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Abstract: This work explores the effective application of deep learning for recognizing 

athletes’ movements, aiming to enhance precision in competitive sports. Traditional motion 

analysis methods primarily rely on manual observation, which can introduce subjective bias 

and limit accuracy. To address these limitations, we propose an automated method based on 

deep learning for recognizing and classifying athletes’ technical movements while evaluating 

their performance. A hybrid model, combining Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM) networks, is utilized to extract key frames from video data. 

The CNN is responsible for feature extraction, capturing the intricate details of movement, 

while the LSTM captures the temporal sequence characteristics, providing context to the 

actions. To further strengthen our approach, we delve into the biological mechanisms 

underlying athletic movements. Understanding the biomechanics of motion—such as joint 

angles, muscle activation patterns, and energy expenditure—can enhance the accuracy of deep 

learning models. By integrating these biological insights into our model, we improve the 

recognition process, allowing for a more nuanced understanding of how movements impact 

performance. Through experiments, we demonstrate that the model achieves high accuracy 

across multiple benchmark datasets (UCF-101, HMDB-51, Kinetics-400, and Sports-1M), with 

a particularly high accuracy of 93.5% on the UCF-101 dataset. These results indicate that the 

proposed method is both accurate and reliable, making it suitable for athlete training and 

competition analysis. The findings of this research have significant implications for sports 

science, training evaluation, and injury prevention. By providing coaches and athletes with 

precise feedback based on deep learning analysis, we can facilitate targeted training 

interventions that enhance performance while reducing injury risks. This work aims to offer a 

powerful tool for athletes, coaches, and researchers, contributing to the advancement of 

competitive sports through a deeper understanding of movement dynamics and their biological 

underpinnings. 

Keywords: deep learning; athlete skill analysis; biomechanics; computer vision; motion 

recognition; injury prevention 

1. Introduction 

Precise motion analysis is critical for enhancing athlete performance in 

competitive sports. Advancements in technology, particularly breakthroughs in 

computer vision and artificial intelligence, have ushered humanity into a new era 

where athlete performance can be assessed more accurately and scientifically through 

automated tools [1–3]. Traditional motion analysis methods typically rely on manual 

observation and annotation by experts. This is not only time-consuming and labor-

intensive but also subject to the observer’s subjective judgment and personal 

experience, making it difficult to ensure consistency. Moreover, traditional methods 
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are often limited to specific conditions, such as laboratory environments, where the 

results may not fully reflect an athlete’s performance in real competition settings [4–

6]. Recently, as Deep Learning (DL) technology has advanced, it has opened up new 

possibilities for using Machine Learning (ML) for the automatic analysis of athletic 

skills. DL, an ML method based on artificial neural networks, can learn complex 

patterns and feature representations from large amounts of unlabeled data, making it 

highly suitable for processing image and video data [7,8]. In the field of competitive 

sports, DL has been successfully applied to various aspects such as action recognition, 

pose estimation, and motion tracking, providing strong technical support for athlete 

training. Additionally, DL technology helps address two major issues in traditional 

methods: Data collection convenience and the objectivity of analysis results. Portable 

devices and smart wearable technology make it easy to collect athletes’ training and 

competition data. Meanwhile, DL models can provide consistent and reliable analysis 

results without human interference, which is crucial for improving training efficiency 

and competition outcomes [9–11]. 

This work aims to explore how DL technology can be utilized for efficient athlete 

skill and motion analysis. Developing a DL-based motion recognition system enables 

real-time monitoring and evaluation of athlete movements. The foundation of this 

system is rooted in using the Convolutional Neural Network (CNN) to extract motion 

features from video data and applying the Recurrent Neural Network (RNN) to capture 

the temporal characteristics of the movements. This combination not only enables the 

recognition of individual actions but also understands transitions between actions, 

providing coaches with a more comprehensive motion analysis report. 

However, despite the advantages of DL, it also faces some challenges. The first 

challenge is the need for a large amount of data, as DL models usually require 

extensive training data to achieve good performance. The second challenge is the issue 

of model interpretability. DL models are often regarded as “black boxes”, meaning 

that even if the model makes correct predictions, it is difficult to understand how it 

arrived at the conclusion. The third challenge is the demand for computational 

resources, as training large-scale DL models requires high-performance computing 

equipment, which could be a significant obstacle for smaller sports clubs. 

Therefore, this work also explores how to address these challenges by proposing 

an innovative method to balance performance and resource consumption. The work 

discusses how to use transfer learning to decrease the amount of data needed for 

training, design models with strong interpretability to better understand model 

behavior, and optimize model structures to suit different hardware platforms. To 

enhance the transparency and interpretability of the model, feature visualization and 

attention mechanisms are incorporated to help understand the decision-making process 

during motion recognition. In the feature extraction phase, the Gradient-weighted 

Class Activation Mapping (Grad-CAM) method is used to visualize the feature maps 

generated by the CNN. By analyzing these feature maps, it becomes possible to 

identify the specific regions that the model focuses on during key frames. For example, 

when recognizing a basketball player’s shooting motion, Grad-CAM shows the 

model’s attention distribution on the hands and the ball, helping to clarify the 

reasoning behind its decisions. In the LSTM network, an attention mechanism is 

introduced to enable the model to better focus on the features at key moments when 
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processing action sequences. Specifically, attention weights are calculated for each 

time step to determine the impact of each key frame on the current state. This allows 

the model to emphasize critical moments in an action, such as the jump, shot release, 

and landing during a basketball shooting motion. This approach not only improves the 

model’s performance but also enhances its interpretability, enabling coaches and 

athletes to understand the basis for the model’s judgments. Through these efforts, this 

work is expected to foster the broad adoption of DL technology in sports, providing 

more powerful tools for athletes, coaches, and researchers, and contributing to the 

development of competitive sports. 

2. Literature review 

2.1. The use of ML and DL in athlete motion analysis 

In recent years, ML and DL technologies have been extensively utilized in the 

field of athlete motion analysis. Traditional ML methods, like the Support Vector 

Machine (SVM), Decision Tree, and Support Vector Regression, have achieved initial 

success in motion recognition and classification. Xu utilized SVM to classify 

swimming strokes and found that this method achieved high accuracy in distinguishing 

different strokes [12]. However, these traditional methods often require manual feature 

engineering, which limits their generalization ability and robustness. In contrast, DL 

methods, with their powerful feature learning capabilities, can directly extract useful 

features from raw data, thus demonstrating superior performance. 

DL technologies, particularly the CNN and RNN, have shown immense potential 

in motion recognition and behavior analysis. CNN excels at handling image and video 

data and automatically learning local features within images, while RNN is proficient 

in processing time-series data, and capturing the dynamic changes in movements. 

Ullah and Munir proposed a dual-stream CNN architecture that combines spatial and 

temporal streams to analyze motion videos, significantly improving the accuracy of 

action recognition [13]. Additionally, Zan and Zhao used LSTM networks to model 

motion videos, effectively recognizing complex action sequences by learning the 

temporal dependencies of movements [14]. In addition to traditional CNN and LSTM 

architectures, Lovanshi and Tiwari explored the application of the Graph 

Convolutional Network (GCN) in motion recognition [15]. Their findings showed that 

GCN performed exceptionally well in capturing the relationships between human 

body keypoints during motion, enabling more accurate recognition of various sports 

actions. Furthermore, Xin et al. proposed an ensemble learning approach that 

combined different DL models to improve the robustness of action recognition [16]. 

Their research demonstrated that integrating multiple models effectively reduced the 

limitations of a single model and enhanced overall recognition accuracy. 

2.2. Advantages and limitations of different methods 

While DL methods have demonstrated outstanding performance in motion 

analysis, they also come with their own set of advantages and limitations. Ahmed et 

al. suggested that one of the notable advantages of DL methods was their powerful 

feature learning capability, which allowed them to automatically learn high-level 
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abstract features from data. This gives them a natural advantage when dealing with 

unstructured data [17]. Taye highlighted that the flexibility of DL models allowed 

them to adapt to a wide range of application scenarios. Whether dealing with static 

images or dynamic videos, these models can be tailored to handle various tasks 

through appropriate network architectures [18]. 

In terms of recognizing the contributions of female researchers, Carvalho et al. 

proposed a DL model for swimming, which revealed that there were differences in the 

technical movements between female and male swimmers [19]. This finding provided 

important insights for customizing personalized training programs in the future. In 

addition, Legault and Faubert conducted a study on athletics, highlighting the impact 

of gender on sports movement recognition, and offering valuable references for 

improving the technical performance of female athletes [20]. From a regional 

perspective, Lee et al. implemented DL technology in sports training to explore its role 

in improving athletic performance [21]. The results indicated that DL models not only 

improved the accuracy of action recognition but also provided coaches with targeted 

training feedback, demonstrating the practical applicability and operability of the 

technology. 

However, DL methods also exhibit some significant limitations. These models 

generally demand substantial amounts of data for training, and acquiring high-quality 

labeled data is frequently a time-consuming and expensive process [22]. Additionally, 

DL models are often considered “black box” models, lacking transparency, which 

makes their decision-making process difficult to interpret. This is particularly 

important in the field of sports, where coaches and athletes need to understand how 

the model arrives at its assessments [23]. Moreover, DL models tend to perform poorly 

in situations with small sample sizes. When training data are insufficient, the models 

are prone to overfitting. On the other hand, traditional ML methods, although more 

dependent on manual feature engineering, generally offer better interpretability, 

making them easier to understand and debug. For certain specific tasks, such as simple 

action classification, traditional ML methods may be sufficient and are more suitable 

in scenarios where computational resources are limited. 

2.3. Current challenges and future research directions 

The field of athlete action analysis faces several key challenges, including data 

acquisition, model interpretability, and the demand for computational resources. First 

and foremost, efficiently obtaining high-quality training data remains a significant 

obstacle. Although advancements in sensor and video recording technologies have 

made data collection more convenient, data annotation still requires substantial human 

effort. Future research could explore automatic annotation techniques to reduce the 

need for manual involvement. Another critical challenge is model interpretability. 

Many current DL models operate as black boxes, which poses a bottleneck for 

practical applications. Future research should pay attention to exploring new methods 

to enhance model transparency, making the decision-making process of these models 

more understandable. For instance, integrating DL with rule-based learning could be 

a potential approach to explain model behavior. The demand for computational 

resources is also a pressing issue. While DL models deliver exceptional performance, 
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they often require high-performance computing devices for training and deployment. 

A future trend may involve developing lightweight model architectures that can run 

on embedded devices, thereby reducing hardware costs. Despite these challenges, the 

role of DL-based athlete action analysis in sports science research is expected to grow 

significantly in the future. Overcoming existing limitations and developing new 

methodologies can provide athletes with more precise and effective training guidance, 

ultimately advancing the level of competitive sports. Therefore, this work intends to 

explore an efficient and interpretable DL approach to achieve a precise analysis of 

athlete skills and actions, offering practical solutions for real-world applications. 

3. Method 

3.1. Data preparation and preprocessing 

To ensure that the model can extract meaningful information from video data, the 

following steps are undertaken for data preparation and preprocessing: 

1) Video Data Collection: Video data form the foundation of this work. This work 

collects a substantial number of video clips from various sports events and 

training sessions. To cover a broad range of sports scenarios, the video data 

include different sports such as football, basketball, athletics, and swimming. 

Each video clip contains a complete action cycle to guarantee the diversity and 

representativeness of the data. 

2) Key Frame Extraction: Extracting key frames from videos is a crucial 

preprocessing step. Key frames are specific frames that represent the main 

content of a video segment. This work uses the frame difference method to 

determine key frames. Specifically, by calculating the differences between 

adjacent frames, frames with significant differences are identified as key frames. 

This method effectively removes redundant information and reduces the amount 

of data for subsequent processing. 

It is assumed that the video frame sequence is denoted as {𝐼1, 𝐼2,..., 𝐼𝑛}, where 𝐼𝑖 

represents the i-th frame image. The frame difference can be defined as: 

𝐷𝑖 = ‖𝐼𝑖+1 − 𝐼𝑖‖2 (1) 

‖. ‖2 represents the Euclidean distance. If 𝐷𝑖 is greater than a certain threshold T, 

𝐼𝑖 is considered a key frame. The threshold T is adjusted based on the actual video 

content to ensure that the extracted key frames are representative. 

3) Data Annotation: With the purpose of training the DL model, the video data need 

to be annotated. The annotation process involves classifying and labeling the 

actions in each key frame. Multiple professional sports coaches and athletes are 

invited to participate in the annotation process to ensure accuracy and 

consistency. The annotation includes, but is not limited to, actions such as 

starting, sprinting, jumping, throwing, catching, and passing. 

4) Data Augmentation: To improve the diversity and richness of the data, data 

augmentation techniques are adopted. These techniques involve rotation, 

translation, scaling, and flipping to simulate different perspectives and 

environmental conditions. Data augmentation generates additional training 

samples, improving the model’s robustness and generalization ability. 
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3.2. Feature extraction and model construction 

After completing data preparation and preprocessing, the next stage involves 

feature extraction and model construction. 

1) CNN Architecture: This work employs CNN as the foundational architecture for 

processing video data. CNN is a DL model particularly suited for handling image 

and video data, as it can automatically learn local features within images [24]. 

Figure 1 illustrates the CNN architecture. 

 

Figure 1. CNN architecture. 

In CNN, convolutional layers use the concept of local receptive fields, meaning 

each neuron is connected to only a small portion of the input data. This local 

connectivity allows the model to focus on specific regions within an image and learn 

useful features from them. For example, when recognizing an athlete’s movements, 

the model can concentrate on details of the arms, legs, or other key body parts, 

capturing subtle differences in the action. The weights in convolutional layers are 

shared, meaning the same filter slides across the entire input image to detect similar 

types of features. This weight-sharing mechanism decreases the parameter quantity, 

making the model more efficient and capable of detecting translational invariance in 

images. For instance, when recognizing a runner’s motion, the model can identify the 

same features regardless of where the motion occurs in the image. CNN is typically 

composed of alternating convolutional layers and down-sampling layers, forming a 

hierarchical structure. Each layer learns different levels of features, from edges and 

textures to higher-level shapes and objects. This hierarchical feature learning enables 

CNN to handle complex image and video data. For example, when identifying the 

motion of a high jumper, the first layer might learn edge features of the legs and arms, 

while subsequent layers may learn the overall pose and dynamic changes of the action. 

To address the issues of vanishing and exploding gradients in deep networks, Deep 

Residual Network (ResNet) is used. ResNet introduces residual blocks that make it 

easier for the network to learn identity mappings, thus avoiding degradation in training 

deep networks. ResNet-50 is selected as the pre-trained model. It is a ResNet that has 
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been pre-trained on the ImageNet dataset, offering strong feature extraction 

capabilities. 

2) Application of Pre-trained Models: To fully leverage the advantages of the pre-

trained model, ResNet-50 is first used to extract features from the key frames. 

Specifically, each key frame is fed into the ResNet-50 model, and the feature 

vector from the penultimate layer is extracted. These feature vectors contain rich 

visual information that can be used to describe the action characteristics within 

the key frames. 𝑥𝑖  represents the i-th key frame, and after processing through 

ResNet-50, the extracted feature vector is denoted as 𝑓(𝑥_𝑖 ). It is assumed that 

𝑓(𝑥𝑖) ∈ 𝑅𝑑, where d is the dimension of the feature vector. 

3) Feature Fusion and Sequence Modeling. Since actions are composed of a series 

of continuous key frames, it is essential to consider the temporal sequence 

characteristics of the actions. An RNN is employed to model the action sequence. 

Specifically, an LSTM network is used to capture the temporal dependencies of 

the actions. LSTM is a specialized type of RNN that effectively handles long-

term dependencies [25]. LSTM addresses the issues of vanishing and exploding 

gradients that traditional RNNs face when processing long sequences by 

introducing input, forget, and output gate mechanisms. The basic unit of an 

LSTM consists of a cell state and three gating mechanisms that control the flow 

of information. The cell state preserves long-term dependencies within the 

sequence, while the input, forget, and output gates determine which information 

should be written, forgotten, and read, respectively. Specifically, the input gate 

decides which information should be written into the cell state, the forget gate 

determines which information should be removed from the cell state, and the 

output gate selects which information should be read from the cell state to 

generate the output for the current time step. Figure 2 illustrates the LSTM 

architecture. 

 

Figure 2. LSTM architecture. 
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ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑓(𝑥𝑡), ℎ𝑡−1) (2) 

ℎ𝑡 represents the hidden state at time t, ℎ𝑡−1 is the hidden state at time t−1, and 

𝑓(𝑥𝑡) is the feature vector at time t. The internal mechanism of the LSTM includes 

the input gate, forget gate, and output gate, which are represented by the following 

equations: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ⋅ 𝑓(𝑥𝑡) + 𝑊ℎ𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖) (3) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ⋅ 𝑓(𝑥𝑡) + 𝑊ℎ𝑓 ⋅ ℎ𝑡−1 + 𝑏𝑓) (4) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ⋅ 𝑓(𝑥𝑡) + 𝑊ℎ𝑜 ⋅ ℎ𝑡−1 + 𝑏𝑜) (5) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ⋅ 𝑓(𝑥𝑡) + 𝑊ℎ𝑐 ⋅ ℎ𝑡−1 + 𝑏𝑐) (6) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (7) 

𝜎 is the sigmoid function, ⊙ represents element-wise multiplication, and 𝑊𝑥𝑖 , 

𝑊ℎ𝑖, and 𝑏𝑖 are weight matrices and bias terms. This work leverages LSTM to capture 

the temporal characteristics of athletes’ movements, thereby improving the 

understanding and recognition of complex action sequences. For instance, when 

recognizing a basketball player’s shooting motion, LSTM can identify the key 

temporal features, such as the arm raising, the moment of the shot, and the arm 

lowering, which enhances the accuracy of action recognition. Additionally, LSTM can 

handle action sequences of varying lengths, providing the model with greater 

robustness and generalization ability. By using feature vectors extracted from a CNN 

as inputs to the LSTM, the model can comprehensively consider both the visual 

features and the temporal characteristics of the actions, enabling precise analysis of 

athletic skills and movements. 

In model construction, a CNN-LSTM hybrid architecture is selected because this 

combination effectively captures both spatial and temporal features of motion data. 

The CNN is capable of extracting local features from each frame, while the LSTM 

leverages these features to capture the temporal dependencies within the action 

sequence, thereby enhancing the model’s ability to recognize complex movements. 

ResNet-50 is chosen as the backbone network for the following reasons: ResNet-50 

employs a residual learning mechanism, which effectively addresses the vanishing 

gradient problem in deep networks, ensuring that the network performs well even in 

deeper layers. Additionally, ResNet-50 has been pre-trained on the ImageNet dataset, 

making it a powerful feature extractor that aids in faster convergence and improved 

model accuracy. During training, the following key parameters are set: a learning rate 

decay strategy is used, with the initial learning rate set to 0.001 and halved every 10 

epochs. This strategy helps fine-tune model parameters in the later stages of training, 

improving convergence precision. A batch size of 32 is chosen, providing a good 

balance between computational efficiency and memory consumption, while also 

aiding the model’s generalization during training. The Adam optimizer is used, as its 

adaptive learning rate adjustment mechanism effectively adjusts the learning rate for 

each parameter during training, accelerating model convergence. These choices have 

a significant impact on the model’s performance. Proper learning rate scheduling and 
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optimization help improve training stability and speed, while an appropriate batch size 

contribute to better model generalization. 

3.3. Model training and validation 

After completing feature extraction and model construction, the subsequent step 

is to train and validate the model. 

(1) Model Training: The extracted feature vectors and corresponding labels are fed 

into the LSTM model for training. To prevent overfitting, regularization 

techniques such as Batch Normalization and Dropout are employed. Batch 

normalization is a commonly used regularization technique in neural network 

training that accelerates the training process and enhances model stability by 

standardizing the activation values of each batch of data. Specifically, batch 

normalization standardizes the activation values of each layer to have zero mean 

and unit variance, reducing internal covariate shifts and making the model easier 

to converge. In the model, batch normalization is applied to both the input and 

hidden layers of the LSTM. For example, in the LSTM’s input layer, the feature 

vectors extracted from the CNN are normalized to ensure the stability and 

consistency of the input data. Dropout is another widely used regularization 

technique that mitigates model overfitting by randomly dropping a portion of 

neurons during training. In this process, each neuron has a certain probability of 

being temporarily “dropped”, meaning its output is set to zero. This random 

dropout mechanism forces the model to learn more robust feature representations, 

thereby enhancing its generalization ability. Here, dropout is applied to the 

hidden layers of the LSTM model. Specifically, in each training batch, a certain 

percentage of neurons (such as 50%) are randomly dropped to prevent the model 

from relying too heavily on certain specific feature representations. By 

combining batch normalization and Dropout, the model can maintain its 

performance while effectively preventing overfitting. Batch normalization is also 

applied between the hidden layers of the LSTM to further improve the model’s 

stability and generalization ability. Additionally, Early Stopping [26] is utilized 

to monitor the training process, terminating it when the performance on the 

validation set no longer improves. It is a commonly used technique to prevent 

overfitting. The basic idea is to periodically evaluate the model’s performance on 

the validation set during training and to stop the training process when the 

performance no longer improves. Specifically, during the training process, the 

model’s performance is evaluated on the validation set at regular intervals (such 

as every 5 epochs). If the performance on the validation set (such as accuracy or 

loss value) does not show significant improvement over several consecutive 

epochs, it is considered that the model has begun to overfit, and the training 

process is terminated early. This approach allows the training to stop before the 

model starts overfitting, resulting in a model with stronger generalization ability. 

Here, Early Stopping criteria are set, such as terminating the training if the 

accuracy on the validation set does not improve for 10 consecutive epochs. The 

loss function L can be defined as cross-entropy loss: 
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^
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^
)

𝑁

𝑖=1

 (8) 

y  represents the true labels, 
^

y  denotes the model’s predicted probability 

distribution, and N is the number of classes. 

(2) Cross-Validation: To assess the model’s generalization capability, cross-

validation is conducted across multiple datasets. Specifically, k-fold Cross 

Validation is employed, where the dataset is divided into k subsets. In each 

training iteration, k-1 subsets are taken as the training set, with the remaining 

subset serving as the validation set. Through multiple training and validation 

rounds, the average performance metrics of the model across different datasets 

are obtained. 

𝑆 = {𝑆1, 𝑆2,..., 𝑆𝑘} represent the k subsets, and the cross-validation process can be 

expressed as follows: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1

𝑘
∑ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑆𝑖, 𝑆\𝑆𝑖)

𝑘

𝑖=1

 (9) 

∑ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑆𝑖, 𝑆\𝑆𝑖)𝑘
𝑖=1  represents the performance metric in the i-th validation 

round. 

(3) Performance Evaluation. To assess the performance of the model, several 

performance metrics are used, like Accuracy, Precision, Recall, and F1 Score. 

Accuracy reflects the proportion of correctly classified instances; Precision 

measures how many of the samples predicted as positive are truly positive; Recall 

gauges how many of the actual positives the model correctly identifies; and F1 

Score is the harmonic mean of Precision and Recall, providing a balanced 

measure of both metrics. 

Experiments are conducted using four publicly available datasets. UCF-101: 

Contains action videos across 101 categories, covering a variety of sports activities. 

HMDB-51: Includes action videos in 51 categories, mainly used for evaluating action 

recognition performance. Kinetics-400: A large-scale video dataset with 400 action 

categories. Sports-1M: Comprises over 1 million sports video clips, covering a broad 

range of sports activities. 

To validate the superiority of the established model, comparisons are made with 

several other methods, including Traditional Methods: Using SVM for action 

recognition. CNN: Utilizing a standard CNN for action recognition. Two-Stream 

CNN: The Two-Stream CNN architecture proposed by Simonyan and Zisserman. 

LSTM-Based Method: Employing LSTM networks for modeling action sequences. 

4. Results 

4.1. Overall performance on datasets 

The overall effectiveness metrics of the established model on various datasets are 

analyzed. Figure 3 shows the results. 
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Figure 3. Overall performance on datasets 

Figure 3 suggests that the proposed model performs exceptionally well across all 

datasets. Its performance varies significantly across different datasets. The UCF-101 

dataset contains 101 action categories, covering a wide range of sports types. 

However, most of the actions are relatively simple and exhibit clear visual features, 

enabling the model to recognize these actions effectively, achieving a high accuracy 

rate of 93.5%. The HMDB-51 dataset, although containing fewer action categories, 

includes more complex movements such as turning and quick direction changes. The 

complexity of these actions leads to a slight decrease in model accuracy, which reaches 

89.2%. The Kinetics-400 dataset includes 400 action categories, increasing the 

diversity and complexity of the actions. As a result, the model’s performance is 

affected by some less common actions, and accuracy drops to 87.3%. Particularly for 

actions like jumping and throwing, the variety in how these actions are presented in 

videos causes the model to make more misclassifications. 

4.2. Comparison of different models 

The effectiveness of the proposed model is compared with several other methods 

across different datasets. Figure 4 presents the results. 

 

Figure 4. Comparison of different models. 
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Figure 4 shows that the proposed model achieves significantly higher accuracy 

across all datasets compared to other methods. For example, on the UCF-101 dataset, 

the proposed model’s accuracy is 93.5%, whereas SVM and CNN achieve 75.2% and 

82.3% respectively, and Two-Stream CNN and LSTM reach 89.1% and 86.4%. 

Similarly, on other datasets, the proposed model consistently demonstrates higher 

accuracy. This indicates that the proposed model has a notable advantage in action 

recognition tasks. 

4.3. Error rate analysis of the model 

The error rates for different action categories are analyzed. Figure 5 presents the 

results. 

 

Figure 5. Model error rate analysis. 
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categories, the error rate for jumping actions is significantly higher than for other 

categories. The Sports-1M dataset is large, but due to the diversity in video content 
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lower. Especially for jumping actions, the model’s error rate is the highest, reaching 

14.9%. This can be attributed to factors such as the uncertainty in the motion’s changes 

during the jump, the influence of camera angles on action recognition, and variations 

in speed throughout the action. Therefore, it is necessary to increase the number and 

diversity of training samples for these complex actions to improve the model’s 

accuracy. 

4.4. Challenges in jumping action recognition 

In the experiments, it is observed that the error rate for jumping actions is 

significantly higher than for other action types, particularly reaching 14.9% on the 

Sports-1M dataset. In response, an in-depth analysis is conducted to understand the 

reasons behind the high error rate. Jumping actions typically involve fast and 
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coordinated movements of multiple body parts, including the legs during the jump, 

changes in posture in the upper body, and body control while airborne. This 

complexity poses greater challenges for the model in terms of feature extraction and 

temporal modeling. Several examples of jumping actions are selected to showcase the 

misclassification instances during the recognition process. Figure 6 displays key 

frames of some misclassified actions, with potential causes including similar 

backgrounds, motion blur caused by the fast speed of the action, and the diversity in 

action poses. These factors likely contribute to difficulties in feature discrimination, 

leading the model to struggle with accurate recognition of jumping actions. 

  
(a) (b)  

 
(c)  

Figure 6. Misclassification examples of jumping actions. (a) Movement speed; (b) Diversity of action posture; (c) 

Diversity of action posture. 

To improve the model’s performance in recognizing jumping actions, several 

strategies are proposed. Increasing the number of training samples for jumping actions 

and applying data augmentation with different angles and speeds enhance the model’s 

robustness to complex motions. Additionally, combining video data with sensor data 

(such as accelerometers and gyroscopes) for multimodal learning can provide richer 

motion information, which may help improve the accuracy of jumping action 

recognition. During model training, fine-tuning hyperparameters, especially in terms 

of learning rate, batch size, and optimization algorithms, could improve the model’s 

learning effectiveness. Through an in-depth analysis of the challenges in jumping 

action recognition, this work aims to provide more targeted guidance for athlete 
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training and technical improvements in practical applications. These findings can 

contribute to the further advancement of sports action recognition technology. 

4.5. Robustness analysis of the model 

The performance of the model under different training set sizes is analyzed. 

Figure 7 presents the results. 

 

Figure 7. Performance under different training set sizes. 

Figure 7 shows that as the training set size increases, the model’s accuracy 

progressively improves. For example, on the UCF-101 dataset, the accuracy increases 

from 85.3% to 94.2% as the training set size grows from 10% to 100%. This suggests 

that the model’s performance improves with the increase in training data, 

demonstrating good robustness. Even with a smaller training set, the model still 

exhibits relatively good performance. 

4.6. Model generalization capability 

The cross-validation process across different datasets is analyzed. Figure 8 

displays the results. 

 

Figure 8. Cross-Validation results on different datasets. 
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Figure 8 reveals that the established model maintains high levels of average 

accuracy, precision, recall, and F1 score across various datasets during cross-

validation. For instance, on the UCF-101 dataset, the average accuracy achieved 

through cross-validation is 93.2%, with other metrics also being very close. The 

performance on other datasets remains at a high level as well. These results indicate 

that the proposed model excels not only on individual datasets but also demonstrates 

strong generalization capability across multiple datasets. 

5. Conclusion 

This work presents a DL-based athlete skill and motion analysis system. 

Experiments demonstrate that the system not only effectively identifies various 

complex athletic actions but also provides valuable feedback for coaches. The results 

show that the established model achieves high accuracy, precision, recall, and F1 

score, with an accuracy exceeding 90% on the UCF-101 dataset, highlighting its 

significant advantage in action recognition tasks. This work proposes a DL-based 

athlete action recognition model. Despite its significant performance, there are still 

several limitations and directions for further exploration. 

(1) Model Limitations: While the model performs excellently across multiple 

datasets, its accuracy may be affected when handling certain complex actions, 

such as high-intensity dynamic interactions (such as wrestling or fast changes in 

team sports). Additionally, the model’s sensitivity to environmental disturbances 

may lead to instability in real-world applications. This means that, in real-world 

scenarios, the model must handle various unpredictable variables, posing 

challenges for model training and optimization. 

(2) Impact on Athlete Training and Competition Analysis: The model offers more 

accurate action analysis and feedback, assisting coaches in making targeted 

adjustments during training. For example, by analyzing athletes’ technical 

movements in real-time, coaches can quickly identify deficiencies in the 

execution of actions and develop personalized training plans accordingly. 

Additionally, the model can provide data support during competitions, helping 

coaches with tactical adjustments and opponent analysis. 

(3) Practical Application Translation: Implementing the research results in real-

world training and competition analysis involves addressing several key 

challenges. First, the model needs to be integrated into the athlete’s daily training 

monitoring system for real-time analysis and feedback. Second, visualization 

tools based on model analysis can help coaches better understand an athlete’s 

performance, allowing for timely adjustments. Future research can also explore 

how to combine this technology with virtual reality or augmented reality to create 

more immersive and interactive training environments. 

When considering the application of this model in real-world settings, several key 

deployment aspects must be addressed to ensure its feasibility and effectiveness. The 

model relies on a CNN-LSTM hybrid architecture, which performs well on high-

performance computing platforms but optimization of computational resources is still 

required for deployment on edge devices. Model compression and acceleration 

techniques, such as quantization and pruning, can reduce computational burden, 
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making it more suitable for real-time processing. The power consumption of edge 

devices is another crucial factor influencing system deployment. To ensure sustainable 

operation, it is recommended to consider low-power processors in hardware selection 

and optimize algorithms to reduce computational demand, ensuring long-duration 

operation on battery-powered devices. The system latency in real-time processing is 

crucial for feedback in sports training. By optimizing data transmission and processing 

pipelines, reducing data transfer time, and improving model inference speed, the 

overall latency can be effectively reduced. It is suggested to perform latency testing in 

real-world applications for different sports training scenarios to meet the specific 

requirements of sports training. This model can be integrated with existing sports 

training programs to provide real-time feedback to coaches and athletes. By combining 

with sports monitoring equipment and wearable sensors, the model can analyze 

athletic performance in real time, offering personalized training recommendations to 

help athletes optimize their technical movements and training plans. Through 

discussing these practical deployment considerations, this work aims to provide a 

comprehensive perspective on the practical application of the research results, 

enhancing its real-world impact on sports training and analysis. 
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