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Abstract: Positioning error modeling and correction in multi-frequency and multi-system 

GNSS is vital. Conventional methods have limitations in complex scenarios. Here, the RBF 

neural network algorithm is harnessed. GNSS and dual frequency data are integrated via multi-

source feature extraction. K-means determines the RBF center to capture data traits. OLS 

optimizes the model. Through learning from extensive raw data, real-time error prediction and 

correction occur, resolving accuracy-complexity issues. In biomechanics, GNSS has great 

potential. In rehabilitation, it can precisely locate patients during outdoor mobility exercises. 

For example, for those recovering from orthopedic surgeries, GNSS tracks movement paths. 

This data correlates with biomechanical parameters like joint angles and muscle forces during 

walking or running. Understanding how patients’ biomechanics change in different outdoor 

terrains and distances helps design personalized rehab plans. In sports, it monitors athletes’ 

outdoor training. Analyzing position data alongside biomechanical metrics like sprint 

acceleration and body rotation during maneuvers refines training techniques. Experimentally, 

compared to RF, LSTM, and SVM, the RBF neural network’s MSE dropped by 20.1%, 30.3%, 

and 44.4% respectively. Execution time reduced by 37.5%, 84.1%, and 64.7%. This enhanced 

GNSS method thus offers new prospects for biomechanical research and applications. 

Keywords: positioning error modeling; positioning error correction; global navigation satellite 

system; machine learning algorithms; radial basis function neural network; biomechanics 

1. Introduction 

GNSS is the core of modern positioning technology and has a wide range of 

applications in transportation, surveying, agriculture, disaster monitoring, and other 

fields [1,2]. As the demand for GNSS applications continues to increase, higher 

requirements have also been put forward for its positioning accuracy. Traditional error 

modeling and correction methods often rely on physical models or empirical formulas, 

lack adaptability, are susceptible to satellite signal interference, and are difficult to 

effectively cope with complex and changing application environments. How to 

effectively model and correct the positioning errors of multi-frequency and multi-

system GNSS is an important issue that urgently needs to be addressed in the field of 

navigation and positioning. With the increasing maturity of computer science, ML 

(Machine Learning) algorithms have made significant progress. ML algorithms can 

efficiently extract features from massive amounts of data and construct complex error 

models [3]. The use of ML algorithms for training and optimization, comprehensive 

analysis of different error sources, and real-time and efficient improvement of 

positioning accuracy can provide new ideas and methods for high-precision 

positioning problems in complex environments, which has important value and 

significance for promoting the development of intelligent positioning technology. 
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In order to improve the accuracy of multi-frequency and multi-system GNSS 

positioning and enhance the quality and level of system services, this article combines 

RBF neural network ML algorithm to study the modeling and correction of multi-

frequency and multi-system GNSS positioning errors. Using a certain region as a 

sampling point, three GNSS observation stations are set up within the city, 

mountainous areas, and forests at the sampling point. Experimental analysis is 

conducted from four aspects: modeling accuracy, improvement after calibration, 

stability, and computational efficiency. In the analysis of modeling accuracy, the mean 

MSE of the model in this article decreases by 20.1%, 30.3%, and 44.4% compared to 

RF, LSTM, and SVM algorithms, respectively; in the analysis of the degree of 

improvement after correction, the model in this article is 6.9%, 9.6%, and 12.9% 

higher than the other three types of models, respectively; in stability analysis, 

compared with RF, LSTM, and SVM algorithms, the mean coefficient of variation 

(CV) of the calibration data in this article’s model decreases by approximately 8.2%, 

16.7%, and 21.1%, respectively; the average execution time of the algorithm in this 

article is 37.5%, 84.1%, and 64.7% less than the other three types of models, 

respectively. In practical applications, RBF neural networks can help improve the 

accuracy of error modeling and achieve real-time error correction. 

2. Related works 

Modeling and correcting GNSS positioning errors can significantly improve the 

quality of positioning services [4,5]. In order to improve the navigation capability of 

the positioning system, Shen et al. [6] proposed a hybrid navigation strategy of self-

learning square root volume Kalman filter, which improved the optimal estimation 

accuracy through error compensation. The results indicated that the proposed method 

had long-term stability and could effectively improve the error correction effect [6]. 

Farrell et al. [7] achieved positioning error modeling and correction through sensor 

fusion state estimation, and integrated data from the Inertial Measurement Unit (IMU) 

using kinematic models. The results indicated that the proposed method had sufficient 

bandwidth accuracy, could reliably estimate the positioning state, and effectively 

achieved error modeling and correction [7]. To improve the positioning accuracy of 

GNSS, Abosekeen et al. [8] utilized fast orthogonal search for nonlinear error 

modeling, further improving the designed system to reduce excessive error growth and 

frequent GNSS interruptions. The results of road test trajectory evaluation showed that 

compared with existing technologies, the proposed method achieved significant 

performance improvement in positioning accuracy [8]. Morales et al. [9] developed a 

tightly coupled inertial navigation system assisted by environmental opportunity 

signals, using a radio synchronous positioning and mapping framework based on 

extended Kalman filters to correct positioning errors. The results indicated that the 

proposed method effectively improved the final position accuracy of the system [9]. 

The current research provides a certain reference for fine modeling and correction of 

error sources, but with the development of application environments, the complexity 

and nonlinear characteristics of error sources continue to increase. The current 

research methods lack stability and security, making it difficult to comprehensively 

consider all error sources. 
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The development of ML algorithms provides more possibilities for enhancing the 

stability and safety of GNSS [10,11]. Li et al. [12] proposed a positioning error 

evolution sharing framework based on deep neural networks, which achieved 

cooperation by sharing the positioning error evolution at specific times and locations. 

Extensive simulations based on actual data showed that the proposed framework had 

accuracy and security in positioning error correction and data sharing [12]. Fang et al. 

[13] used the LSTM algorithm to generate pseudo GNSS position increments that 

replace GNSS signals, achieving GNSS positioning error modeling by constructing 

the relationship between current and past information. The test results showed that 

compared with existing algorithms, the LSTM algorithm could improve the 

acquisition of more stable and reliable navigation and positioning solutions [13]. 

Ramavath et al. [14] proposed a new method for estimating positioning errors using 

ML techniques, which learned the relationship between position errors and the data 

added by GNSS receivers without any prior experience, and applied LSTM networks 

to model the temporal correlation of position error measurements. The results 

indicated that the proposed method could improve localization safety by training and 

learning position errors [14]. ML algorithms can effectively handle nonlinear 

relationships and complex input-output mappings, but typically require a large number 

of computational resources and are still limited in terms of real-time modeling 

accuracy. 

3. Multi-frequency and multi-system GNSS positioning error 

modeling and correction 

3.1. Multi-frequency and multi-system GNSS 

3.1.1. GNSS signal structure 

Multi-frequency and multi-system GNSS are an important component of modern 

navigation systems, providing high-precision positioning, velocity, and time 

information for global users. The structure of GNSS signals is crucial for ensuring 

navigation and positioning accuracy. It not only determines the transmission mode of 

the signal, but also directly affects the acquisition, tracking, decoding and other 

functions of the receiver [15,16]. The basic components of GNSS signals include 

carriers, spreading codes, and navigation data, as shown in Figure 1: 
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Figure 1. Basic composition of GNSS signals. 
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(1) Carrier wave 

Carrier wave is a high-frequency sine wave used to carry spreading codes and 

navigation data. As the fundamental waveform of a signal, its frequency generally 

varies depending on the type of signal. At present, GNSS uses multiple frequency 

bands for signal transmission, and these frequency bands and corresponding carrier 

frequencies are also different. Taking GPS (Global Positioning System) and BeiDou 

as examples, as shown in Table 1, by using different frequency carriers, dual band or 

multi-band positioning can be achieved, effectively reducing errors caused by 

interference factors. 

Table 1. Frequency bands and carrier frequencies used by GNSS systems. 

System classification The frequency band used Carrier frequency The services provided 

GPS 

L1 1575.42 MHz Standard positioning service 

L2 1227.60 MHz Military positioning service 

L5 1176.45 MHz Civilian services 

BeiDou 

B1I 1561.098 MHz Open service 

B2I 1207.14 MHz Open service 

B3I 1268.52 MHz Open service 

(2) Spread spectrum code 

Spread spectrum code is a pseudo-random sequence that can distinguish different 

satellite signals and perform rough ranging. It can be divided into two categories: 

Pseudo-Random Noise (PRN) code and Direct Sequence Spread Spectrum (DSSS) 

code. PRN code is used to achieve resolution of satellite signals, while DSSS is mainly 

used to enhance signal noise resistance. Each satellite has a unique spreading code, 

and the receiver identifies and captures the specific satellite signal based on the code. 

(3) Navigation data 

Navigation data is generally transmitted using carrier modulation, which carries 

important information such as satellite position and time. Each satellite regularly sends 

observation information and provides the orbit status and time stamp at a certain 

moment, so that the receiver can determine its relative position with the satellite. This 

data structure is generally organized in a certain format, which facilitates the receiving 

end to quickly extract and process the required information. After the receiver 

demodulates the received signal and analyzes the navigation data, accurate three-

dimensional position information can be obtained. 

3.1.2. GNSS receiver and signal processing 

The core of GNSS positioning technology is to calculate the distance between the 

receiver and each satellite by calculating the time difference of the signals transmitted 

by each satellite [17]. Due to the known satellite position, the positioning information 

of the receiver on the Earth’s surface can be obtained by using triangulation method. 

To achieve higher precision positioning, at least 4 satellites’ signals need to be obtained, 

of which 3 satellites are used to measure longitude, latitude, and altitude information, 

and the remaining one is used to synchronize the clock bias of the receiver. According 

to different usage and accuracy requirements, GNSS receivers can be divided into 

consumer grade, professional grade, Real-time kinematic (RTK), and multi-system 
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multi-frequency receivers: 

(1) Consumer grade receiver 

Consumer grade receivers are terminals aimed at general users and have been 

widely used in daily navigation, mobile phone positioning, and portable electronic 

products. This type of receiver often uses C/A (Coarse Acquisition) encoding, with a 

positioning accuracy of only 3–5 m. Although the cost is low, its accuracy and 

performance are limited. Along with technological advancements, some consumer 

grade receivers have also begun to support the use of other systems, which has to some 

extent improved the compatibility of satellites and enhanced their positioning 

capabilities. Its universal usage environment includes car navigation, outdoor sports, 

tourism, geographical indications, etc. 

(2) Professional grade receiver 

As a high-precision and high-performance receiver, professional grade receivers 

have been widely used in land surveying, engineering construction, agricultural 

production, and other fields. This type of receiver generally supports the combination 

of multi-frequency technology, with an accuracy of up to 2 cm to 10 cm. Professional 

grade receivers generally have good anti-interference performance and can adapt well 

to the requirements of high-level surveying and positioning under complex working 

conditions. Its user group is mostly professional engineering and technical personnel, 

surveyors, and researchers who have a great demand for stable and accurate 

positioning data provided by the equipment. 

(3) RTK receiver 

RTK receiver is a high-precision device that can work in conjunction with mobile 

stations. Due to the use of differential processing technology and wireless real-time 

communication technology, it has been well applied in agriculture, civil engineering, 

unmanned driving and other fields. RTK receivers need to continuously receive 

reference station data to correct their positioning, which has great requirements for the 

working environment and requires operation in open areas. RTK receivers have 

become an indispensable and important means in modern surveying and automation 

operations due to their high precision, real-time performance, and other advantages. 

(4) Multi-system multi-frequency receiver 

A multi-system multi-frequency receiver can simultaneously receive signals from 

multiple GNSS systems in multiple bands, achieving joint positioning of multiple 

bands. This type of receiver has significant advantages in anti-interference 

performance and positioning accuracy, with measurement accuracy reaching sub 

meters or above. In areas with complex urban environments and high signal 

interference such as forests, multi-system multi-frequency receivers have better 

performance and are suitable for precision measurement, scientific research, and other 

fields. They are also suitable for professional users who require high reliability and 

have a wide range of applications. 

In order to ensure the correct acquisition, tracking, and decoding of satellite 

signals by the receiver, signal processing is an important step, as shown in Figure 2: 
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Figure 2. Receiver signal processing. 

In Figure 2, the receiver receives signals from the satellite through an antenna, 

and signal acquisition is achieved by matching a specific spreading code to identify 

the satellite signal. The receiver uses known extension codes to search and capture 

satellite signals. In order to keep it synchronized with satellite signals, the receiver 

must perform continuous phase and frequency tracking on it. A closed-loop control 

method is used to dynamically adjust the locally replicated spreading code to match 

the received signal. Pseudo range is calculated based on the time of arrival of the 

measured signal. It refers to the straight-line distance between the receiver and the 

satellite plus errors caused by factors such as satellite clock bias, ionospheric and 

tropospheric delays. The receiver decodes satellite signals to obtain navigation data 

containing satellite orbit parameters and clock errors. By utilizing observed signals 

and combining them with pseudo range information, the receiver can determine its 

position, velocity, and time using methods such as triangulation and least squares 

estimation. 

3.1.3. GNSS positioning error 

GNSS positioning is based on precision timing and triangulation, and GNSS 

receivers use multiple satellite data to extract position information after calculation. 

During the transmission process, various factors can cause certain errors in the 

received signal, thereby reducing the accuracy of positioning. According to the sources 

and characteristics of GNSS errors, they can be divided into satellite errors, 

ionospheric errors, tropospheric errors, multipath effects, receiver errors, and user 

environment errors. 

(1) Satellite error 

In GNSS positioning error, satellite error is a significant factor that cannot be 

ignored, mainly including satellite orbit error and satellite clock error. The orbit error 

of a satellite is caused by the non-uniformity of the Earth’s gravity field and 

gravitational disturbances from other celestial bodies. It is the deviation between the 

actual position of the satellite and the predicted position. This error makes the distance 

between the satellite and the receiver obtained by the receiver inaccurate. The satellite 
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clock bias is due to the fact that although the atomic clock installed on the satellite has 

high accuracy, there is still a small-time deviation. GNSS positioning is based on 

precision timing, and its errors have an impact on the calculation of signal transmission 

time, thereby adversely affecting positioning accuracy. Although satellite clocks are 

calibrated by ground-based control systems, even small-time errors can cause 

significant position errors. 

(2) Ionospheric error 

Ionospheric error refers to the interference caused by factors such as free 

electrons and high-energy particles when passing through the Earth’s ionosphere, 

resulting in a change in signal transmission rate. The relevant data and characteristics 

are shown in Table 2: 

Table 2. Ionospheric error related data and characteristics. 

Sequence Describe Data or scope 

1 Ionospheric altitude 60 km–1000 km 

2 Free electron density 1011 − 1012 electrons per cubic meter 

3 Solar activity cycle 11 years 

4 Signal frequency High frequency has a relatively small impact, while low frequency has a significant impact. 

5 Daytime error The typical error is about 5 m–15 m. 

6 Night time error The typical error is about 2 m–15 m. 

According to Table 2, at an altitude of 60 km–1000 km above the ground, the 

ionosphere is affected by solar radiation, and its internal atoms and molecules ionize 

to generate charged particles, resulting in delay or refraction of GNSS signals. The 

impact of ionospheric errors on signal transmission rate is determined by frequency, 

with high-frequency signals being less affected and low-frequency signals 

experiencing greater interference. This error is more pronounced during daytime, 

especially during periods of active solar activity, which can significantly reduce the 

positioning accuracy of GNSS. 

(3) Tropospheric error 

Tropospheric error refers to the error caused by the slow transmission rate of a 

satellite during its passage through the troposphere due to factors such as water vapor, 

air pressure, and temperature. The relevant data and characteristics are shown in Table 

3: 

Table 3. Tropospheric error related data and characteristics. 

Sequence Describe Data or scope 

1 Tropospheric altitude 0 km–12 km 

2 Tropospheric water vapor Typical range is 0 g/m3–30 g/m3. 

3 Signal delay impact Delay can reach 2–20 nanoseconds. 

4 Changes in tropospheric thickness The diurnal cycle changes by about 5%–15%. 

5 Delay periodic variation The daytime delay is about 10 m–20 m. 

According to Table 3, the troposphere is an important region for climate change 

from the surface to an altitude of 12 km. The time delay effect of the troposphere on 
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spacecraft is directly related to its thickness, density, and other factors, and is 

influenced by water vapor, exhibiting diurnal cycle characteristics. 

(4) Multipath effect 

Multipath effect is the most common and complex error source in GNSS 

positioning. Due to the reflection and refraction of signals by objects such as buildings, 

ground, and trees, the receiver receives a superposition of direct and reflected waves. 

The reflection path is longer than the straight path. Therefore, this effect causes the 

receiver to obtain a larger pseudo range deviation, resulting in positioning errors. In 

complex terrain conditions such as cities, forests, and mountains, multipath effects are 

more prominent. Although the use of antenna structures, signal processing, and other 

methods can effectively suppress the above-mentioned effects, multipath effects 

remain an important factor restricting GNSS positioning accuracy in harsh 

environments. 

(5) Receiver error 

Receiver error refers to errors caused by various software and hardware 

components within the receiver, including clock errors, antenna errors, and signal 

processing errors. The relevant data and characteristics are shown in Table 4. 

Table 4. Receiver error related data and characteristics. 

Sequence Describe Data or scope 

1 Clock error The error is about 10−9 s–10−8 s. 

2 Antenna phase center offset Typical offset is about 1 mm–5 mm. 

3 Differences in antenna azimuth performance The positioning accuracy decreases by about 1 m–10 m. 

4 Signal processing error The signal processing error can reach 0.1 m–1 m. 

5 Signal reception quality The typical range of signal-to-noise ratio is 30 dB–50 dB. 

6 Receiver sensitivity The sensitivity is usually −130 dBm–150 dBm. 

In Table 4, although the clock bias at the receiving end has been accurately 

calibrated, there is still a significant error compared to satellite atomic clocks, which 

leads to a decrease in timing accuracy and subsequently affects positioning accuracy. 

Antenna error refers to the deviation between the phase center of the receiving antenna 

and the actual center, or the difference in signal characteristics received by the antenna 

at different orientations. When processing satellite signals at the receiving end, 

additional errors may occur due to factors such as algorithms and computational 

accuracy. If the receiving quality of the receiver is poor or the sensitivity of the receiver 

is insufficient, it may lead to a decrease in the final positioning accuracy. 

(6) User environment error 

User environment error refers to the impact of factors such as the geographical 

and physical environment in which the receiving end is located on the positioning 

accuracy of the system in practical applications. In urban areas, the presence of high-

rise buildings can interfere with satellite signals, leading to signal attenuation or loss, 

thereby reducing the accuracy of positioning; in mountainous or forested areas, 

undulating terrain and vegetation can also have a similar effect on signals. In addition, 

due to electromagnetic interference such as power lines and wireless devices around 

the receiver, it can also interfere with the satellite signals received by the receiver, 
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resulting in an increase in signal noise and a decrease in the stability of the positioning 

results. 

3.2. ML algorithm 

Traditional GNSS error correction methods rely on physical modeling and 

statistical analysis. Although they can reduce errors to a certain extent, their adaptive 

and generalization abilities are limited, especially in complex scenarios where their 

applications are restricted. ML algorithms can automatically extract features from 

massive historical data, construct models, and use new data to make predictions, 

making them highly valuable in error correction [18]. ML algorithm is a branch of 

artificial intelligence, and its “machine” refers to a computer. Unlike using program 

commands to execute assigned tasks, ML is built on the basis of big data. Its purpose 

is to “train” machines to “learn” knowledge from data, mine their inherent 

relationships, and use the “learned” knowledge to process new data and make 

corresponding judgments and predictions. 
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Figure 3. Error modeling and correction of RBF neural network. 

RBF neural network is a feedforward neural network with strong nonlinear 

mapping ability. It uses RBF function as the excitation function to perform nonlinear 

transformation on training samples, achieving high-dimensional mapping of training 

samples [19]. This feature gives RBF networks significant advantages in handling 
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complex data relationships, especially in modeling and correcting GNSS positioning 

errors. By inputting data from multiple GNSS frequencies and systems into the RBF 

network, the RBF kernel function can capture complex errors caused by multipath 

effects, troposphere, ionosphere, and other factors during signal propagation. This 

article combines RBF neural network to model and correct the positioning error of 

multi-frequency and multi-system GNSS. The process is shown in Figure 3. 

Firstly, GNSS observation data is collected and fixed stations are established in 

cities, mountains, forests, and other areas. The TrimbleR10 high-precision GNSS 

receiver is used for observation to obtain observation information, with a sampling 

rate set to 1Hz. Meanwhile, the height ℎ𝑎 of the antenna and the deviation ∆ℎ𝑎 of the 

phase center are recorded. The VelodyneHDL-32E laser scanner is used to collect 3D 

environmental information such as weather data and geographic location data. The 

dual frequency joint observation data is used to invert ionospheric delay 𝐼𝑖𝑓  and 

tropospheric delay 𝑇𝑖𝑓. For ionospheric delay: 

𝐼𝑖𝑓 =
𝑓1
2𝑓2

2

𝑓2
2 − 𝑓1

2 (
𝑃𝑖1 − 𝑃𝑖2

𝑓1
2𝑓2

2 ) (1) 

𝑓1  and 𝑓2  represent dual frequency carriers, and 𝑃𝑖1  and 𝑃𝑖2  are pseudo range 

observations at corresponding frequencies. 

The Saastamoinen model is used to calculate tropospheric delay: 

𝑇𝑖𝑓 =
0.002277𝑝

𝑧
(1 + 0.0026𝑐𝑜𝑠(2𝜙) +

0.00028ℎ

𝑇
) (2) 

Among them, the parameter definitions of Formula 2 are shown in Table 5: 

Table 5. Definition of parameters in Equation (2). 

Sequence Variables Meaning 

1 𝑝 Pressure 

2 𝑧 Satellite zenith angle 

3 𝜙 Site latitude 

4 ℎ Altitude 

5 𝑇 Temperature 

After obtaining the data, comprehensive preprocessing is performed on the data. 

The GNSS observation data is smoothed using Kalman filter to remove noise and 

outliers. The state formula and observation formula of the Kalman filter are [20]: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 (3) 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (4) 

The variable definitions are shown in Table 6: 
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Table 6. Variable definitions for Equations (3) and (4). 

Sequence Variables Meaning 

1 𝑥𝑘 State vector 

2 𝐴 State transition matrix 

3 𝑦𝑘 Observation vector 

4 𝐻 Observation matrix 

5 𝑤𝑘 Process noise 

6 𝑣𝑘 Observation noise 

The observation data from different GNSS systems are uniformly converted into 

the World Geodetic System 84 coordinate system: 

𝑋 = (𝑁 + ℎ)𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆 (5) 

𝑌 = (𝑁 + ℎ)𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜆 (6) 

𝑍 = [(1 − 𝑒2)𝑁 + ℎ]𝑠𝑖𝑛𝜙 (7) 

Based on the collected 3D environmental data, the ray tracing algorithm is used 

to identify and eliminate abnormal observation values caused by multipath 

interference. For each observation data, its possible reflection path is calculated and 

compared with the direct path to eliminate false range errors that exceed the critical 

value. 

According to Equations (1) and (2), 𝐼𝑖𝑓 and 𝑇𝑖𝑓 are calculated. The pseudo range 

observation data 𝑃𝑖𝑓 is corrected, and the corrected pseudo range 𝑃𝑖𝑓
’  is obtained: 

𝑃𝑖𝑓
’ = 𝑃𝑖𝑓 − 𝐼𝑖𝑓 − 𝑇𝑖𝑓 (8) 

The preprocessed data as input is normalized to the RBF network: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝜇𝑥

𝜎𝑥
 (9) 

In the RBF neural network algorithm, 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 represent the input sample 

data, and the output layer is the predicted error correction values 𝑌1, 𝑌2, ⋯ , 𝑌𝑛 . The 

hidden layer of the RBF neural network is composed of several radial basis functions, 

and its output is represented as: 

𝑌 =∑𝑤𝑖 ∙ 𝛷𝑖(‖𝑋 − 𝑐𝑖‖)

𝑚

𝑖=1

 (10) 

Among them, 𝑚 is the number of hidden neurons; 𝑤𝑖  is the weight of the 𝑖-th 

neuron; 𝑐𝑖 is the center of the 𝑖-th neuron; 𝛷𝑖(∙) is the RBF function: 

𝛷𝑖(‖𝑋 − 𝑐𝑖‖) = 𝑒𝑥𝑝 (−
‖𝑋 − 𝑐𝑖‖

2

2𝜎𝑖
2 ) (11) 

In the training of RBF neural network, the K-means clustering algorithm is used 

to determine the center 𝑐𝑖 of RBF neural network: 
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𝑐𝑖 =
1

|𝑆𝑖|
∑ 𝑋

𝑥∈𝑆𝑖

 (12) 

Among them, 𝑆𝑖 is the sample set of the 𝑖-th cluster. 

Using OLS for optimization, the weight vector is calculated: 

𝑊 = (𝛷𝑡𝛷)−1𝛷𝑡�̂� (13) 

Among them, �̂� is the target error vector. 

4. Positioning error modeling and calibration experiment 

To verify the modeling and correction effect of multi-frequency and multi-system 

GNSS positioning error based on RBF neural network algorithm, this article conducts 

experimental analysis and compares it with widely used RF, LSTM, and SVM 

algorithms from four aspects: modeling accuracy, improvement degree after correction, 

stability, and computational efficiency. 

4.1. Experimental data 

This article takes a certain region as a sampling point, and sets up three GNSS 

observation stations in the city, mountainous areas, and forests of the sampling point. 

In order to expand the dataset and improve the generalization ability of the model 

under different environmental conditions, this paper adds GNSS observation stations 

in six specific scenarios: urban canyons, indoor environments, tunnel entrances and 

open water areas, farmland, and railway lines. Firstly, representative locations include 

densely populated city centers with high-rise buildings, interiors of different types of 

buildings, tunnel entrances, and near lakes. At each observation station, GNSS 

receivers, data loggers, weather stations, and environmental sensors will be deployed 

to comprehensively record GNSS raw data and meteorological data (temperature, 

humidity). Finally, a total of 9 regional scenes were collected using Trimble R10 high-

precision GNSS receivers, and 3D environmental information around each 

observation site was recorded through laser scanning. Through long-term continuous 

observation, more than 500 hours of GNSS observation data were obtained. After 

inverting ionospheric and tropospheric delays, the collected data was preprocessed, 

and some basic information of the data was obtained as shown in Table 7: 

Table 7. Basic information of some data. 

Station 

number 

Geographic 

location 

Observatio

n date 

Antenna 

height (m) 

Phase center 

deviation (m) 

Ionospheric 

delay (m) 

Tropospheric 

delay (m) 

Temperatur

e (℃) 

Humidity 

(%) 

1 City 2023-08-16 1.36 3.08 0.12 0.08 22.2 26 

2 
Mountainous 
region 

2023-08-16 1.37 2.81 0.11 0.11 24.2 21 

3 Forest 2023-08-16 1.41 2.95 0.11 0.10 22.5 52 

4 Urban canyon  2023-08-16 1.41 3.07 0.14 0.12 19.8 23 

5 
Indoor 
environment  

2023-08-16 1.25 2.98 0.10 0.10 25.3 19 
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Table 7. (Continued). 

Station 

number 

Geographic 

location 

Observation 

date 

Antenna 

height (m) 

Phase center 

deviation (m) 

Ionospheric 

delay (m) 

Tropospheric 

delay (m) 

Temperatur

e (℃) 

Humidit

y (%) 

6 
Tunnel 
entrance 

2023-08-16 1.48 2.93 0.12 0.09 30.4 46 

7 Open water  2023-08-16 1.41 3.15 0.12 0.10 28.8 28 

8 Farmland 2023-08-16 1.21 3.18 0.12 0.07 31.2 23 

9 
Along the 
railway line 

2023-08-16 1.25 2.93 0.11 0.11 25.2 42 

The collected GNSS data is divided into training set, validation set, and test set 

in chronological order, with proportions of 70%, 15%, and 15%, respectively. 

4.2. Experimental parameters 

The parameter settings of the algorithm in this article are shown in Table 8: 

Table 8. RBF neural network algorithm parameters. 

Sequence Parameter Specifications 

1 Learning rate 0.001 

2 Number of hidden layers 3 

3 Activation function ReLU 

4 Basis function Gaussian 

5 Regularization parameter 0.01 

6 Epochs 200 

7 Batch size 64 

8 Weight initialization Xavier Initialization 

9 Optimizer Adam 

The parameter settings for RF, LSTM, and SVM algorithms are shown in Table 

9: 

Table 9. RF, LSTM, and SVM algorithm parameters. 

Sequence Parameter Specifications 

RF 

Number of trees 100 

Maximum depth 10 

Minimum samples split 2 

LSTM 

Time steps 10 

Number of hidden Units 50 

Learning rate 0.001 

SVM 

Regularization parameter 1.0 

Kernel function Sigmoid 

Tolerance 0.1 

In parameter selection, for RBF neural networks, the optimal parameter 

combination is selected through grid search and cross validation methods. The 
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learning rate is an important parameter that affects the convergence speed and final 

performance of the model, and it is selected between 0.001 and 0.1 through 

experiments. To reduce the risk of overfitting, the maximum number of iterations is 

selected through experimentation between 1000 and 5000, and the optimal number of 

iterations is chosen between 1000 and 5000. To control the complexity of the model, 

the optimal regularization parameters are selected between 0.01 and 1.0 through grid 

search. For RF, the best Number of Trees was selected between 10 and 100 through 

grid search, and the best Max Depth was selected between 10 and 50. Min Samples 

Leaf selects between 1 and 10 through experimentation to balance the complexity and 

generalization ability of the model. For LSTM, the time step determines the length of 

historical data considered by the model at each time point. The optimal time step was 

selected between 10 and 50 through experiments, the optimal number of hidden layer 

elements was selected between 10 and 100 through grid search, and the optimal 

Learning Rate was selected between 0.001 and 0.1 through experiments. For SVM, 

select the Sigmoid kernel as the optimal Kernel Function through grid search, 

including. The Regularization parameter is selected between 0.1 and 10, while the 

Tolerance parameter is selected between 0.01 and 1. 

4.3. Experimental results 

(1) Comparison of modeling accuracy 

The establishment of a high-precision error model for multi-frequency and multi-

system GNSS can not only improve its positioning accuracy, but also enhance its 

adaptability to various environments and working conditions. This article uses MSE 

as a measurement index to compare the differences between the error modeling 

predicted values and actual values of various models. The final result is shown in 

Figure 4: 

 

Figure 4. Accuracy comparison results. 
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Figure 4A shows the accuracy of the RBF neural network; 

Figure 4B shows the accuracy of RF; 

Figure 4C shows the accuracy of LSTM; 

Figure 4D shows the accuracy of SVM. 

From Figure 4, it can be seen that there are significant differences in the modeling 

accuracy results of different models at each observation site. In Figure 4A, the mean 

MSE of the model in this article is approximately 27.966; in Figure 4B, the mean 

MSE of RF is approximately 35.013; in Figure 4C, the mean MSE of LSTM is 

approximately 40.152; in Figure 4D, the mean MSE of SVM is approximately 50.339; 

from the specific comparison results, the mean MSE of the RBF neural network in this 

article decreases by 20.1%, 30.3%, and 44.4% compared to the RF, LSTM, and SVM 

algorithms, respectively. This result represents that the RBF neural network can more 

accurately simulate the errors of observation stations. 

(2) Improvement degree after correction 

On the basis of the modeling accuracy results, the improvement degree of each 

model before and after multi-frequency and multi-system GNSS positioning error 

correction is compared. The final result is shown in Figure 5: 

 

Figure 5. Comparison of improvement after correction. 

Figure 5A shows the degree of improvement of RBF neural network; 

Figure 5B shows the degree of improvement of RF; 

Figure 5C shows the degree of improvement of LSTM; 

Figure 5D shows the degree of improvement of SVM. 

In the comparison of the improvement degree after calibration in Figure 5, it can 

be seen that based on the error modeling, the improvement degree before and after 

GNSS positioning error correction using RBF neural network is more significant. 
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From Figure 5A, it can be seen that the average improvement in error after the 

algorithm model correction in this article is about 36.4%; from Figure 5B, the average 

improvement in error after RF model correction is about 29.5%; from Figure 5C, it 

can be seen that the average improvement in error after LSTM model correction is 

about 26.8%; from Figure 5D, the average improvement in error after SVM model 

correction is about 23.5%. Compared with the other three types of models, the average 

improvement level of the model in this article is 6.9%, 9.6%, and 12.9% higher, 

respectively. This result indicates that using the model proposed in this article for 

GNSS positioning error correction can improve the overall accuracy and reliability of 

the positioning system. 

(3) Stability 

In error modeling and correction, stable models can better adapt to different 

observation conditions in changing environments, and CV can effectively reflect the 

discreteness of correction data. The smaller the coefficient of variation, the more 

consistent the output results of the model. The final CV comparison results of each 

model are shown in Figure 6: 

 

Figure 6. Stability comparison results. 

Figure 6A shows the stability of RBF neural network; 

Figure 6B shows the stability RF; 

Figure 6C shows the stability of LSTM; 

Figure 6D shows the stability of SVM. 

Figure 6 shows the CV results of calibration data for each model at different sites. 

In Figure 6A, the mean CV of the RBF neural network is 0.045; in Figure 6B, the 

mean CV of the RF model is 0.049; in Figure 6C, the mean CV of the LSTM model 

is 0.054; in Figure 6D, the mean CV of the SVM model is 0.057. Compared with RF, 
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LSTM, and SVM algorithms, the mean CV of RBF neural network correction data 

decreases by approximately 8.2%, 16.7%, and 21.1%, respectively. This result 

indicates that the positioning error corrected by the model in this article has lower 

volatility and better data consistency and stability. 

(4) Calculation efficiency 

In the face of the increasing demand for fast and accurate positioning services, 

real-time modeling and correction of GNSS positioning errors are crucial. Efficient 

models can quickly complete tasks with limited computing resources. This article uses 

execution time as an indicator to calculate the total time required for each model from 

input data to model output results, and compares the computational efficiency of 

different models. The results are shown in Figure 7: 

 

Figure 7. Comparison of computational efficiency results. 

Figure 7A shows the computational efficiency of the RBF neural network; 

Figure 7B shows the calculation efficiency of RF; 

Figure 7C shows the computational efficiency of LSTM; 

Figure 7D shows the computational efficiency of SVM. 

In Figure 7, from the perspective of algorithm execution time, the algorithm 

proposed in this article generally has higher computational efficiency and lower 

execution time consumption under different station observation data. In Figure 7A, 

the average execution time of the algorithm in this article is about 2.73 seconds; in 

Figure 7B, the average execution time of the RF algorithm is about 4.37 seconds; in 

Figure 7C, the average execution time of the LSTM algorithm is about 17.22 seconds; 

in Figure 7D, the average execution time of SVM algorithm is about 7.73 seconds. 

From the comparison of computational efficiency, the average execution time of the 

algorithm in this article is 37.5%, 84.1%, and 64.7% less than the other three types of 

models, respectively. The RBF neural network model can process more data under the 



Molecular & Cellular Biomechanics 2025, 22(1), 690.  

18 

same resource conditions, achieving real-time updates of positioning error correction 

parameters. 

5. Discussion 

In the experimental analysis, this article verifies the application effect of RBF 

neural network algorithm in multi-frequency and multi-system GNSS positioning 

error modeling and correction from four aspects: modeling accuracy, improvement 

degree after correction, stability, and computational efficiency. In terms of modeling 

accuracy, compared to the other three types of models, RBF neural networks have 

higher accuracy results. By using RBF functions as activation functions for hidden 

neurons, they can effectively approximate complex nonlinear relationships, thereby 

improving modeling accuracy. From the comparison of the degree of improvement 

after correction, it can be seen that the model error improvement in this article is more 

significant. The center point of the model can be automatically adjusted based on 

training data, enabling the network to better capture key features of the input space 

and effectively improve errors. From the perspective of stability comparison, the 

model in this article can maintain good generalization performance between different 

sites and reduce the fluctuation of prediction results through local response 

characteristics and center point adaptive adjustment mechanism. From the comparison 

of computational efficiency, the structure of the model in this article is relatively 

simple and requires fewer parameters to adjust, which makes the training process 

faster and consumes less execution time than the other three types of models. 

6. Conclusions 

This article explores the application of ML algorithm in modeling and correcting 

positioning errors of multi-frequency and multi-system GNSS. RBF neural network is 

used for continuous learning and training, and the model is used to achieve modeling 

and correction of positioning errors. The RBF neural network model has significant 

advantages in GNSS positioning error correction, which can effectively improve the 

positioning accuracy of the system while reducing the system’s requirements for 

computing resources, and ensure data consistency and stability. Although this study 

can provide guidance for improving GNSS positioning services to a certain extent, 

there are still limitations. This article does not fully consider all possible sources of 

error in data collection and experimental analysis, and lacks analysis under specific 

environmental conditions and application scenarios. In future research, it is necessary 

to consider expanding the sources of errors and combining them with other 

observational data for multi-source information fusion to improve the reliability and 

accuracy of the overall positioning system. 
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