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Abstract: With the widespread application of Global Navigation Satellite System (GNSS) in 

the fields of positioning and navigation, traditional single frequency and single system 

positioning methods are gradually unable to meet the requirements of high accuracy and high 

reliability. Especially in complex and dynamic environments, GNSS signals are affected by 

multipath effects, occlusion, and interference, resulting in a significant decrease in positioning 

accuracy. Therefore, it is particularly important to develop a multi-frequency and multi-system 

GNSS positioning data fusion algorithm. This article used Kalman filtering technology and 

combined the data characteristics of multi-frequency and multi-system GNSS signals to study 

a new positioning data fusion algorithm. By comprehensively processing different GNSS 

systems and frequency signals, the positioning accuracy and anti-interference ability were 

significantly improved. The experimental results showed that the algorithm studied improved 

the average positioning accuracy by more than 6.23% in complex environments compared to 

traditional methods, and also exhibited good adaptability and stability under dynamic 

conditions. Fully utilizing the advantages of multi-frequency signals and combining advanced 

data fusion technology is an effective way to improve GNSS positioning performance, 

providing new ideas and methods for future intelligent navigation applications. 

Keywords: global navigation satellite system; Kalman filter; data fusion; multi-frequency 

multi-system 

1. Introduction 

Global Navigation Satellite Systems (GNSS) play a crucial role in the fields of 

positioning, navigation, and time synchronization in modern society. However, 

traditional positioning methods have certain limitations in terms of positioning 

accuracy, stability, and anti-interference ability. The main contribution of this study is 

the proposal of a multi-frequency and multi-system GNSS positioning data fusion 

algorithm based on Kalman filtering. This algorithm significantly improves 

positioning accuracy and system reliability by effectively fusing data from different 

frequency bands and systems. 

The organizational structure of this article is as follows: firstly, the basic 

principles of GNSS positioning and the main challenges it faces are introduced; 

secondly, the proposed Kalman filtering algorithm and its application in multi-

frequency and multi-system data fusion are described in detail, including the 

observation model and data preprocessing process; next, the experimental design and 

its results are presented, and the performance of traditional methods and new 

algorithms in terms of positioning accuracy and stability is compared; finally, the 
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significance of the results in practical applications is discussed, and future research 

directions are proposed. 

The problem to be solved in this article is how to improve positioning accuracy 

and anti-interference ability by integrating multi-frequency and multi-system GNSS 

data in dynamic environments. The innovation lies in the use of Kalman filtering 

technology to process and fuse observation data from different GNSS systems, thereby 

overcoming the limitations of traditional methods. The technical solution includes 

modeling observation noise and system errors, using weighted averaging for data 

preprocessing, and using Kalman filtering for state estimation and data fusion. This 

method not only improves positioning accuracy, but also enhances the stability and 

reliability of the system under various environmental conditions, providing new ideas 

and methods for the future development of navigation technology. 

2. Related work 

There have been many studies on location data fusion recently. Cheng [1] 

designed a speed measurement method that combined Doppler radar and inertial 

sensors, effectively improving the accuracy of vehicle speed measurement and 

positioning in pipeline corridors, and providing reliable guarantees for the safe 

operation of pipeline logistics systems. Based on Bayesian filtering and swarm 

intelligence theory, Bai [2] proposed a wireless aviation search and rescue data fusion 

positioning method based on robust artificial fish swarm particle filtering. Zhao [3] 

proposed an improved single star direct positioning method for real valued space-time 

subspace data fusion, which achieved direct positioning of multiple radiation sources 

by a single star under the condition of known radiation source elevation. Acar [4] 

proposed an indoor positioning scheme based on IMU (Inertial Measurement Unit) 

and Bluetooth data fusion, aiming to achieve sub meter level positioning accuracy. 

Ghazal [5] explored a machine learning architecture based on data fusion to improve 

the performance of intrusion detection systems, emphasizing the importance of fusing 

different types of data (such as network traffic, user behavior, etc.) to enhance 

detection accuracy. These studies did not fully consider the noise, missing values, and 

diversity of sensor data, which affected the final fusion effect. 

There are also many studies on the application of Kalman filtering. Xu [6] was 

based on the Kalman filter method and used a dual-mode positioning module to fuse 

the positioning data of the Beidou system and the global positioning system, greatly 

improving the positioning accuracy and reducing errors. Wang [7] proposed a visual 

inertial adaptive fusion method based on variational Bayesian inference in the error 

state Kalman filtering framework. This method had high accuracy and robustness, and 

achieved fast and high-precision tracking of targets. Bakhshi Ostadkalayeh [8] studied 

the application of deep learning models based on LSTM (Long Short-Term Memory) 

Network in traffic prediction, and combined it with Kalman filtering technology for 

performance improvement. Ghansah [9] reviewed the application of nonlinear Kalman 

filtering in target tracking, reviewed different nonlinear filtering techniques, and 

explored their effectiveness in dynamic environments. Winiwarter [10] applied 

Kalman filtering in its research to analyze the full four-dimensional changes of terrain 

point cloud time series. Kalman filtering can not only handle the noise of time series 
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data, but also extract key change information, providing an effective method for 

surface dynamic monitoring. In dynamic environments, the system model changes 

rapidly, and the fixed model of Kalman filtering cannot adapt quickly to new changes, 

resulting in a decrease in the performance of the filter. 

3. Methods 

3.1. System state modeling 

In GNSS positioning, the accuracy of observation values directly affects the 

accuracy and reliability of positioning results. Among them, the accuracy of 

observation is determined by both observation noise and systematic error. Therefore, 

in order to achieve high positioning accuracy, it is necessary to filter the GNSS 

observation data to meet certain accuracy requirements. For the multi-frequency and 

multi-system GNSS positioning data fusion algorithm, its state model is described as 

follows [11]: 

𝑄 = 𝐶𝜃 + 𝑇𝐼 (1) 

Among them, θ is the system state vector; I is the random noise; T is the influence 

matrix. At the same time, Kalman filtering technology is used to update the 

observation vectors, thereby further improving the positioning accuracy of the entire 

system. It can be seen that in this model, the system error is jointly determined by 

errors such as receiver clock bias, multipath effects, and multipath effects; observation 

noise is caused by random errors and tropospheric delays generated during the 

propagation of satellite signals. When the receiver clock bias is small, the system error 

mainly comes from the receiver clock bias and tropospheric delay, and gradually 

increases with the increase of differences between multiple systems; when the receiver 

clock bias is large, it comes from the differences between multiple systems. It can be 

seen that in this model, multiple system errors and multipath effects are the main 

sources of error affecting positioning accuracy. Meanwhile, when there are significant 

differences between multiple systems, it leads to an increase in system errors. Due to 

the significant differences between multiple systems, the errors in receiver clock bias 

and tropospheric delay further increase. Among them, in order to process the 

observation noise, corresponding observation equations need to be established [12]: 

(𝑝, 𝑞) = 𝐴(𝑥, 𝑦) + 𝐵(𝑖, 𝑗)𝜀 (2) 

Among them, p and q are receiver clock errors; x and y are tropospheric delays; 

ε is random noise. In the multi-frequency and multi-system GNSS positioning data 

fusion algorithm, the main sources of observation noise are: the first is random errors 

generated during satellite signal propagation; the second is the observation error 

caused by tropospheric delay; the third is the system error caused by receiver clock 

bias. In order to filter observation noise, the least squares estimation method is usually 

used. The steps are as follows: firstly, the clock bias and inter epoch bias of the satellite 

are calculated based on the ephemeris file, thereby obtaining the carrier phase and 

pseudorange values of the satellite in each system; secondly, pseudorange 

observations are used for positioning, and the pseudorange result is multiplied by a 

certain coefficient and subtracted from the satellite clock bias to obtain the satellite 
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clock bias given in the ephemeris; thirdly, the carrier phase observation value is used 

for positioning calculation, and the pseudo range result is multiplied by a certain 

coefficient and subtracted from the satellite clock difference to obtain the carrier phase 

observation value; fourthly, the carrier phase observation values are used for 

positioning calculation. 

There are mainly two traditional single frequency receiver calculation models: 

one is the pseudorange differential model based on pseudorange and phase 

observations, and the other is the phase differential model based on carrier phase 

observations. These two methods each have their own advantages and disadvantages, 

but the phase difference model used in this article is based on carrier phase 

observations. In practical applications, it is impossible for a single receiver to 

simultaneously observe satellite signals on all frequencies. Therefore, the solution 

method of “pseudorange difference+carrier phase difference” is adopted. In the 

pseudorange differential model, it is further divided into carrier phase differential 

observations and carrier phase observations. This article mainly studies the pseudo 

range differential model based on carrier phase observations. At present, a differential 

observation calculation method for carrier phase observations is implemented on 

single frequency receivers. Although this method effectively solves the problem of 

multi-system fusion, the calculation process is relatively complex and the solution 

time is also long. 

3.2. Kalman filter design 

The Kalman filter algorithm is an optimal linear system used for estimating state 

equations and measurement equations. The implementation process of the multi-

frequency and multi-system GNSS positioning data fusion algorithm is divided into 

the following three stages: first, multiple GNSS systems and frequency data are 

preprocessed; then, the observation data is filtered and estimated; finally, the 

observation data is fused. The first step is to preprocess multiple GNSS systems and 

frequency signals, mainly including estimating various ionospheric delays, estimating 

multipath effects, and detecting multi-carrier phases. In the above process, it is 

necessary to make reasonable estimates of various ionospheric delays and multi-

carrier phases, and these observational data contain a large amount of noise. If these 

noises cannot be accurately removed, it seriously affects the accuracy and reliability 

of the filtered estimation values. Therefore, in the preprocessing process, it is 

necessary to estimate various ionospheric delays and determine corresponding weights 

and thresholds based on satellite position, observation noise, and other information. 

The second step is to fuse the observation data with the fused observation data. For 

multi-carrier phase observations, they are all sent by satellites and reflected, refracted, 

or diffracted by the ionosphere before reaching the receiver and being received by the 

receiver. For multi-carrier phase observations, their observations are usually obtained 

by measuring noise and model errors. When GNSS signals pass through the 

ionosphere, errors and model errors are generated, which directly affect navigation 

and positioning accuracy. Therefore, it is necessary to estimate and correct 

measurement noise and model errors. When estimating these measurement noises and 

model errors, multiple types of measurement noises and model errors need to be 
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considered. The third step is to fuse the navigation and positioning data. After the 

positioning data is processed as described above, the navigation positioning accuracy 

is significantly improved. However, in practical applications, due to limitations such 

as environmental and equipment conditions, the impact of measurement noise and 

model errors cannot be completely eliminated. Therefore, it is necessary to fuse 

navigation and positioning data to further improve its positioning accuracy and 

reliability. In addition, it is necessary to filter and estimate navigation data to eliminate 

or suppress the effects of various measurement noise, model errors, and other factors. 

In GNSS data preprocessing, the weighted average method is generally used. The 

so-called weighted average refers to using different weights for data collected by 

multiple GNSS systems based on different observation values to improve data quality. 

Usually, when performing weighted averaging, two factors are mainly considered: 

firstly, for the same satellite system, due to their independent observation data, the 

data obtained by weighted averaging has the same accuracy as the original observation 

values; secondly, for different satellite systems, due to the different characteristics of 

the data collected, the weighted average of the data obtained from them has different 

accuracy compared to the original observation values. Due to the fact that multi-

frequency and multi-system GNSS positioning data typically contains observations of 

multiple frequencies and types, there are often issues with weighted averaging where 

observations of different frequencies or types are assigned the same weight and 

threshold conditions, resulting in the same or even opposite weighted results. 

Therefore, it is necessary to segment and process observations of various frequencies 

and types reasonably. The specific method is to divide the observations collected by 

multiple GNSS systems according to their frequencies, and divide them into different 

frequency points based on their frequency location and surrounding environment 

information. Assigning different weights and threshold conditions to these frequency 

points is to better ensure that the weighted results have the same or opposite accuracy 

when weighted averaging different types of observations. 

In order to better ensure the reasonable segmentation and processing of various 

types of observation values during navigation data preprocessing, it is necessary to 

reasonably divide and allocate the different weights of each type of observation value. 

Among them, for the same satellite system, due to the same or opposite accuracy levels 

of the collected data, the results obtained by assigning different weights are the same 

or opposite. The basic idea of filter estimation is to use the information contained in 

the observed data to convert it into a new state variable, and then estimate the system 

state through this state variable. In practical applications, due to limitations such as 

environmental and equipment conditions, it is often not possible to directly use all 

observed data for filtering estimation. It is necessary to perform prior processing on 

some data to improve the accuracy of filtering estimation values. Normally, prior data 

includes satellite position, satellite orbit, ephemeris parameters, and observation noise. 

Firstly, the relevant satellite positions and ephemeris parameter information are used 

as prior information, and then the observation noise information is used as prior 

information. Due to the fact that prior information accurately reflects the errors and 

noise contained in the observed data, it can be used as the main basis for filtering 

estimation. After fusing prior information and filtered estimation values, the 
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positioning accuracy is further improved. For multi-frequency and multi-system 

GNSS positioning, the system state equation is usually expressed as [13]: 

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝐺𝑤𝑡 (3) 

Among them, F is the state transition matrix, and G is the control matrix. The 

process of multi-frequency and multi-system GNSS positioning data fusion mainly 

includes three stages, namely data preprocessing stage, filtering estimation stage, and 

fusion processing stage. Among them, the data preprocessing stage mainly includes 

effectively extracting multi-frequency and multi-system GNSS satellite observations, 

and reasonably preprocessing the observation data; the filtering estimation stage is the 

effective fusion of observed data and preprocessed data; the fusion processing stage is 

to effectively process the fused navigation data. In practical applications, the three 

stages are usually applied separately to different situations to improve navigation and 

positioning accuracy. For example, in multi-frequency and multi-system GNSS 

positioning systems, due to signal propagation issues with some satellites, the process 

of data fusion for multi-frequency and multi-system GNSS positioning is different 

from that of a single system. Therefore, when performing multi-frequency and multi-

system GNSS positioning data fusion, it is necessary to make a reasonable estimation 

of the satellite signal propagation problem. In addition, due to the differences between 

multi-carrier phase observations and single carrier phase observations, the fusion 

process of multi-carrier phase observations and single carrier phase observations needs 

to consider the differences between them. The process of multi-frequency and multi-

system GNSS positioning data fusion is shown in Figure 1. 

Bluetooth beacon

Server

Access terminal

System platform

Card issuer Base station

Positioning 

terminal

GNSS

Real - time 

kinematic

 

Figure 1. Multi-frequency and multi-system GNSS positioning data fusion process. 

Figure 1 includes various elements such as servers, access terminals, system 

platforms, card issuers, base stations, positioning terminals, Bluetooth beacons, GNSS, 

and real-time dynamic technology. Firstly, the observation data before fusion is 

preprocessed. Then, two different types of navigation data are separately filtered and 

estimated. Finally, the two sets of navigation data are fused. By repeatedly iterating 

the above steps, a set of high-performance navigation and positioning data is finally 

obtained. In the process of multi-frequency and multi-system GNSS positioning data 

fusion, after reasonable preprocessing and filtering estimation, the navigation 

positioning accuracy is significantly improved. 
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The performance of the Kalman filter depends on the precise setting of multiple 

parameters. The selection of the process noise covariance matrix, the measurement 

noise covariance matrix and the Kalman gain has a decisive influence on the state 

prediction, response time and positioning accuracy of the system. The adjustment of 

the process noise covariance matrix directly affects the system's adaptability to noise 

and filtering performance. Increasing the value of this matrix can reduce the 

dependence on model prediction and maintain the stability of the filter in a dynamic 

environment. The measurement noise covariance matrix plays a key role in the weight 

of the observation value in the state estimation. Through reasonable settings, the signal 

interference under high noise conditions can be reduced to ensure the positioning 

accuracy under complex conditions. The setting of the Kalman gain determines the 

way the system fuses the predicted value and the observed value. When the error is 

large, increasing the Kalman gain can make the system more sensitive to the observed 

data, thereby improving the positioning accuracy. 

During the experiment, a sensitivity analysis was performed based on the 

observed data in different environments to observe the impact of parameters on 

positioning error and system stability, so as to determine the optimal parameter 

combination. In a high-interference environment, increasing the value of the process 

noise covariance matrix can effectively reduce the impact of signal reflection and 

occlusion on positioning accuracy, while in an environment with relatively stable 

signal strength, reducing the value of the measurement noise covariance matrix can 

help improve accuracy. In the multi-frequency and multi-system GNSS data fusion 

application, the best fusion effect can be achieved by gradually adjusting the 

parameters according to the signal noise characteristics and data uncertainty. The 

tuning strategy ensures the repeatability of the experiment and the versatility of the 

algorithm. 

4. Signal processing and data fusion 

4.1. Multi-frequency signal processing 

The processing of multi-frequency signals in the Global Navigation Satellite 

System (GNSS) involves selecting methods based on the frequency distribution of 

different satellites and user needs. Real-time signal processing provides prior 

information for Kalman filtering, which, combined with user location, time, and speed, 

ensures high-precision positioning. In GNSS data fusion, methods like pseudorange 

measurement, carrier phase, and differential measurements are employed. 

Pseudorange measurement, including both carrier phase and pseudorange methods, is 

the simplest and foundational, requiring less accuracy for faster positioning. The 

GNSS includes frequency bands for Beidou, GPS, and Galileo systems, with Beidou 

and GPS offering higher accuracy but a smaller frequency proportion, while Galileo 

uses mixed frequencies. Therefore, when using the pseudorange method with two 

different frequencies for pseudorange measurement, its accuracy can be improved by 

processing them separately in different frequency bands. 

For the Beidou system and the Global Positioning System, due to their long 

observation time and high accuracy, the carrier phase pseudorange measurement 

method can be directly used. However, due to the small frequency proportion occupied 
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by the Galileo system and the low requirement for observation accuracy under the 

same conditions, the carrier phase pseudorange measurement method is used for 

pseudorange measurement. Carrier phase differential measurement is the process of 

performing carrier phase differential processing on observed data at the receiver or 

base station to improve measurement accuracy. For methods based on carrier phase 

difference measurement, it is usually achieved by obtaining carrier phase observations 

from satellites and receivers, calculating two pseudo range observations and one 

carrier phase observation, and finally locating based on the difference between the two. 

According to its basic principles, it can be divided into two types: differential methods 

based on carrier phase measurement and differential methods based on carrier phase 

differential measurement. The method based on carrier phase difference measurement 

requires high information such as satellite position and satellite elevation angle, and is 

generally used for high-precision positioning. In practical applications, it is necessary 

to design and select multi-frequency and multi-system GNSS receivers. Taking the 

Global Positioning System as an example, when performing multi-frequency and 

multi-system GNSS positioning data fusion, the first step is to select the appropriate 

navigation frequency. Because the higher the frequency, the stronger the search ability 

for the ambiguity of the entire cycle, higher accuracy positioning results are 

correspondingly obtained. Secondly, it is necessary to select appropriate frequency 

points for real-time processing of multi-frequency signals. Finally, carrier phase 

differential measurement methods on different frequencies are chosen to improve 

positioning accuracy. In addition, it is necessary to select appropriate carrier phase 

observation values for tracking observation values, in order to ensure that the impact 

of data errors in subsequent data processing and Kalman filtering is minimized [14]. 

4.2. Data fusion strategy 

Azimuth angle

Height angle

Height angle

Azimuth angle

Locate the base station

Locate the base station

 

Figure 2. Traditional high-precision positioning methods. 



Molecular & Cellular Biomechanics 2025, 22(2), 691.  

9 

In the data fusion algorithm presented in this article, GNSS signals are divided 

into three parts for processing. Firstly, traditional high-precision positioning methods 

such as differential positioning are processed, and then the differential data and 

satellite clock difference data are used as observation data for Kalman filtering. Finally, 

the positioning results are subjected to error analysis. In each section, different 

methods are used to process the data. The traditional high-precision positioning 

method mainly relies on altitude angle, azimuth angle, and positioning base station, as 

shown in Figure 2. 

Unlike traditional methods, advanced high-precision positioning methods first 

use pseudorange observations to filter and estimate the observed values, obtaining the 

estimated values and relative errors of the observed values; then, the differential 

observations are used to filter and estimate the observations, and the corrected 

observations are obtained through Kalman filtering; finally, the corrected observations 

are combined with satellite clock bias data as observations, and Kalman filtering is 

used to estimate the corrected positioning results. By using this method, the 

positioning accuracy can be effectively improved. Satellite clock bias data contains 

time and distance information. At different frequencies, there are significant 

differences in this information. In order to utilize this information for fusion 

processing, it is necessary to preprocess the clock error data first. The specific steps 

are as follows: first, Fourier transform is used to convert clock bias data into frequency 

domain; then, FFT is used to convert the correlation values in the frequency domain 

into the time domain; finally, the relevant values in the time domain are processed to 

obtain clock bias data. During the dynamic positioning process, dynamic errors are 

handled. In dynamic environments, the positioning accuracy decreases due to various 

interference sources such as airplanes, cars, pedestrians, etc. The principle of 

differential positioning is to use two adjacent differential observations, where one 

observation is used to filter the other observation and the other observation is used to 

correct the filtered result. Therefore, in the process of differential positioning, satellite 

state estimation and receiver state estimation are separate and have no relationship 

with each other. Differential positioning is shown in Figure 3. 

Rover

Data transmission link

Satellite base station

Satellite system

 

Figure 3. Differential positioning. 
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In the prediction stage, the observed values are first smoothed. The main 

smoothing methods include exponential smoothing, least squares, and Gaussian 

filtering. The exponential smoothing method is used to eliminate gross errors in the 

observed values, in order to reduce the impact of gross errors in the pseudo range 

observations; the least squares method is to weight the satellite state and then calculate 

the corrected observation based on the correlation between the observation values; the 

Gaussian filtering method estimates the noise present in the observed values and then 

performs filtering processing. In practical applications, Gaussian filtering is usually 

chosen for differential localization. The differential positioning results are superior in 

accuracy to pseudo range and carrier phase observations. However, in dynamic 

environments, differential positioning cannot obtain accurate results. Specifically, in 

dynamic environments, there are many uncertain factors in the differential positioning 

process, such as the influence of dynamic interference sources such as airplanes and 

cars; secondly, satellite signals and receiver signals are subject to a lot of interference, 

resulting in differences between pseudorange and carrier phase observations in 

differential positioning results; thirdly, differential positioning is a continuous process, 

and there may be errors in the observed values at different times; finally, in dynamic 

environments, the receiver’s state is uncertain due to issues such as interference and 

unstable signals. Therefore, it is difficult to achieve high-precision positioning in 

dynamic environments. By preprocessing, frequency domain conversion, time domain 

conversion, and Kalman filtering of satellite clock bias data, the following observation 

equation is obtained [15]: 

𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡 (4) 

Among them, H is the observation matrix, and 𝑣𝑡  is the observation vector. 

Assuming there are n observed values, the Kalman filter equation is as follows: 

𝐾 = 𝑃ℎ𝑘(ℎ𝑘𝑃ℎ𝑡 + 𝑅𝑘)
−1 (5) 

Among them, 𝑅𝑘  represents the covariance of observed noise. Due to the 

differences in positioning signals between different systems, the observation values of 

different systems should be processed separately when analyzing the positioning 

results for errors. The final positioning result is estimated using Kalman filtering to 

obtain a corrected positioning result. In the process of data fusion, the first step is to 

filter and estimate each observation value. By comparing the difference between each 

estimated value and the true value, whether the current filtering algorithm is effective 

is determined. If it is effective, filtering is continued; if it is not effective, the observed 

value is compared with the true value. If the difference between the two is greater than 

a certain threshold, the current filtering algorithm is considered invalid; if the 

difference is less than a certain threshold, the current filtering algorithm is considered 

effective. When there is a significant difference between the two calculation results, it 

is necessary to evaluate the current algorithm. Whether the current filtering algorithm 

is effective is evaluated and determined, and then corrections are made to it. During 

the iteration process, if the corrected result still does not meet the requirements, it is 

necessary to restart the optimization of the filter. The observed values are normalized 

after each iteration. In the normalization process, it is necessary to compare the current 

filter estimation result with the true value. When significant differences are found 
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between the two through comparison, it indicates that the current filtering estimation 

algorithm is ineffective [16]. In the process of error analysis, the least squares method 

is used to perform error analysis on the positioning results. When it is found that there 

is a certain gap between the positioning results and the actual values through 

comparing the positioning results and error analysis results, the data needs to be 

reprocessed. 

In specific environments such as urban canyons and indoors, multipath effects, 

occlusions, and reflections can significantly affect the positioning accuracy of GNSS 

signals, resulting in increased positioning errors or signal loss. To enhance the 

generalization of the algorithm, in urban canyons, multipath signals and occlusions 

caused by dense high-rise buildings may lead to instability in positioning results. In 

such cases, signal filtering and multi-sensor fusion methods can be used to improve 

stability. In indoor environments, signal reflections and occlusions also seriously 

affect positioning accuracy. Inertial navigation compensation can effectively alleviate 

such problems. In areas with complex occlusions such as mountains or forests, the 

positioning instability caused by irregular reflections can be improved by dynamically 

adjusting the filtering parameters. Analysis of different environmental factors will 

provide a reliable basis for algorithm optimization, enabling it to demonstrate greater 

stability and accuracy in a variety of scenarios. 

5. Experimental results 

The purpose of this experimental design is to evaluate and compare the 

performance of traditional positioning methods and multi-frequency and multi-system 

GNSS positioning data fusion algorithms based on Kalman filtering in terms of 

positioning accuracy, stability, and anti-interference ability. The experiment first 

collects positioning data and applies traditional positioning methods and Kalman 

filtering algorithm for analysis. In terms of positioning accuracy, the highest, lowest, 

and average positioning accuracy of the two methods are recorded and compared, as 

shown in Figure 4. 

 

Figure 4. Positioning accuracy. 



Molecular & Cellular Biomechanics 2025, 22(2), 691.  

12 

In Figure 4, the traditional positioning method has a highest positioning accuracy 

of 92% and a lowest accuracy of 86%, with an average calculated accuracy of 88.91%; 

the positioning accuracy of the multi-frequency and multi-system GNSS positioning 

data fusion algorithm based on Kalman filtering is as high as 96%, as low as 94%, and 

the calculated average accuracy is 95.14%. The multi-frequency and multi-system 

GNSS positioning data fusion algorithm based on Kalman filtering has higher 

positioning accuracy. This article conducts research and analysis on the adaptability 

of various frequency bands, as shown in Table 1. 

Table 1. Adaptability. 

System type Frequency bands Compatibility Application scenarios 

GNSS L1 1.575 GHz High Civilian applications 

GNSS L2 1.227 GHz Medium Military applications 

GNSS L5 1.176 GHz High Aviation and critical applications 

BeiDou B1, B2 High Asian regional applications 

Galileo E1, E5 Medium High-precision navigation 

 

Figure 5. Stability. 

In Table 1, the GNSS L1 frequency is 1.575 GHz, which has high compatibility 

and is mainly used for civilian applications such as car navigation and mobile 

positioning; the GNSS L2 frequency is 1.227 GHz, with moderate compatibility, 

mainly used for military applications, providing certain encryption and anti-

interference capabilities; the GNSS L5 frequency is 1.176 GHz, with high 

compatibility, specifically designed for aviation and critical applications, suitable for 

high safety requirements. The BeiDou system uses the B1 and B2 frequency bands 

with high compatibility, mainly serving the Asian region and widely used in fields 

such as transportation, communication, and public safety; the Galileo system, on the 

other hand, uses the E1 and E5 frequency bands, with medium to high compatibility 

and a focus on high-precision navigation. It is suitable for applications that require 

high reliability, such as autonomous driving and precision agriculture. Through these 
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frequency bands, GNSS systems provide flexible positioning services for various 

needs, covering a wide range of applications from civilian to military, from daily 

navigation to aviation safety. The stability test calculates the stability indicators of two 

methods under different environmental conditions, as shown in Figure 5. 

In Figure 5, the stability of the traditional positioning method is highest at 89.5% 

and lowest at 85.2%, and the calculated average accuracy is 87.2%; the stability of the 

multi-frequency and multi-system GNSS positioning data fusion algorithm based on 

Kalman filtering is highest at 95% and lowest at 92%, and the calculated average 

accuracy is 93.2%. The multi-frequency and multi-system GNSS positioning data 

fusion algorithm based on Kalman filtering has higher stability. This article explores 

the computational complexity of each algorithm step to evaluate its feasibility in 

practical applications, as shown in Table 2. 

Table 2. Calculation complexity. 

Algorithm step Time complexity Space complexity Comments 

State prediction O(n) O(n) Linear with state dimension 

Measurement update O(n^2) O(n) 
Depends on the number of 

measurements 

Error covariance 

update 
O(n^3) O(n^2) Computationally intensive 

Data fusion O(m) O(m) M: Number of data sources 

Process noise 

estimation 
O(n) O(1) Negligible for large n 

In Table 2, the time and space complexity of state prediction are both O(n), 

linearly related to the state dimension, indicating that the required time and space are 

proportional to the estimated state size. Secondly, the time complexity of the 

measurement update is O(n²), and the space complexity is O(n), which increases 

squared and depends on the number of measurements. As the number of measurements 

increases, the processing time may significantly increase. Error covariance update is a 

computationally intensive step with a time complexity of O(n³) and a space complexity 

of O(n²), which may become a bottleneck in larger state dimensions. The time and 

space complexity of data fusion are both O(m), linearly related to the number of data 

sources (M), and can efficiently integrate information from multiple sources. Finally, 

the time complexity of process noise estimation is O(n), and the space complexity is 

O(1). For large-scale states, their space requirements can be ignored, indicating that 

this step is efficient in terms of memory usage. Overall, the algorithm demonstrates 

various complexities in different steps, with high efficiency in state prediction and 

process noise estimation, while measurement updates and error covariance updates 

face greater computational challenges when dealing with larger states or 

measurements. The experiment also evaluates the anti-interference ability of the 

system by analyzing the effectiveness of different types of interference and their 

corresponding anti-interference technologies to understand the performance of each 

technology in practical applications, as shown in Table 3. 
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Table 3. Anti-interference capability. 

Jamming type Anti-jamming technique Effectiveness Mitigation strategy 

Narrowband jamming Frequency hopping 69% Rapid frequency switching 

Wideband jamming Adaptive filtering 85% Signal processing techniques 

Spoofing Signal authentication 87% Cryptographic checks 

Thermal noise Signal averaging 73% Longer observation intervals 

Multi-path interference Spatial filtering 84% Antenna design improvements 

In Table 3, narrowband interference can be resisted through frequency hopping 

techniques, with an effectiveness of 69%, and fast response to interference can be 

achieved by quickly switching frequencies. For broadband interference, the effect of 

adaptive filtering technology is more significant, reaching 85%, and its mitigation 

strategy relies on signal processing technology to improve reception quality. The 

effectiveness of implementing signal authentication technology for deception attacks 

is 87%, ensuring the authenticity of signals through encryption checks. In the face of 

thermal noise issues, the effectiveness of signal averaging technology is 73%, and it 

is recommended to use longer observation intervals to reduce the impact of noise. 

These technologies and strategies together constitute effective means of resisting 

various interferences, enhancing the system’s anti-interference ability. This article 

provides empirical evidence for the future development of GNSS positioning 

technology by comprehensively comparing various reliability indicators, including 

availability, integrity, accuracy, robustness, and redundancy, as shown in Table 4. 

Table 4. Reliability. 

Reliability Metric Value Description Importance in GNSS 

Availability > 99% 
Probability of system being 

operational 

Critical for continuous 

positioning 

Integrity 99.90% 
Confidence that output is 

trustworthy 

Essential for safety-critical 

applications 

Accuracy < 5 m 95% of positioning error 
Direct impact on 

navigation quality 

Robustness 

Resilient to 

environmental 

changes 

System's ability to maintain 

performance 

Vital for dynamic 

conditions 

Redundancy 
Multiple frequency 

systems 
Backup systems available Improves system reliability 

In Table 4, an availability exceeding 99% indicates a probability that the system 

is in an operational state, which is crucial for continuous positioning. Secondly, the 

integrity is 99.90%, reflecting the credibility of the output results, which is particularly 

important in safety critical applications to ensure that users can trust the information 

provided by the system. Regarding accuracy, 95% of positioning errors are within 5 

meters, which directly affects navigation quality. Accurate positioning is the 

foundation of user safety and efficiency. Robustness refers to the resilience of a system 

under environmental changes, emphasizing its ability to maintain performance, which 

is crucial under dynamic conditions to ensure reliable operation in various 

environments. Finally, redundancy provides backup through a multi-frequency system, 
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further improving the reliability of the system. In GNSS, these indicators work 

together to ensure high performance and reliability of the system, providing users with 

stable and safe navigation services. 

This paper compares the traditional method and the multi-frequency multi-

system GNSS positioning data fusion algorithm based on Kalman filtering in terms of 

positioning accuracy, stability, anti-interference ability, etc. Through the analysis of 

experimental data and performance indicators, the adaptability and reliability of the 

two methods in different environments are demonstrated. Table 5 lists the specific 

data to help you deeply understand the advantages and differences of the two 

algorithms. 

Table 5. Performance comparison of different positioning algorithms. 

Performance Metric Traditional Method Kalman Filter Algorithm 

Position Accuracy (%) 86–92 94–96 

Average Position Accuracy (%) 88.91 95.14 

Stability (%) 85.2–89.5 92–95 

Average Stability (%) 87.2 93.2 

Computational Complexity O(n) O(n)–O(n³) 

Anti-interference Ability Low High 

Adaptability (Frequency Bands) L1 L1, L2, L5, B1, B2, E1, E5 

Environmental Adaptability 
Moderate (large 

interference) 

Strong (adjustable filtering parameters for 

dynamic environments) 

According to the data in Table 5, the Kalman filter algorithm performs 

significantly better than the traditional method in terms of positioning accuracy and 

stability. The positioning accuracy of the traditional method fluctuates between 86% 

and 92%, while the positioning accuracy of the Kalman filter algorithm is between 94% 

and 96%, and the average accuracy is improved by about 6.23%. In terms of stability, 

the stability of the traditional method is between 85.2% and 89.5%, while the stability 

of the Kalman filter algorithm is maintained between 92% and 95%, and the average 

stability is improved by about 6%. In terms of computational complexity, the 

traditional method is relatively simple, mainly O(n), while the complexity of the 

Kalman filter algorithm at different stages is more diverse, reaching O(n³). In terms of 

anti-interference ability, the Kalman filter algorithm shows stronger anti-interference 

characteristics and can better cope with signal interference and noise in dynamic 

environments. The Kalman filter algorithm has significant advantages in accuracy, 

stability and anti-interference ability. 

6. Conclusions 

This article explored in depth the advantages of the multi-frequency and multi-

system GNSS positioning data fusion algorithm based on Kalman filtering in terms of 

positioning accuracy, stability, and anti-interference ability. The experimental results 

showed that the positioning accuracy and stability using this algorithm were 

significantly better than traditional positioning methods, reaching 95.14% and 93.2%, 

respectively. In addition, by analyzing the adaptability of different frequency bands 
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and the reliability indicators of the system, the efficiency and reliability of multi-

frequency and multi-system in dynamic environments were confirmed. Especially in 

terms of anti-interference ability, adopting appropriate technologies and strategies can 

effectively improve the stability and anti-interference ability of the system, providing 

a solid foundation for high-precision positioning. Meanwhile, the evaluation of 

computational complexity in the experiment also provides a reference for the practical 

application of optimization algorithms. Future research can continue to focus on 

further improving the accuracy and reliability of GNSS systems to cope with 

constantly changing environments and application requirements, thereby promoting 

the progress and development of navigation technology. 
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