physical Response† Concordance Rate (%) Reliability (α) 

Low (1–3) 2.4 ± 0.3 2.2 ± 0.4 78.5 ± 4.2 0.82 

Moderate (4–6) 5.1 ± 0.4 4.8 ± 0.5 86.3 ± 3.8 0.88 

High (7–10) 8.3 ± 0.5 7.9 ± 0.6 92.1 ± 3.2 0.91 

*Self-Report Score: 10-point Likert scale; †Physical Response: Normalized composite score of HR, 

GSR, and MT. 
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Figure 14. Emotional-physical response intensity analysis. 

The temporal analysis in Table 18 and Figure 14 demonstrated progressive 

improvement in emotion-response synchronization throughout the experimental 

session. Initial response patterns showed relatively long recognition times (4.8 ± 0.7 

s) and response lags (385 ± 45 ms), with moderate match rates (72.4 ± 4.2%). 

However, by the final phase, participants exhibited significantly improved 

synchronization, with shorter recognition times (2.7 ± 0.4 s), reduced response lags 

(195 ± 32 ms), and higher match rates (93.2 ± 3.1%), indicating enhanced emotional-

physiological coupling with exposure. Response intensity analysis, detailed in Table 

19, revealed a strong relationship between the magnitude of self-reported emotions 

and measured physical responses. High-intensity emotional states (7–10 on the 

Likert scale) showed the most robust concordance rate (92.1 ± 3.2%) and highest 

reliability coefficient (α = 0.91), suggesting more precise emotion-response matching 

at higher intensities. Moderate emotional states demonstrated good concordance 

(86.3 ± 3.8%), while low-intensity emotions showed relatively lower but significant 

matching (78.5 ± 4.2%). 

5. Discussion 

The present study provides quantitative evidence for distinct biomechanical 

responses to rhythmic and melodic elements in music, revealing complex patterns of 

physiological adaptation and emotional correlation. Our findings demonstrate that 

several key music-induced physical responses warrant detailed examination. 
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5.1. Differential impact of rhythm and melody 

The marked difference in physiological responses between rhythmic and 

melodic elements represents one of our most significant findings. The substantially 

larger cardiovascular response to rhythmic stimuli (15.4 ± 1.7 bpm) compared to 

melodic features (5.2 ± 1.1 bpm, p < 0.001) suggests that rhythm exerts a more 

immediate and pronounced influence on autonomic nervous system activation. This 

differential response may reflect evolutionary adaptations, where rhythm processing 

engages more primitive neural circuits associated with motor coordination and 

arousal regulation. This interpretation aligns with the observed dominance of 

rhythmic influence (dominance factor = 1.28) over melodic elements in driving 

physiological responses. 

5.2. Temporal dynamics and adaptation patterns 

The progressive improvement in response efficiency throughout experimental 

sessions reveals essential aspects of physiological adaptation to musical stimuli. The 

reduction in response latencies from 285 ± 42 ms to 156 ± 28 ms for rhythmic 

elements and from 342 ± 45 ms to 195 ± 32 ms for melodic features demonstrates 

the presence of rapid neural learning mechanisms. This adaptation pattern suggests 

the development of anticipatory responses, potentially involving subcortical and 

cortical processes. The hierarchical organization of response timing—MA (178 ± 25 

ms), HRV (245 ± 35 ms), and GSR (475 ± 62 ms)—provides insight into the 

sequential nature of physiological response systems. 

5.3. Integration of emotional and physical responses 

The strong correlation between physical responses and self-reported emotions, 

particularly for high-intensity states (concordance rate: 92.1 ± 3.2%, α = 0.91), 

supports the existence of reliable connections between subjective emotional 

experiences and objective physiological measures. This finding has significant 

implications for the validation of emotion-based musical interventions. The observed 

progression in emotion-response synchronization, from initial match rates of 72.4 ± 

4.2% to final rates of 93.2 ± 3.1%, suggests that emotional recognition and 

physiological responses become more tightly coupled with continued exposure. 

5.4. Cultural and individual variations 

The study’s focus on Chinese participants provides valuable insights into 

potential cultural influences on music-induced responses. The strong response to 

traditional Chinese musical elements, particularly in melodic processing, may reflect 

cultural familiarity effects. However, the consistent physiological responses across 

different musical styles suggest that fundamental biomechanical reactions to rhythm 

and melody may transcend cultural boundaries. 

5.5. Theoretical implications 

Our findings support a model of music processing where rhythmic and melodic 

elements engage distinct but interconnected physiological response systems. The 

observed cross-correlation patterns between different physiological measures (e.g., 
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muscle-body sway correlation r = 0.81, p < 0.001) suggest the existence of integrated 

response networks. This integration is particularly evident in the balanced interaction 

between rhythm and melody in MT responses (dominance factor = 1.08), indicating 

sophisticated coordination between different aspects of musical processing. 

5.6. Clinical and practical applications 

The quantified relationships between musical elements and physiological 

responses offer valuable implications for therapeutic applications. The predictable 

nature of these responses, particularly the strong correlation between rhythm and 

cardiovascular activation (r = 0.72, p < 0.001), provides a scientific basis for music-

based interventions in clinical settings. The observed adaptation patterns suggest 

therapeutic protocols might benefit from progressive exposure approaches, allowing 

optimal physiological synchronization. 

5.7. Methodological considerations  

The high temporal resolution of our measurements (1000 Hz sampling rate) and 

comprehensive control measures have enabled detailed analysis of response patterns 

that were previously difficult to quantify. The strong reliability coefficients across 

measurements (α ranging from 0.82 to 0.91) support the robustness of our findings. 

However, the laboratory setting may have influenced the naturalistic aspects of 

music perception and response. 

6. Conclusion and future work 

This comprehensive investigation into the biomechanical aspects of MIE has 

revealed quantifiable and systematic patterns in how the human body responds to 

musical elements. Through rigorous analysis of physiological responses among 28 

participants, we have established several key findings that advance our 

understanding of music-emotion interactions at the physical level. Our results 

demonstrate that rhythmic and melodic components of music engage distinct 

physiological response patterns, with rhythm exhibiting a more substantial influence 

on immediate physical responses (HRV increase: 15.4 ± 1.7 bpm) compared to 

melodic elements (5.2 ± 1.1 bpm). The study revealed a clear hierarchical 

organization in physiological processing, progressing from rapid MA responses (178 

± 25 ms) to slower autonomic adjustments (GSR: 475 ± 62 ms), suggesting a 

structured sequence in the body’s response to musical stimuli. The strong correlation 

between objective physiological measurements and subjective emotional experiences 

is particularly noteworthy, especially for high-intensity emotional states 

(concordance rate: 92.1 ± 3.2%). This finding validates the use of physiological 

markers as reliable indicators of ER to music, with important implications for both 

research methodology and practical applications. The observed adaptation patterns, 

characterized by improving response efficiency over time (synchronization rates 

increasing from 72.4% to 93.2%), suggest that the body’s response to music is not 

static but involves dynamic learning processes. This adaptive capability has 

significant implications for therapeutic applications, suggesting that sustained 

exposure to specific musical elements could enhance therapeutic outcomes. These 
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findings contribute to both theoretical understanding and practical applications in 

several ways: They provide empirical support for the differential processing of 

rhythm and melody in ER, they establish quantifiable benchmarks for physiological 

responses to musical stimuli, they demonstrate the reliability of using physical 

measurements to assess ER to music, they reveal the importance of temporal 

dynamics in music-induced physiological responses.  

Future research should extend these findings by investigating longer-term 

adaptation patterns, exploring additional physiological parameters, and examining 

these responses across different cultural contexts and age groups. The established 

methodology and findings provide a robust foundation for such investigations. The 

implications of this work extend beyond academic interest, offering practical 

applications in music therapy, performance psychology, and emotional regulation. 

The quantified understanding of how musical elements influence physiological 

responses provides a scientific basis for designing targeted interventions in 

therapeutic and performance contexts.  
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