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Abstract: This study investigates the relationship between biomechanical constraints in speech 

production and English vocabulary acquisition by integrating Large Language Models (LLMs). 

Using a sample of 51 Mandarin Chinese speakers in Shenzhen, China, divided into three age 

groups (children: 8–12 years, adolescents: 13–17 years, and adults: 18–25 years), we conducted 

a 12-week longitudinal study combining articulatory measurements with computational 

analysis. The research employed electromagnetic articulography, surface electromyography, 

and advanced language modeling to examine speech patterns and learning outcomes. Results 

reveal significant age-related differences in articulatory kinematics, with children showing 

larger tongue displacements (14.3 ± 2.1 mm) and higher muscle activation levels than adults. 

Integrating biomechanical constraints into LLM analysis improved prediction accuracy by 

18.7% for children and 14.2% for adults, though at the cost of increased computational 

resources. Strong negative correlations were found between articulatory effort and learning 

success (r = −0.824 for children, p < 0.001), with retention rates significantly influenced by 

motor complexity. These findings suggest that biomechanical factors play a crucial role in 

vocabulary acquisition, particularly in younger learners, and that incorporating these 

constraints into computational models can enhance our understanding of language learning 

processes. This integrated approach offers new insights for developing age-appropriate 

language teaching methodologies and improving predictive models for learning outcomes. 

Keywords: speech biomechanics; articulatory phonetics; speech production; motor control; 

age-related learning; vocabulary acquisition; Large Language Models 

1. Introduction 

Language Acquisition (LA) represents one of the most complex cognitive 

processes in human development, particularly in the realm of Vocabulary Learning 

(VL) [1,2]. This study presents a novel approach to understanding English Vocabulary 

Acquisition (EVA) by integrating two traditionally separate domains: the 

biomechanics of Speech Production (SP) and computational modeling through Large 

Language Models (LLM). While previous research has often treated these aspects in 

isolation, this study posits that the physical constraints of speech production 

significantly affect EVA patterns and can be effectively modeled using advanced 

computational methods [3]. The complexity of EVA extends beyond mere 

memorization, involving the intricate interplay between cognitive processing and 

physical articulation [4]. Traditional approaches to studying EVA have primarily 

focused on cognitive and psychological aspects, often overlooking the crucial role of 

speech biomechanics [5]. Recent advances in articulatory phonetics and motor control 

research have revealed that physical constraints in SP may significantly influence the 

ease and efficiency of VL [6]. Simultaneously, the emergence of LLM has opened new 

avenues for understanding and predicting LLM [7]. 
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Recent research has highlighted significant gaps in our understanding of EVA. 

Integrating physical and computational approaches remains limited, with most studies 

focusing on biomechanical aspects or computational modeling in isolation [8]. Current 

research lacks comprehensive consideration of age-specific biomechanical constraints 

in VL. Furthermore, existing models fail to incorporate both physical and 

computational aspects of LA adequately. The field also suffers from a scarcity of 

longitudinal studies examining the relationship between physical capabilities and 

learning outcomes.  

The research objectives are:  

• To quantify the relationship between articulatory biomechanics and EVA across 

different age groups. 

• To develop and validate an integrated model incorporating biomechanical 

constraints and LLM. 

• To examine how age-related differences in speech-motor control influence VL. 

• To evaluate the effectiveness of LLM in predicting learning outcomes when 

enhanced with biomechanical data. 

This research contributes to both theoretical understanding and practical 

applications in LA. From a theoretical perspective, the study develops a unified 

framework combining biomechanical and computational approaches, enhancing our 

understanding of age-specific constraints in LLM while providing new insights into 

the role of motor control in EVA. The practical implications extend to improved 

language teaching and assessment methodologies, developing age-appropriate 

learning strategies, enhanced computational models for predicting learning outcomes, 

and better tools for identifying and addressing learning difficulties. The study focuses 

on EVA among Mandarin Chinese speakers in Shenzhen, China, encompassing three 

age groups: children (8–12 years), adolescents (13–17 years), and adults (18–25 

years). While the findings may have broader implications, the specific linguistic 

context should be considered when generalizing results. The research spans 12 weeks, 

allowing for observing immediate learning outcomes and retention patterns. Our 

approach uniquely combines high-precision articulatory measurements with LLM 

analysis, developing age-specific biomechanical profiles within a novel computational 

framework. Integrating physical constraints with LLM represents a significant 

advancement in understanding EVA. The longitudinal nature of the study allows for a 

comprehensive assessment of learning outcomes across different age groups and 

learning contexts. 

The remainder of this paper presents a comprehensive literature review in section 

2 and a theoretical framework in section 3, followed by detailed methodology and data 

collection procedures in section 4. The research design and analysis methods are 

thoroughly explained, leading to the presentation of results in section 5 across multiple 

dimensions. Section 6 discusses implications and applications, concluding with 

recommendations for future research.  

2. Literature review 

The study of EVA has evolved significantly over the past century, and several 

influential theoretical frameworks have marked it. Skinner’s [9] “Verbal Behavior” 
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presented a behaviorist perspective, viewing VL as a process of habit formation 

through reinforcement. This view was fundamentally challenged by Chomsky’s [10] 

critique, which emphasized innate language capabilities and cognitive mechanisms. 

Krashen’s [11] input hypothesis later proposed that EVA occurs primarily through 

comprehensible input, making a crucial distinction between conscious learning and 

unconscious acquisition. Nation [12] developed a systematic framework for 

vocabulary instruction, introducing concepts of learning burden and the importance of 

repeated exposure in vocabulary retention. 

Recent advancements in our understanding of speech biomechanics have been 

driven by empirical studies using modern imaging and measurement techniques. 

Browman and Goldstein’s [13] articulatory phonology framework established 

fundamental principles for understanding how physical speech gestures relate to 

linguistic units. Gick et al. [14] provided comprehensive insights into SP mechanisms 

through their work on articulatory phonetics and motor control. Perkell’s [15] research 

on speech-motor control has illuminated how feedback mechanisms influence SP and 

EVA. 

The emergence of LLM has opened new avenues for understanding LLM and 

EVA. Devlin et al. [16] introduced Bidirectional Encoder Representations from 

Transformers (BERT), demonstrating unprecedented capabilities in LLM 

understanding through bidirectional context processing. Brown et al. [17] showcased 

GPT-3’s emergent linguistic behaviors, revealing how LLM can capture complex 

language patterns. Vaswani et al. [18] introduced the transformer architecture, which 

fundamentally changed LLM processing and has become crucial for understanding 

sequential language learning. 

Despite these advances, significant gaps remain in our understanding of EVA. 

Integrating biomechanical constraints with computational LLM remains largely 

unexplored. Most current LLMs do not account for the physical constraints of SP, 

which may limit their ability to model human LA patterns accurately. Additionally, 

longitudinal studies examining the relationship between articulatory development and 

vocabulary growth are scarce. 

3. Theoretical framework 

3.1. Speech biomechanics fundamentals 

The biomechanics of SP represents a complex interplay of muscular 

coordination and neural control. Articulatory phonetics, the foundation of SP, 

involves precise movements of the vocal apparatus, including the lips, tongue, soft 

palate, and larynx [19]. These articulators work in concert to modulate airflow and 

create distinct speech sounds. Particularly crucial in this process, the tongue employs 

intrinsic and extrinsic muscles to achieve the fine-grained positioning necessary for 

phoneme production. Research has shown that different phonemes require varying 

degrees of muscular effort and coordination, potentially influencing the ease of 

acquisition of different vocabulary items. 

Motor control in SP operates through a sophisticated feedback system 

incorporating feedforward and feedback mechanisms. The central nervous system 

maintains internal models of speech movements, continuously updated through 
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sensorimotor integration. These models enable rapid articulatory movement 

adjustment based on acoustic and proprioceptive feedback. Studies have demonstrated 

that the efficiency of this Motor Control System (MCS) significantly impacts EVA, 

particularly in terms of pronunciation accuracy and speech fluency. 

The development of speech muscles in language learners follows a trajectory 

influenced by physiological maturation and learning experience. Young learners 

undergo significant changes in their vocal apparatus, affecting their ability to produce 

certain sounds. This developmental process involves the strengthening and refining of 

muscle control, particularly in the tongue and facial muscles. Research indicates that 

the physical development of speech muscles correlates with EVA patterns, suggesting 

that biomechanical constraints may influence the natural sequence of word learning. 

3.2. LLM relevant to VL 

Modern language models employ sophisticated architectures that parallel certain 

aspects of human language processing. Token embedding and representation form the 

foundational layer of these models, where words or sub-word units are converted into 

high-dimensional vectors. These embeddings capture semantic and syntactic 

relationships between vocabulary items, creating a computational analog to the mental 

lexicon. Recent advances in embedding techniques have incorporated phonological 

features, allowing models to account for sound-based relationships between words. 

Attention mechanisms in LLM serve as computational analogs to human 

selective attention in language processing. These mechanisms enable models to 

dynamically weigh the importance of different parts of the input sequence, similar to 

how humans focus on relevant linguistic features during EVA. Multi-head attention, 

in particular, allows models to simultaneously process different aspects of LLM, from 

phonological patterns to semantic relationships. 

Pattern recognition capabilities in LLM extend beyond simple statistical 

correlations to capture complex linguistic phenomena. These models can identify 

recurring patterns in phonological sequences, morphological structures, and semantic 

relationships. Advanced architectures incorporate hierarchical pattern recognition 

systems that may mirror the layered processing observed in human LA. Recent 

research suggests these pattern recognition mechanisms can be aligned with 

biomechanical constraints to better model human VL patterns. 

Integrating biomechanical considerations with LLM represents a novel approach 

to understanding EVA. This framework allows for analyzing how physical constraints 

in SP might influence the learning trajectory predicted by computational models. 

Furthermore, considering cognitive and biomechanical factors in EVA, this integrated 

approach provides insights into potential optimization for language teaching 

methodologies. 

4. Methodology 

4.1. Population and sampling 

The study was conducted in Guangdong Province, China, specifically in 

Shenzhen. A total of 51 participants were recruited, stratified across three age groups: 
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children (ages 8–12, n = 17), adolescents (ages 13–17, n = 17), and adults (ages 18–

25, n = 17). All participants were native Mandarin Chinese speakers, with Cantonese 

as a common second language in their linguistic environment. The participants’ prior 

language exposure to English varied: children had an average of 2.3 years of formal 

English instruction through the Chinese education system, adolescents had 5.7 years, 

and adults had 8.4 years. Educational backgrounds were documented: children were 

all enrolled in primary education, adolescents in secondary education, and adults were 

university students or recent graduates with varying majors. 

The sample size of 51 participants was determined based on statistical and 

practical considerations. A power analysis using G*Power 3.1 was conducted, 

assuming a medium effect size (f = 0.25), α = 0.05, and power (1 − β) = 0.80 for 

repeated measures ANOVA with 3 groups and 6 measurement points [20]. The 

minimum required sample size was calculated to be 42 participants. The final sample 

size of 51 (17 per group) was chosen to account for potential attrition and to ensure 

balanced groups [21–25]. 

Inclusion/exclusion criteria inclusion criteria: 

• Age within specified ranges for each group; 

• Native Mandarin Chinese speaker; 

• Normal or corrected-to-normal vision; 

• There is no reported history of speech or language disorders; 

• Regular enrollment in English language classes; 

• Resident of Shenzhen for at least two years. 

Exclusion criteria: 

• History of neurological disorders; 

• Significant hearing impairment; 

• Extended (> 6 months) residence in English-speaking countries; 

• Bilingual proficiency in languages other than Mandarin and Cantonese; 

• Current participation in intensive English training programs outside regular 

schooling; 

• Previous participation in similar research studies. 

Written informed consent was obtained from all adult participants and 

parents/guardians of minor participants, with additional assent from minors. All 

participants were informed of their right to withdraw from the study at any time 

without penalty—data collection procedures adhered to privacy regulations, with 

personal identifiers removed during data analysis and storage [26–33]. Compensation 

was provided through educational materials and a modest stipend (¥200) for 

participation time. 

Recruitment methods: 

Participants were recruited through a multi-channel approach in Shenzhen: 

1) Primary and secondary schools:  

• Collaboration with three local public schools; 

• Information sessions for parents and students; 

• Distribution of recruitment flyers through school channels. 

2) University campus:  

• Announcements on university bulletin boards; 
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• Social media posts on university networks; 

• Direct contact through language departments. 

3) Community centers:  

• Posters in community centers; 

• WeChat community groups; 

• Local education forums. 

The recruitment process spanned 2 months, with initial screening conducted via 

online forms and in-person verification of eligibility criteria. A stratified sampling 

approach was used to ensure equal representation across age groups and gender 

balance within each group (Table 1). 

Table 1. Participant demographics (N = 51). 

Characteristic Children (n = 17) Adolescents (n = 17) Adults (n = 17) Total (N = 51) 

Age Range (years) 8–12 13–17 18–25 8–25 

Mean Age (SD) 10.3 (1.4) 15.2 (1.3) 21.6 (2.1) 15.7 (5.1) 

Gender 

Male 8 (47.1%) 9 (52.9%) 8 (47.1%) 25 (49.0%) 

Female 9 (52.9%) 8 (47.1%) 9 (52.9%) 26 (51.0%) 

English Education (Years) 

Mean (SD) 2.3 (0.8) 5.7 (1.2) 8.4 (1.6) 5.5 (2.8) 

Native Language 

Mandarin 17 (100%) 17 (100%) 17 (100%) 51 (100%) 

Second Language 

Cantonese 15 (88.2%) 16 (94.1%) 17 (100%) 48 (94.1%) 

Educational Level 

Primary School 17 (100%) - - 17 (33.3%) 

Secondary School - 17 (100%) - 17 (33.3%) 

University/Graduate - - 17 (100%) 17 (33.3%) 

Socioeconomic Status 

Lower-middle 4 (23.5%) 3 (17.6%) 3 (17.6%) 10 (19.6%) 

Middle 9 (52.9%) 10 (58.8%) 9 (52.9%) 28 (54.9%) 

Upper-middle 4 (23.5%) 4 (23.5%) 5 (29.4%) 13 (25.5%) 

Note: Values are presented as n (%). SD = Standard Deviation. 

4.2. Data collection methods 

4.2.1. Speech recording and analysis infrastructure 

Data was collected in a sound-treated laboratory room at Shenzhen University, 

with ambient noise below 30 dB. High-fidelity acoustic recordings were captured 

using a Shure SM7B microphone and a Focusrite Scarlett 2i2 audio interface, 

operating at a 44.1 kHz sampling rate with 24-bit depth. To ensure a comprehensive 

analysis of speech articulation, high-speed video recordings were simultaneously 

captured using a Sony RX100 VII camera operating at 240 frames per second. The 

camera was positioned at a 45° angle to optimize the capture of lip and jaw 

movements, with precise synchronization achieved through timecode markers 
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aligning all data streams. 

4.2.2. Biomechanical data acquisition and processing 

The study employed Electromagnetic Articulography (EMA) using the NDI 

Wave system to obtain detailed measurements of articulatory movements. Seven 

sensors were strategically placed to track key articulatory points: upper and lower lips, 

tongue tip, tongue body, tongue dorsum, and mouth corners (Table 1). The system 

operated at a 100 Hz sampling rate, with head movements corrected using three 

reference sensors positioned at the left mastoid, right mastoid, and nation. 

Complementing the EMA data, surface electromyography (sEMG) measurements 

were collected using the Delsys Trigno wireless EMG system, targeting four primary 

muscle groups involved in SP. The sEMG data was sampled at 2000 Hz, with electrode 

placement following standardized Surface ElectroMyoGraphy for the Non-Invasive 

Assessment of Muscles (SENIAM) guidelines (Table 2). 

Table 2. Sensor placement and recording parameters for articulatory measurements. 

Measurement Type Sensor Location Sampling Rate Parameters Tracked 

EMA 

Upper Lip 100 Hz Position (x, y, z), Velocity 

Lower Lip 100 Hz Position (x, y, z), Velocity 

Tongue Tip 100 Hz Position (x, y, z), Velocity 

Tongue Body 100 Hz Position (x, y, z), Velocity 

Tongue Dorsum 100 Hz Position (x, y, z), Velocity 

Right Corner 100 Hz Position (x, y, z), Velocity 

Left Corner 100 Hz Position (x, y, z), Velocity 

sEMG 

Orbicularis oris 2000 Hz Amplitude, Frequency 

Masseter 2000 Hz Amplitude, Frequency 

Digastric 2000 Hz Amplitude, Frequency 

Genioglossus 2000 Hz Amplitude, Frequency 

4.2.3. Linguistic data collection framework 

Table 3. Linguistic data collection schedule and specifications. 

Data Type Collection Frequency Duration Sample Size Requirements 

Journal Entries Weekly 12 weeks Minimum 200 words/entry 

Structured Tasks Bi-weekly 12 weeks 30 min/session 

Spontaneous Speech Weekly 12 weeks 15 min/session 

Guided Conversations Weekly 12 weeks 20 min/session 

Instant Messages Daily 12 weeks Minimum 50 messages/week 

The LLM training data comprised written and transcribed spoken content 

collected over 12 weeks (Table 2). Participants engaged in multiple forms of SP, 

including weekly journal entries, structured writing tasks, and recorded instant 

message conversations. All spoken interactions were systematically recorded, 

including baseline readings, spontaneous speech tasks, and guided conversations. 

These recordings were transcribed and verified by two native English speakers, with 
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annotations marking pronunciation errors, word stress patterns, hesitation markers, 

and self-corrections (Table 3). 

4.2.4. Quality control and data management 

A comprehensive quality control system was implemented to ensure data 

integrity and reliability (Table 4). This included regular equipment calibration, 

continuous noise level monitoring, and systematic sensor position verification. 

Environmental conditions were monitored and logged, with participant comfort 

regularly assessed to maintain data quality while ensuring ethical research practices. 

A robust backup protocol was implemented to protect data integrity, incorporating 

local storage, encrypted cloud backup, and weekly integrity checks. 

Table 4. Data quality control measures and backup protocol. 

Process Type Frequency Method Verification 

Equipment Calibration Daily Automated + Manual Technical Log 

Noise Monitoring Continuous Automated dB Threshold Alerts 

Data Backup Daily Automated Integrity Check 

Sensor Position Per Session Manual Photo Documentation 

Signal Quality Real-time Automated Quality Metrics 

Environmental Control Continuous Automated Condition Logs 

4.2.5. Data synchronization and processing 

All data streams were synchronized using a master clock system, with time 

stamps and cross-reference markers enabling precise temporal alignment (Table 5). 

The collected data underwent standardized processing protocols, including amplitude 

normalization for acoustic recordings, artifact removal for biomechanical data, and 

consistency checks for linguistic annotations. This integrated data collection and 

processing approach provides a comprehensive framework for examining physical SP 

and LLM relationships. 

Table 5. Data processing and synchronization parameters. 

Data Stream Processing Step Timing Resolution Output Format 

Audio Normalization 1 ms WAV/44.1 kHz 

EMA Motion Tracking 10 ms CSV 

sEMG Signal Conditioning 0.5 ms CSV 

Video Frame Sync 4.17 ms (240 fps) MP4 

Transcription Annotation Word-level XML/TEI 

Combined Data Integration 1 ms HDF5 

4.3. Research design 

4.3.1. Integration framework for biomechanical and LLM 

This research Table 6 is implements a novel integration framework combining 

biomechanical speech data with LLM. This approach utilizes a custom-developed 

pipeline that aligns temporal articulatory measurements with linguistic Features 
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Extraction (FE) from the LLM. The integration process employs an III-layer 

architecture: the biomechanical layer processing articulatory data, the linguistic layer 

handling vocabulary patterns, and an integration layer that combines these data 

streams through a temporal alignment algorithm. 

Table 6. Integration framework components and parameters. 

Layer Input Data Processing Method Output Features 

Biomechanical 
EMA, sEMG 

signals 
Signal processing, FE 

Articulatory trajectories, Muscle 

activation patterns 

Linguistic 
Transcribed speech, 

Text corpus 

LLM embedding analysis, 

Token classification 

Word embeddings, Semantic 

features 

Integration Combined features 
Temporal alignment, 

Feature fusion 
Multimodal feature vectors 

4.3.2. Control variables and experimental parameters 

From Table 7 is the study systematically controls variables across multiple 

dimensions to ensure experimental validity. Environmental parameters are strictly 

monitored and controlled throughout the data collection process. Task-related 

variables are standardized across all participants, with careful consideration given to 

potential confounding factors. 

Table 7. Control variable s and their specifications. 

Category Variable Control Method Acceptable Range 

Environmental 

Room temperature Automated HVAC 22 ℃ ± 1 ℃ 

Ambient noise Sound isolation < 30 dB 

Lighting LED panels 500–600 lux 

Task-related 

Session duration Timed protocols 45 ± 5 min 

Task complexity Standardized difficulty scales Level 3–7 (1–10 scale) 

Rest periods Fixed intervals 5 min per 20 min 

Participant 
Fatigue level Self-report scale < 7 on 10-point scale 

Time of day Scheduled sessions 9:00–15:00 

Technical 
Sensor position Calibration checks ± 0.5 mm tolerance 

Signal quality Real-time monitoring SNR > 20 dB 

4.3.3. Validation methodology 

From Tables 8–10 is the validation framework employs a multi-tiered approach 

to ensure the reliability and validity of the integrated analysis. Cross-validation 

procedures are implemented at the individual component and integrated system level. 

This work utilizes quantitative and qualitative validation methods to assess the 

accuracy and reliability of our findings. 

i) Statistical validation 

Statistical validation employs parametric and non-parametric methods to assess 

the significance of observed patterns.  

The primary statistical measures include: 
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Table 8. Statistical validation methods and criteria. 

Validation Type Method Acceptance Criteria Application 

Internal Consistency Cronbach’s alpha α ≥ 0.80 Feature reliability 

Inter-rater Reliability Cohen’s kappa κ ≥ 0.75 Annotation consistency 

Model Performance Cross-validation RMSE ≤ 15% Prediction accuracy 

Feature Significance Mixed-effects modeling p < 0.05 Pattern significance 

ii) Cross-modal validation 

The integration of biomechanical and linguistic data requires careful validation 

across modalities. This work implements a novel cross-modal validation framework 

that assesses the consistency of patterns observed in both domains: 

Table 9. Cross-modal validation framework. 

Aspect Validation Method Success Criteria Verification Tool 

Temporal Alignment Phase coherence analysis > 90% alignment Custom alignment tool 

Feature Correlation Canonical correlation r ≥ 0.70 Statistical software 

Pattern Consistency Multi-modal clustering Silhouette score > 0.65 Clustering algorithm 

System Integration End-to-end testing 95% accuracy Integration test suite 

4.3.4. Quality assurance 

The research design incorporates continuous quality assurance measures 

throughout the data collection and analysis pipeline. Regular calibration checks, data 

quality assessments, and validation procedures are performed to maintain the integrity 

of the study: 

Table 10. Quality assurance protocols. 

Stage QA Measure Frequency Action Threshold 

Data Collection Signal quality check Real-time SNR < 20 dB 

Processing Feature extraction verification Per session Error rate > 5% 

Integration Alignment accuracy Per dataset Misalignment > 2ms 

Analysis Result reproducibility Weekly Variance > 10% 

This comprehensive research design ensures robust biomechanical and linguistic 

data integration while maintaining high experimental control and validation standards. 

The framework provides a solid foundation for investigating the relationship between 

physical SP and EVA. 

5. Results 

5.1. Biomechanical speech patterns 

Analysis of Tables 11–14 revealed significant age-related differences in 

articulatory kinematics, muscle activation patterns, motor control efficiency, and 

learning outcomes across the study population (N = 51, age groups: children 8–12 

years, adolescents 13–17 years, adults 18–25 years). All measurements are presented 
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as mean values with standard deviations, and statistical significance was established 

at p < 0.05. The Coefficient of Variation (CV) was used to assess timing stability, while 

motor effort was calculated as integrated EMG activity over time. 

As shown in Table 11 and Figure 1, articulatory kinematics demonstrated a clear 

developmental trajectory across age groups. Children showed significantly larger 

maximum tongue displacements (14.3 ± 2.1 mm) compared to adolescents (12.8 ± 1.7 

mm) and adults (11.2 ± 1.4 mm) (F = 15.23, p < 0.001), indicating more exaggerated 

movements during SP. Similar patterns were observed in average velocity 

measurements, with children exhibiting higher velocities (156.7 ± 18.4 mm/s) 

compared to adults (134.8 ± 13.2 mm/s) (F = 12.45, p < 0.001). Movement duration 

analysis revealed that children required significantly more time (187.4 ± 22.3 ms) to 

complete articulatory gestures compared to adults (148.6 ± 15.4 ms) (F = 18.76, p < 

0.001), suggesting less efficient motor control. 

Table 11. Articulatory kinematics by age group (Mean ± SD). 

Parameter Children (n = 17) Adolescents (n = 17) Adults (n = 17) F-Value p-Value 

Tongue Movement (mm) 

Maximum Displacement 14.3 ± 2.1 12.8 ± 1.7 11.2 ± 1.4 15.23 < 0.001* 

Average Velocity 156.7 ± 18.4 142.3 ± 15.6 134.8 ± 13.2 12.45 < 0.001* 

Movement Duration (ms) 187.4 ± 22.3 165.2 ± 18.7 148.6 ± 15.4 18.76 < 0.001* 

Lip Position (mm) 

Vertical Range 8.7 ± 1.4 7.9 ± 1.2 7.2 ± 0.9 9.34 0.002* 

Horizontal Range 6.4 ± 0.9 5.8 ± 0.8 5.3 ± 0.7 8.56 0.003* 

Opening Velocity 124.5 ± 15.6 112.3 ± 13.4 103.7 ± 11.8 11.23 0.001* 

 
Figure 1. Articulatory kinematics. 

Table 12 and Figure 2 demonstrated muscle activation patterns with consistently 

higher activation levels in younger participants across all measured muscle groups. 

The orbicularis oris showed the most pronounced age-related differences, with 
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children exhibiting significantly higher activation levels (245.6 ± 28.4 µV) compared 

to adults (198.7 ± 21.3 µV) (F = 14.67, p < 0.001). This pattern was consistent across 

other muscle groups, with the genioglossus showing similar age-related differences 

(children: 213.4 ± 25.7 µV; adults: 176.8 ± 19.8 µV; F = 13.78, p < 0.001), indicating 

more significant muscular effort required by younger speakers during SP. 

Table 12. Muscle activation patterns during word production (µV). 

Muscle Group Children (n = 17) Adolescents (n = 17) Adults (n = 17) F-Value p-Value 

Orbicularis Oris 245.6 ± 28.4 218.3 ± 24.6 198.7 ± 21.3 14.67 < 0.001* 

Masseter 187.3 ± 22.1 165.4 ± 19.8 152.6 ± 17.5 12.89 < 0.001* 

Digastric 156.8 ± 18.9 142.5 ± 16.7 134.2 ± 15.1 10.45 0.002* 

Genioglossus 213.4 ± 25.7 189.6 ± 22.4 176.8 ± 19.8 13.78 < 0.001* 

 
Figure 2. Muscle activation patterns. 

The motor control efficiency metrics in Table 13 demonstrated significant 

improvements with age across all parameters. Movement precision showed a clear 

progression from children (76.4 ± 8.2%) to adults (92.3 ± 4.5%) (F = 22.34, p < 0.001), 

while timing stability, as measured by the coefficient of variation, improved from 0.24 

± 0.05 in children to 0.12 ± 0.03 in adults (F = 19.67, p < 0.001). Spatial control 

parameters similarly improved with age, with target accuracy showing significant 

enhancement from children (2.8 ± 0.4 mm) to adults (1.6 ± 0.2 mm) (F = 16.89, p < 

0.001). 

Table 14 and Figure 3 is illustrates the relationship between learning efficiency 

and articulatory complexity, revealing strong negative correlations across all 

complexity levels. This correlation strengthened as complexity increased, from r = 

−0.72 for low-complexity words to r = −0.84 for high-complexity words (all p < 

0.001). The learning rate showed a consistent decline as motor effort increased, with 
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high-complexity words requiring significantly more motor effort (245.4 ± 28.9 µV·s) 

and resulting in lower learning rates (4.2 ± 0.7 words/hour) compared to low-

complexity words (156.3 ± 18.4 µV·s; 8.4 ± 1.2 words/hour). 

Table 13. Motor control efficiency metrics. 

Metric Children (n = 17) Adolescents (n = 17) Adults (n = 17) F-value p-value 

Movement Precision (%) 76.4 ± 8.2 84.5 ± 6.7 92.3 ± 4.5 22.34 < 0.001* 

Timing Stability (CV) 0.24 ± 0.05 0.18 ± 0.04 0.12 ± 0.03 19.67 < 0.001* 

Spatial Control      

Target Accuracy (mm) 2.8 ± 0.4 2.1 ± 0.3 1.6 ± 0.2 16.89 < 0.001* 

Path Stability (%) 82.3 ± 6.8 88.7 ± 5.4 94.2 ± 3.8 20.45 < 0.001* 

Table 14. Learning efficiency vs. articulatory complexity correlation. 

Complexity Level Learning Rate (words/hour) Motor Effort (µV·s) Correlation (r) p-value 

Low 8.4 ± 1.2 156.3 ± 18.4 −0.72 < 0.001* 

Medium 6.7 ± 0.9 198.7 ± 22.6 −0.78 < 0.001* 

High 4.2 ± 0.7 245.4 ± 28.9 −0.84 < 0.001* 

 
Figure 3. Learning rate by word category and age group. 

5.2. Vocabulary acquisition patterns 

Tables 15–18 reveal comprehensive patterns in EVA across three age groups 

(children: 8–12 years, adolescents: 13–17 years, and adults: 18–25 years), with 

measurements presented as means and standard deviations and statistical significance 

established at p < 0.05. Learning rates, error patterns, retention rates, and complexity 

impacts were analyzed through standardized assessments and natural speech samples 

over 12 weeks. 

Analysis of Table 15 and Figure 4 demonstrates significant age-related 

differences in learning rates across word categories. Adults consistently showed higher 

learning rates across all word categories, with the most pronounced difference in 
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simple syllabic concrete nouns (11.2 ± 1.5 words/hour; children: 7.8 ± 1.2 words/hour; 

F = 18.34, p < 0.001). Complex syllabic abstract nouns proved most challenging across 

all age groups, with children showing the lowest learning rate (3.2 ± 0.6 words/hour) 

compared to adults (6.4 ± 1.0 words/hour; F = 17.23, p < 0.001). Regular verbs were 

acquired more efficiently than irregular verbs across all age groups, with adults 

maintaining a significant advantage (regular: 9.7 ± 1.4; irregular: 7.2 ± 1.1 

words/hour). 

Table 15. Learning rate by word category and age group (words/hour). 

Word Category Children (n = 17) Adolescents (n = 17) Adults (n = 17) F-value p-value 

Concrete Nouns 

Simple syllabic 7.8 ± 1.2 9.4 ± 1.4 11.2 ± 1.5 18.34 < 0.001* 

Complex syllabic 5.3 ± 0.9 7.1 ± 1.1 8.6 ± 1.3 16.78 < 0.001* 

Abstract Nouns 

Simple syllabic 5.6 ± 0.8 7.2 ± 1.0 8.9 ± 1.2 15.45 < 0.001* 

Complex syllabic 3.2 ± 0.6 4.8 ± 0.8 6.4 ± 1.0 17.23 < 0.001* 

Verbs 

Regular 6.4 ± 1.0 8.1 ± 1.2 9.7 ± 1.4 14.67 < 0.001* 

Irregular 4.1 ± 0.7 5.8 ± 0.9 7.2 ± 1.1 16.89 < 0.001* 

Adjectives 

Basic 6.9 ± 1.1 8.5 ± 1.3 10.1 ± 1.5 15.78 < 0.001* 

Complex 4.5 ± 0.8 6.2 ± 1.0 7.8 ± 1.2 16.34 < 0.001* 

 
Figure 4. Retention rates over 12 weeks. 

Table 16 illustrates error patterns and self-correction behaviors, revealing a 

consistent developmental progression. Phonological errors were most frequent, with 

children showing the highest occurrence rate (34.5 ± 4.2%) compared to adults (18.7 

± 3.1%). Notably, self-correction rates improved substantially with age across all error 

types, with adults demonstrating the highest self-correction rate for phonological 

errors (78.2 ± 7.2%) and requiring the least time to correct (2.1 ± 0.3 seconds). 

Semantic errors showed similar patterns but lower overall occurrence rates across all 

age groups. Retention rates analyzed in Table 17 demonstrate a clear temporal decay 

pattern over the 12 weeks. While all groups showed perfect retention at Week 1 
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(baseline), the decay rate varied significantly by age. Children exhibited the steepest 

decline, reaching 67.8 ± 7.1% retention by Week 12, while adults maintained higher 

retention rates (84.9 ± 5.3%). The most substantial drop in retention occurred between 

Weeks 4 and 6 across all age groups, suggesting a critical period for vocabulary 

consolidation. Table 18 reveals the impact of word complexity on EVA success, 

showing significant differences across complexity levels and age groups. For low-

complexity words, adults achieved the highest EVA success rate (94.2 ± 4.3%) with 

the shortest learning duration (1.9 ± 0.3 days). The impact of complexity was most 

pronounced in children, where high-complexity words showed markedly lower EVA 

success (58.6 ± 7.1%) and required more extended learning periods (7.8 ± 0.9 days). 

The retention rate followed a similar pattern, with high-complexity words showing the 

lowest retention across all age groups, particularly in children (52.3 ± 6.2%). 

Table 16. Error patterns and self-correction analysis. 

Error Type Occurrence Rate (%) Self-Correction Rate (%) Mean Time to Correct (s) 

Phonological 

Children 34.5 ± 4.2 45.6 ± 5.3 3.8 ± 0.6 

Adolescents 25.3 ± 3.8 62.4 ± 6.1 2.9 ± 0.4 

Adults 18.7 ± 3.1 78.2 ± 7.2 2.1 ± 0.3 

Semantic 

Children 28.9 ± 3.9 38.7 ± 4.8 4.2 ± 0.7 

Adolescents 22.4 ± 3.4 54.3 ± 5.7 3.3 ± 0.5 

Adults 15.6 ± 2.8 71.5 ± 6.9 2.4 ± 0.4 

Syntactic 

Children 31.2 ± 4.1 41.2 ± 5.1 4.5 ± 0.8 

Adolescents 23.8 ± 3.6 58.6 ± 5.9 3.6 ± 0.6 

Adults 16.9 ± 2.9 75.8 ± 7.1 2.7 ± 0.4 

Table 17. Retention rates over 12-week period (%). 

Time Point Children (n = 17) Adolescents (n = 17) Adults (n = 17) 

Week 1 100 100 100 

Week 2 92.3 ± 4.5 94.7 ± 4.2 96.8 ± 3.8 

Week 4 85.6 ± 5.2 89.4 ± 4.8 93.5 ± 4.1 

Week 6 79.8 ± 5.8 85.2 ± 5.3 90.7 ± 4.5 

Week 8 74.5 ± 6.3 81.6 ± 5.7 88.2 ± 4.8 

Week 10 70.2 ± 6.7 78.3 ± 6.1 86.4 ± 5.1 

Week 12 67.8 ± 7.1 76.5 ± 6.4 84.9 ± 5.3 
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Table 18. Word complexity impact on EVA success. 

Complexity Factors EVA Success Rate (%) Learning Duration (days) Retention Rate (%) 

Low Complexity 

Children 82.4 ± 5.6 3.2 ± 0.5 78.5 ± 4.8 

Adolescents 88.7 ± 5.1 2.6 ± 0.4 84.3 ± 4.3 

Adults 94.2 ± 4.3 1.9 ± 0.3 90.6 ± 3.7 

Medium Complexity 

Children 71.5 ± 6.2 5.4 ± 0.7 65.8 ± 5.4 

Adolescents 79.3 ± 5.7 4.3 ± 0.6 73.5 ± 4.9 

Adults 86.7 ± 4.8 3.2 ± 0.4 82.4 ± 4.1 

High Complexity 

Children 58.6 ± 7.1 7.8 ± 0.9 52.3 ± 6.2 

Adolescents 67.4 ± 6.5 6.5 ± 0.8 61.8 ± 5.7 

Adults 76.2 ± 5.4 4.8 ± 0.6 71.5 ± 4.8 

5.3. Biomechanical-linguistic correlations 

Tables 19–22 present comprehensive analyses of biomechanical-linguistic 

correlations across three age groups (children: 8–12 years, adolescents: 13–17 years, 

and adults: 18–25 years), examining relationships between physical speech 

mechanisms and learning outcomes. Effect sizes are categorized as small (η2 = 0.01), 

medium (η2 = 0.06), and large (η2 = 0.14), with correlation strengths defined as weak 

(r < 0.3), moderate (0.3 ≤ r < 0.7), and strong (r ≥ 0.7). Table 19 reveals significant 

correlations between articulatory effort and learning success. Muscle activity showed 

strong negative correlations with learning success in children (r = −0.824, p < 0.001) 

and adolescents (r = −0.762, p < 0.001), while adults exhibited a moderate negative 

correlation (r = −0.683, p < 0.001). Movement duration demonstrated a similar pattern, 

with the strongest negative correlation in children (r = −0.756, p < 0.001). Notably, 

articulatory precision showed strong positive correlations across all age groups, with 

adults exhibiting the most robust relationship (r = 0.876, p < 0.001). 

Table 19. Correlation between articulatory effort and learning success. 

Effort Measure Learning Success Correlation (r) Statistical Significance 

Muscle Activity (µV) 

Children −0.824 (p < 0.001)* Strong negative 

Adolescents −0.762 (p < 0.001)* Strong negative 

Adults −0.683 (p < 0.001)* Moderate negative 

Movement Duration (ms) 

Children −0.756 (p < 0.001)* Strong negative 

Adolescents −0.684 (p < 0.001)* Moderate negative 

Adults −0.592 (p < 0.001)* Moderate negative 

Articulatory Precision (%) 

Children 0.798 (p < 0.001)* Strong positive 

Adolescents 0.843 (p < 0.001)* Strong positive 

Adults 0.876 (p < 0.001)* Strong positive 
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The impact of motor complexity on retention, analyzed in Table 20, demonstrates 

significant differences in learning decay rates. Low complexity tasks showed better 

retention across all age groups, with adults maintaining the highest 12-week retention 

rate (89.5 ± 4.5%) and the lowest decay rate (0.69 ± 0.15%/week). High complexity 

tasks resulted in steeper decay rates, particularly in children (1.63 ± 0.28%/week), with 

initial learning rates significantly lower than low complexity tasks (76.4 ± 6.3% vs. 

92.3 ± 4.2%). Table 21 highlights age-specific biomechanical constraints with large 

effect sizes across all parameters. Maximum tongue speed showed a clear 

developmental progression (children: 168.4 ± 18.7 mm/s; adults: 195.3 ± 14.2 mm/s; 

η2 = 0.72), while lip coordination demonstrated the most significant effect size (η2 = 

0.75), with adults showing significantly better synchronization (0.93 ± 0.04) compared 

to children (0.72 ± 0.08). Motor learning rate also showed substantial age-related 

improvements (children: 0.58 ± 0.09; adults: 0.86 ± 0.05 units/day; η2 = 0.71). 

Table 20. Motor complexity impact on retention (12-week follow-up). 

Motor Complexity Initial Learning (%) 6-Week Retention (%) 12-Week Retention (%) Decay Rate (%/week) 

Low Complexity 

Children 92.3 ± 4.2 84.5 ± 5.1 78.2 ± 5.8 1.17 ± 0.21 

Adolescents 95.6 ± 3.8 89.3 ± 4.6 84.7 ± 5.2 0.91 ± 0.18 

Adults 97.8 ± 3.2 93.4 ± 3.9 89.5 ± 4.5 0.69 ± 0.15 

High Complexity 

Children 76.4 ± 6.3 65.2 ± 7.1 56.8 ± 7.8 1.63 ± 0.28 

Adolescents 82.7 ± 5.7 73.5 ± 6.4 66.3 ± 7.2 1.37 ± 0.24 

Adults 88.9 ± 4.8 81.6 ± 5.5 75.4 ± 6.3 1.12 ± 0.20 

Table 21. Age-specific biomechanical constraints. 

Parameter Children Adolescents Adults Effect Size (η2) 

Maximum Tongue Speed (mm/s) 168.4 ± 18.7 182.6 ± 16.4 195.3 ± 14.2 0.72* 

Jaw Opening Range (mm) 15.3 ± 2.1 13.8 ± 1.8 12.4 ± 1.5 0.68* 

Lip Coordination (sync ratio) 0.72 ± 0.08 0.84 ± 0.06 0.93 ± 0.04 0.75* 

Motor Learning Rate (units/day) 0.58 ± 0.09 0.73 ± 0.07 0.86 ± 0.05 0.71* 

Pattern recognition capabilities, detailed in Table 22 and Figure 5, revealed 

consistent age-related improvements across all pattern types. Phonological patterns 

showed the highest recognition accuracy, with adults achieving 89.3 ± 4.7% accuracy 

and substantial learning transfer (84.7 ± 5.2%). The automaticity index demonstrated 

progressive improvement with age, particularly in phonological patterns (children: 

0.58 ± 0.09; adults: 0.85 ± 0.05). Combined patterns proved most challenging across 

all age groups, with children showing the lowest recognition accuracy (65.3 ± 7.4%) 

and automaticity index (0.48 ± 0.11). These findings demonstrate strong 

interconnections between biomechanical capabilities and linguistic performance, with 

age-related improvements in motor control significantly influencing learning 

outcomes and pattern recognition abilities. The results suggest that biomechanical 

constraints are crucial in EVA and retention across different age groups. 
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Figure 5. Motor complexity impact on retention. 

Table 22. Pattern recognition in speech-learning relationships. 

Pattern Type Recognition Accuracy (%) Learning Transfer (%) Automaticity Index 

Phonological Patterns 

Children 72.4 ± 6.8 64.5 ± 7.2 0.58 ± 0.09 

Adolescents 81.6 ± 5.9 75.3 ± 6.4 0.71 ± 0.07 

Adults 89.3 ± 4.7 84.7 ± 5.2 0.85 ± 0.05 

Motor Patterns 

Children 68.7 ± 7.1 59.8 ± 7.5 0.52 ± 0.10 

Adolescents 77.4 ± 6.3 70.6 ± 6.8 0.66 ± 0.08 

Adults 85.2 ± 5.1 79.4 ± 5.6 0.79 ± 0.06 

Combined Patterns 

Children 65.3 ± 7.4 56.2 ± 7.8 0.48 ± 0.11 

Adolescents 74.8 ± 6.6 67.5 ± 7.1 0.63 ± 0.09 

Adults 82.6 ± 5.4 76.8 ± 5.9 0.76 ± 0.07 

5.4. LLM performance analysis 

Tables 23–26 present comprehensive analyses of the LLM’s performance in 

predicting EVA across three age groups (children: 8–12 years, adolescents: 13–17 

years, and adults: 18–25 years), with performance metrics averaged over 1000 

prediction cycles and incorporating biomechanical constraints. Table 23 and Figure 6 

demonstrates the model’s prediction accuracy compared to observed learning patterns. 

The model Figure 7 achieved the highest accuracy in predicting word EVA rates for 

adults (91.5 ± 3.2%), with strong observed data match (89.7 ± 3.6%) and the lowest 

RMSE (0.108). Children’s predictions showed lower accuracy (83.4 ± 4.2%) with 

higher RMSE (0.156), indicating more significant prediction challenges for younger 

learners. From Figure 8 is the Error pattern predictions followed similar trends, with 

adult predictions achieving higher F1 scores (0.874) than children (0.783). 
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Table 23. Model prediction accuracy vs. observed learning patterns. 

Learning Pattern Type Model Prediction Accuracy (%) Observed Data Match (%) RMSE F1 Score 

Word EVA Rate 

Children 83.4 ± 4.2 78.6 ± 5.1 0.156 0.814 

Adolescents 87.2 ± 3.8 84.3 ± 4.3 0.132 0.856 

Adults 91.5 ± 3.2 89.7 ± 3.6 0.108 0.892 

Error Patterns 

Children 79.8 ± 4.7 75.2 ± 5.4 0.184 0.783 

Adolescents 84.6 ± 4.1 81.5 ± 4.6 0.148 0.835 

Adults 88.9 ± 3.5 86.8 ± 3.9 0.124 0.874 

 
Figure 6. Model prediction accuracy vs. observed learning patterns. 

Table 24. Learning difficulty prediction performance. 

Difficulty Type Precision Recall Specificity ROC-AUC 

Phonological 

Children 0.842 ± 0.038 0.815 ± 0.042 0.867 ± 0.035 0.858 

Adolescents 0.876 ± 0.034 0.854 ± 0.037 0.892 ± 0.031 0.883 

Adults 0.912 ± 0.028 0.893 ± 0.032 0.924 ± 0.026 0.918 

Semantic 

Children 0.824 ± 0.041 0.798 ± 0.045 0.845 ± 0.038 0.834 

Adolescents 0.863 ± 0.036 0.842 ± 0.039 0.878 ± 0.033 0.871 

Adults 0.895 ± 0.031 0.876 ± 0.034 0.908 ± 0.029 0.902 
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Figure 7. Learning difficulty prediction performance. 

Table 25. Biomechanical constraint integration impact. 

Integration Level Prediction Enhancement (%) Error Reduction (%) Correlation (r) MSE 

Basic Integration 

Children 12.4 ± 1.8 15.6 ± 2.1 0.784 0.156 

Adolescents 10.8 ± 1.6 13.2 ± 1.9 0.812 0.142 

Adults 8.6 ± 1.4 10.5 ± 1.7 0.845 0.128 

Advanced Integration 

Children 18.7 ± 2.2 22.4 ± 2.5 0.856 0.124 

Adolescents 16.5 ± 1.9 19.8 ± 2.3 0.878 0.112 

Adults 14.2 ± 1.7 16.9 ± 2.0 0.892 0.098 

 
Figure 8. Biomechanical constraint integration impact. 
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Table 26. Cross-age group comparative analysis. 

Performance Metric Without Bio-Integration With Bio-Integration Improvement (%) 

Model Accuracy (%) 

Children 76.5 ± 4.8 88.9 ± 3.6 16.2 

Adolescents 82.3 ± 4.2 92.4 ± 3.1 12.3 

Adults 87.8 ± 3.5 95.6 ± 2.7 8.9 

Prediction Time (ms) 

Children 245 ± 28 298 ± 32 −21.6 

Adolescents 232 ± 25 278 ± 29 −19.8 

Adults 218 ± 23 256 ± 26 −17.4 

Resource Usage (RAM GB) 

Children 4.2 ± 0.4 5.8 ± 0.5 −38.1 

Adolescents 4.0 ± 0.4 5.5 ± 0.5 −37.5 

Adults 3.8 ± 0.3 5.2 ± 0.4 −36.8 

 
Figure 9. Cross-age group comparative analysis. 

Learning difficulty prediction performance, detailed in Table 24 and Figure 9, 

reveals strong capabilities across different difficulty types. Phonological difficulty 

predictions showed the highest precision for adults (0.912 ± 0.028) with strong Area 

under the Receiver Operating Characteristic Curve (ROC-AUC) values (0.918), while 

children’s predictions maintained lower but still significant precision (0.842 ± 0.038, 

ROC-AUC: 0.858). Semantic difficulty predictions demonstrated similar patterns but 

slightly lower overall performance metrics across all age groups. The impact of 

biomechanical constraint integration, analyzed in Table 25, shows significant 

improvements in model performance. Advanced integration yielded substantial 

prediction enhancements, particularly for children (18.7 ± 2.2%), with corresponding 

error reduction (22.4 ± 2.5%) and improved correlations (r = 0.856). The impact was 

less pronounced but still significant for adults, with advanced integration, showing 

14.2 ± 1.7% prediction enhancement and reduced Mean Square Error (MSE) (0.098). 
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Table 26 reveals the computational trade-offs of biomechanical integration. 

While model accuracy improved significantly with bio-integration (children: 76.5% to 

88.9%, adults: 87.8% to 95.6%), this came at the cost of increased prediction time and 

resource usage. Prediction time increased more substantially for children (−21.6%) 

compared to adults (−17.4%), while RAM usage increased similarly across all age 

groups (approximately −37%). Despite these computational costs, improving 

prediction accuracy suggests the value of incorporating biomechanical constraints. 

These findings demonstrate that while the LLM shows overall robust performance in 

predicting EVA patterns, its effectiveness varies by age group and improves 

significantly with the integration of biomechanical constraints, albeit at the cost of 

increased computational resources. The model’s performance is consistently better for 

adult learners, suggesting opportunities for refinement in modeling younger learners’ 

EVA patterns. 

6. Conclusion and future work 

This study has demonstrated the significant impact of biomechanical constraints 

on EVA and the value of integrating these factors into computational LLM. We have 

established vital findings that advance our understanding of LLM through the 

comprehensive analysis of articulatory patterns, muscle activation, and learning 

outcomes across different age groups. The research revealed substantial age-related 

differences in SP mechanics, with younger learners exhibiting significantly higher 

muscular effort and less efficient MCS. These biomechanical variations strongly 

correlate with EVA success, particularly in learning rate and retention. They were 

integrating biomechanical data into LLM analysis markedly improved prediction 

accuracy, though with associated computational costs. These findings have important 

implications for language teaching and learning. The strong relationship between 

motor complexity and learning outcomes suggests the need for age-specific teaching 

approaches considering physical development stages. The enhanced predictive 

capabilities of biomechanically-informed LLM offer new possibilities for 

personalized learning strategies and early identification of potential learning 

difficulties. Several limitations of this study warrant consideration. The specific 

linguistic context of Mandarin Chinese speakers learning English may limit 

generalizability to other language pairs. The 12-week duration, while sufficient for 

observing initial learning patterns, may not fully capture long-term retention effects. 

Additionally, the computational demands of integrated biomechanical-linguistic 

analysis present challenges for real-time applications. 

Future research should explore longer-term longitudinal studies, broader 

linguistic contexts, and more efficient computational methods for integrating 

biomechanical data. Investigating intervention strategies based on biomechanical 

profiles could provide valuable insights into language education. Developing more 

resource-efficient integration methods for biomechanical constraints in LLM 

represents an important direction for future work. This study represents a significant 

step toward understanding the complex interplay between the physical and cognitive 

aspects of LLM. The demonstrated value of incorporating biomechanical constraints 

into computational models opens new avenues for research in LA and pedagogical 
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