
Molecular & Cellular Biomechanics 2025, 22(2), 653. 

https://doi.org/10.62617/mcb653 

1 

Article 

Sports training injury risk assessment model based on biological 

mechanisms and complex network analysis 

Changyuan Yin, Ting Luo, Zhenping Ye* 

Hunan Automotive Engineering Vocational College, Zhuzhou 412002, China 

* Corresponding author: Zhenping Ye, 13973363090@163.com 

Abstract: To improve the accuracy and practicality of sports training injury risk assessment 

(IRA), this paper constructs a model based on a complex network analysis algorithm and 

conducts performance comparison experiments across multiple dimensions. The research 

results demonstrate that the optimized model performs well in terms of risk assessment 

accuracy, real-time processing, robustness, adaptability, and user satisfaction. Specifically, the 

Area Under Curve of the Receiver Operating Characteristic Curve (AUC-ROC) of the 

optimized model reaches 0.928, indicating high accuracy in risk assessment. In addition to 

these metrics, this study includes a discussion on the biological mechanisms underlying sports 

injuries, emphasizing how biological signals can be integrated with the complex network 

analysis to enhance the model's predictive capabilities. This integration allows for a more 

comprehensive understanding of injury risk factors, such as muscle fatigue, joint stress, and 

tissue response, which are critical for effective injury prevention strategies. In the real-time 

experiment, the processing speed score is 4.9. In the robustness experiment, the fault recovery 

ability score is 4.3. In the adaptive experiment, the diversified data processing ability score is 

4.5. In the user satisfaction experiment, the accuracy score of risk assessment is 4.9, and the 

convenience score is 5.0. These results indicate that the optimized model has significant 

advantages in handling complex data and adapting to changing environments. Therefore, this 

paper provides valuable insights for improving injury risk management and decision support 

in sports training by incorporating biological insights into the assessment model. 

Keywords: complex network; sports training injury; machine learning; risk management; 

model analysis; biological mechanisms; injury prevention 

1. Introduction 

In modern competitive sports, the intensity and complexity of athletes’ training 

are increasing, and the risk of sports injury is also rising. Injury will not only affect 

the short-term performance of athletes, but also have a long-term impact on their 

career [1–3]. Therefore, how to effectively assess and reduce the risk of sports injuries 

has become the focus of sports and academic circles. As a new data analysis tool, 

complex network analysis has achieved remarkable results in bioinformatics, social 

network analysis and other fields [4]. It can help to understand the dynamic interaction 

and potential risks in complex systems by revealing the internal structure and 

functional relationship of the system [5]. Therefore, it is of great theoretical 

significance and practical application value to apply complex network analysis method 

to sports training injury risk assessment (IRA). 

Traditional IRA methods often rely on empirical judgment or simple statistical 

model, lacking in-depth analysis of multi-dimensional data of athletes [6–8]. By 

introducing complex network analysis, potential risk factors can be identified more 
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accurately and the accuracy of evaluation can be improved. By analyzing the key 

nodes and edges in the network structure, people can find the key factors that affect 

the risk of injury, thus helping coaches and athletes to make more scientific training 

plans, optimize training strategies and reduce the incidence of injury. By introducing 

complex network analysis into the field of sports training IRA, this paper aims to 

promote the cross-integration of sports science and data science and provide new ideas 

and methods for related research. With the development of competitive sports, sports 

injuries have increasingly serious impact on the economy and health of sports teams 

and athletes. Therefore, it is of great social and economic significance to develop an 

effective risk assessment model to help athletes reduce the possibility of injury in 

training. 

The innovations of this paper are as follows: 

Firstly, this paper applies the complex network analysis method to the risk 

assessment of sports training injury, and constructs a risk assessment model based on 

network structure to capture the dynamic relationship and potential risk factors of 

athletes in the training process more comprehensively. 

Secondly, this paper integrates athletes’ physiological indicators, training data, 

injury history and other multi-source data, and reveals the complex interaction 

between these data through complex network analysis, which improves the accuracy 

and meticulousness of IRA. 

These innovations make a significant breakthrough in this paper based on existing 

literature, and provide a more scientific and efficient method for the risk assessment 

of sports training injuries. To sum up, this paper aims to explore the application of 

complex network analysis algorithm in sports training IRA, and provide a new solution 

to improve the scientific and practical sports IRA. 

2. Related works  

In the study of IRA in sports training, Schweizer et al. found that in high-intensity 

sports training, the increase of injury risk was closely related to athletes’ physical 

quality, training load and psychological pressure. Through the comprehensive 

evaluation of athletes, the incidence of injuries could be effectively reduced [9]. Cui 

et al. proposed that the use of biomechanical and physiological indicators, combined 

with data collection of smart wearable devices, could achieve real-time injury risk 

monitoring of athletes and improve the accuracy and timeliness of early warning [10]. 

In the application research of complex network analysis algorithm in sports field, 

Wilke and Groneberg pointed out that complex network analysis algorithm had 

obvious advantages in identifying athletes’ training mode and optimizing competition 

strategy. Through the network modeling of sports data, the cooperative relationship 

between athletes and the overall tactical layout could be revealed [11]. The research 

of Ji et al. showed that complex network analysis could help identify the key nodes 

and important connections in sports teams, optimize the team structure and improve 

the overall performance of the team [12]. In the construction of sports training IRA 

model, Lutter et al. developed a set of IRA model based on complex network analysis, 

which could predict the possibility of injury according to the training history and 

physical state of athletes. The model had been proved to be efficient and accurate in 
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many sports [13]. Ageberg et al. found that combining machine learning with complex 

network analysis could further improve the prediction ability of IRA model. 

Especially in big data environment, the adaptive ability of the model was 

significantly enhanced [14]. 

Although there have been many studies on sports training IRA, there are still 

some shortcomings. Many studies mainly rely on traditional statistical analysis 

methods, and the evaluation of athletes’ injury risk often ignores the complexity and 

diversity of data and fails to make full use of multi-source data for comprehensive 

analysis. In this paper, the complex network analysis algorithm is adopted, which can 

build an interactive network among athletes based on multidimensional data, reveal 

the potential injury risk factors and correlation, and provide a more comprehensive 

risk assessment. 

3. Risk assessment of sports training injury based on complex 

network analysis algorithm 

3.1. IRA in sports training  

Sports training IRA is a systematic activity aimed at identifying, analyzing and 

predicting the injury risks that athletes may face during training. Its goal is to help 

coaches and athletes formulate effective prevention and management measures, 

thereby reducing the probability of injury and ensuring the health and training effect 

of athletes [15–17]. With the development of modern sports science, IRA has gradually 

become one of the important directions of sports science research. 

In risk assessment, many factors affecting the occurrence of injury need to be 

considered, which can be divided into internal factors and external factors, as shown 

in Table 1. 

Table 1. Injury risk factors. 

Dimension Factor Description 

Intrinsic 

factor 

Physical quality 
Such as flexibility, muscle strength, endurance and coordination. Lack of physical fitness may lead to 

deformation of technical movements and increase the risk of injury. 

Physiological 

characteristic 

Include age, gender and individual differences. Different physiological characteristics will affect the 

adaptability of athletes to training load. 

Psychology 
Psychological stress, motivation level and mental state are also important factors affecting the risk of 

injury. 

Extrinsic 

factor 

Training 

environment 
Changes in external conditions such as venues, climate and facilities may pose potential risks to athletes. 

Training load 
Unreasonable training plan, too high training intensity and frequency will lead to fatigue accumulation 

and overuse injury [18]. 

Equipment 
Improper equipment may increase the probability of injury, such as the cushioning performance of shoes 

and the safety of sports equipment. 

In recent years, with the progress of science and technology and the development 

of data analysis technology, the methods of sports training IRA have been constantly 

innovated and improved. Early IRA mostly relies on statistical methods, and common 

risk factors are identified by analyzing historical data. However, these methods usually 

assume that the relationship between data is linear, and it is difficult to deal with 
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complex interaction effects. Besides, by measuring and analyzing athletes’ postures 

and action patterns, people can identify abnormal sports behaviors that may lead to 

injuries. This method needs the help of high-precision motion capture technology and 

biomechanical model. With the popularization of smart wearable devices and sensor 

technology, it is possible to monitor athletes’ physiological and sports data in real time. 

These devices can provide real-time feedback and combine with big data analysis 

technology for personalized risk assessment. In recent years, models based on machine 

learning have been widely used in IRA. These models can deal with large-scale 

multidimensional data, and constantly optimize the accuracy and robustness of risk 

prediction through self-learning algorithms. Effective IRA can help coaches and athletes 

identify potential injury risks in advance and adjust training plans, thus reducing the 

incidence of injuries and improving athletes’ competitive performance [19–21]. By 

identifying high-risk factors in time and taking preventive measures, the incidence of 

injury can be significantly reduced. According to the risk assessment results, the training 

load and training content are adjusted to ensure that athletes can achieve the best 

training effect under safe conditions. Through scientific risk management, athletes can 

be helped to prolong their career and improve their quality of life. 

Sports training IRA is an important tool to protect athletes’ health and improve 

sports performance, and its research and application are of great significance to the 

development of modern sports science [22]. 

3.2. Application of complex network analysis algorithm in sports field 

A complex network consists of many interconnected nodes, which are connected 

by edges. These nodes and edges can represent different entities and relationships. In 

the field of sports, nodes can represent athletes, movements, positions or events, while 

edges represent the interaction or association between these entities [23–25]. Its basic 

concept is shown in Table 2: 

Table 2. Basic concepts of complex network analysis algorithm. 

Concept Analysis 

Node degree 
Represents the number of connections of a node. In sports, node degree can reflect the activity or influence of an athlete in 

the team. 

Clustering 

coefficient 

Measure the degree of interconnection between neighbors of a node. The high clustering coefficient indicates the close 

cooperation between athletes. 

Average path 

length 

Represents the average shortest path length between two nodes in the network, which can be used to evaluate the 

efficiency of information or goods transmission in the network. 

Modularity of 

network 

Used to identify the community or sub-group structure in the network, which is especially important for analyzing team 

tactics and group behavior. 

Complex network analysis has an important application in the interaction analysis 

between athletes, which can reveal the cooperation mode and key figures between 

athletes. By constructing and analyzing the passing network or interactive network 

between athletes, the cooperation mode and strategy in the team can be identified [26]. 

For example, in a football match, people can determine which players interact most 

frequently by analyzing the passing network to identify the core players of the team 

and the main passing paths. Key person identification is a complex network analysis 

that can help identify the players in the team who have the greatest influence on the 
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game results. These players are usually nodes with high node degree or high 

intermediary center in the network, which means that they play an important 

connecting role in the team’s passing network [27–29]. 

The application of complex network analysis in the field of sports has greatly 

enriched the understanding and analysis methods of team and individual 

performance [30]. By digging deep into the potential relationships in the data, 

complex network analysis not only provides strong support for athletes’ training and 

competition, but also provides new tools and methods for coaches and sports science 

researchers. 

3.3. Construction of risk assessment model for sports training injury 

It is a complex and systematic process to construct an effective risk assessment 

model for sports training injuries, and its purpose is to accurately predict the risk of 

sports injuries by comprehensively analyzing various physiological and environmental 

factors of athletes [31]. The construction of sports training IRA model needs a 

comprehensive framework to cover all links from data collection to risk assessment. 

In complex network analysis, the model uses the importance of nodes and community 

structure to evaluate risks. The equation is as follows: 

𝑃𝑅(𝑣) =
1− 𝑑

𝑁
+ 𝑑 ∗ ∑

𝑃𝑅(𝑢)

OutDegree(𝑢)
𝑢∈In(𝑣)

 (1) 

In the equation, 𝑣 and 𝑢 are nodes. 𝑃𝑅(𝑣) is the PageRank value of nodes, 𝑑 

is the damping coefficient, 𝑁 is the total number of nodes in the network, In(𝑣) is 

the set of nodes, and OutDegree(𝑢) is the number of nodes. After community testing, 

the equation is as follows: 

𝑄 =
1

2𝑚
∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗

𝛿(𝑐𝑖 , 𝑐𝑗) (2) 

𝑄  in the equation is modularity, which is used to measure the quality of 

community division. 𝑚 is the total number of edges. 𝐴𝑖𝑗 is the edge weight between 

nodes. 𝑖, 𝑗 are nodes. 𝑘𝑖𝑘𝑗 is the degree of nodes. 𝛿(𝑐𝑖 , 𝑐𝑗) is that nodes belong to 

the same community, and the value is 1, otherwise it is 0. In the model, the gradient 

lifting decision tree is used to predict the risk. The equation is as follows: 

𝐹(𝑥) = ∑ 𝛾𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 (3) 

𝐹(𝑥) is the predicted value. 𝑀 is the total number of trees. 𝛾𝑚 is the weight of 

trees. ℎ𝑚(𝑥) is the prediction of samples by trees, and then the gradient is updated. 

The equation is as follows: 

𝛾𝑚 = arg𝑚𝑖𝑛
𝛾
∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)

𝑛

𝑖=1

+ 𝛾ℎ𝑚(𝑥𝑖)) (4) 

𝑛  is the total number of samples. 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))  is the loss 
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function. 𝐹𝑚−1(𝑥𝑖)  is the predicted value after iteration. The model is shown in 

Figure 1: 

Data Collection 

Layer

Physiological data 

collection

Sports performance 

data
Environmental data

Data cleaning and 

standardization
Feature extraction

Model analysis layer

Data Processing 

Layer

Machine learning 

algorithms

Ensemble learning 

method
Time series analysis

Complex Network 

Analysis

Evaluation and 

Feedback Layer

Generate an injury risk 

assessment report based on the 

predicted output of the model, 

and provide personalized 

prevention recommendations 

and training adjustment plans to 

athletes and coaches.  
Figure 1. Risk assessment model of sports training injury. 

Data is the basis of IRA model. The athletes’ heart rate, blood oxygen saturation, 

muscle fatigue and other physiological indicators are collected by heart rate monitors, 

exercise bracelets and other equipment. Through video analysis software and motion 

capture system, the athletes’ technical movements, speed, acceleration and posture 

changes are recorded. The external environmental data such as temperature, humidity 

and ground conditions of the training ground are recorded, which can affect the 

performance and injury risk of athletes. Noise and outliers are removed, and data from 

different sources are standardized to ensure data consistency. Data mining technology 

is used to extract key features related to injury risk, such as movement pattern change 

and fatigue accumulation trend. Moreover, the design of IRA model needs to combine 

a variety of algorithms and technologies to achieve accurate analysis and risk 

prediction of complex data, build an interactive network model among athletes, and 

identify high-risk interactions or abnormal sports behaviors that may lead to injuries. 

The appropriate machine learning algorithms (such as random forest, support vector 

machine, neural network, etc.) are selected to process multi-dimensional data and 

improve the accuracy of prediction. Combining the advantages of various models, the 

robustness and generalization ability of the model are improved by ensemble learning 

method. The historical data of athletes are analyzed in time series to predict the future 

injury risk trend. 

In this network model, the determination of edge weight is based on several key 
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factors, including physiological data (such as heart rate and muscle fatigue), sports 

performance data (such as training intensity, speed and reaction time) and 

environmental data (such as temperature and humidity). By analyzing these data, the 

correlation or influence degree between them is calculated, and then the weight of 

edges is determined. The higher the edge weight, the stronger the relationship among 

nodes and the greater the impact on damage risk. The selection criteria of network 

features are based on the correlation among features and damage risk, the 

interpretability of features and the robustness of features in different training scenarios. 

Specifically, the characteristics that can effectively reflect the athlete’s physical 

condition, training load and environmental pressure are selected. These characteristics 

include the degree of nodes, aggregation coefficient, the centrality of feature vectors 

and other complex network indicators, which can reveal the relationship between key 

nodes and potentially high-risk nodes in the network. In order to deal with the time 

dependence in training data, the model introduces time series analysis method to 

model the training data in time series. This includes using sliding window method to 

segment data to capture trends and fluctuations in continuous time periods. The time 

decay function is also combined to give higher weight to the recent data to enhance 

the response ability of the model to the recent state. This approach enables the model 

to predict the potential injury risk in future training more effectively. 

Through the above steps, an accurate, real-time and personalized sports training 

IRA model can effectively reduce the injury risk of athletes and improve the training 

effect and competitive level of athletes. This model provides strong technical support 

and decision-making basis for coaches and athletes under the background of modern 

sports science. 

4. Experimental analysis of IRA model in physical training 

4.1. Model performance comparison 

The dataset selected in the experiment is the Sport Vu National Basketball 

Association Player Movement Dataset, which contains the movement data of players 

in National Basketball Association (NBA) matches. Although it is mainly used for 

basketball game analysis, it can be used to simulate the movement patterns of athletes 

in different environments. By analyzing the players’ running and movements, we can 

infer the possible risk of injury. The specific contents of the data set are shown in Table 

3: 

Table 3. Dataset content. 

Dimension Content 

Time stamp The specific time point of each record. 

Position 

coordinates 
The player’s position on the court. 

Speed The speed at which players move. 

Acceleration Acceleration of the player’s movement. 

Competition event For example, shooting, passing, foul, etc. 

In the experiment of sports training IRA model, a suitable experimental 
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environment is studied, in which the computer processor is Intel Core i7, the memory 

is 16 GB, the storage device is 500 GB, the graphics card is NVIDIA GTX 1660, the 

operating system is Windows 10 (64-bit), and the Python library is Pandas. The 

parameters of the model are also set, in which the Damping Factor is 0.75, the 

Resolution is 0.5, the Random State is 20, and the Number of Estimators is 100. The 

performance of the model is compared in the experiment, and the comparison indexes 

are accuracy, recall, specificity and Area Under Curve of The Receiver Operating 

Characteristic Curve (AUC-ROC). The comparison models are eXtreme Gradient 

Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM). XGBoost 

has performed well in many machine learning competitions and is famous for its 

excellent performance and stability. By enhancing the combination of trees, it is 

excellent in dealing with complex features and large-scale datasets. As a widely used 

machine learning algorithm, XGBoost has proved its effectiveness in many fields, 

including classification, regression and sorting tasks, which makes it an ideal choice 

for benchmarking. XGBoost supports regularization (L1 and L2), which can 

effectively prevent over-fitting. In addition, its built-in parallel processing ability and 

efficient memory use also make the model more advantageous when dealing with 

large-scale data. Developed by Microsoft, LightGBM is famous for its fast-training 

speed and low memory consumption, and is especially suitable for processing large-

scale data sets. LightGBM adopts decision tree algorithm based on histogram, which 

can quickly process high-dimensional sparse data, which makes it have significant 

advantages in the case of huge data and feature quantity. LightGBM supports 

distributed training and Graphic Processing Unit (GPU) acceleration, and can be easily 

extended to larger data sets and complex models, thus improving its applicability in 

practical applications. The performance comparison results are shown in Figure 2: 

In Figure 2, in terms of accuracy, the accuracy of the proposed optimized model 

is 0.883 when the data volume is 1000. When the data volume is 2000, the accuracy 

is significantly improved to 0.923, which is the best performance. When the data is 

3000, the accuracy is 0.910, which is slightly lower, but it is still better than other 

models. XGBoost and the optimized model show better adaptability and improvement 

when the data volume increases, while the accuracy of LightGBM does not change 

much when the data volume increases, so it may be necessary to further optimize its 

parameters to adapt to the large data volume. In terms of recall rate, the XGBoost 

model has a recall rate of 0.835 when there are 1000 data. In 2000, the recall rate 

dropped to 0.801. When the data volume is 3000, the recall rate rises to 0.848. The 

recall rate of LightGBM model is 0.862 when the data volume is 1000. In 2000, the 

recall rate dropped to 0.831. When the data volume is 3000, the recall rate drops 

slightly to 0.829. When the proposed optimized model has 1000 data, the recall rate is 

0.849. When the data volume is 2000, the recall rate is 0.855. When the data volume 

is 3000, the recall rate is increased to 0.866, which is the best performance. The 

optimized model is stable under all data volumes, especially when the data volume is 

3000, which shows its good recognition ability for complex patterns. The recall rate 

of XGBoost is significantly improved under a large amount of data, which shows its 

effectiveness under certain conditions. In terms of specificity, the specificity of the 

proposed optimized model reaches 0.883, 0.899 and 0.87 under different data volumes, 

and the optimized model has high specificity under all data volumes, especially when 
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the data volume is 2000, showing its strong non-destructive identification ability. 

However, LightGBM is stable when the amount of data increases, and its specificity 

is gradually improved. XGBoost also improved significantly when the data volume 

increased to 3000, showing good adaptability. In terms of AUC-ROC, the AUC-ROC 

of the proposed optimized model reaches 0.927 when the data volume is 1000. When 

the data volume is 2000, AUC-ROC is 0.928, which is the best performance. When 

the data volume is 3000, AUC-ROC is 0.920. The AUC-ROC of the optimized model 

is significantly higher than other models in all data volumes, especially in 1000 and 

2000 data volumes, which shows that it has strong classification ability. 

  
(a) (b) 

  
(c) (d) 

Figure 2. Performance comparison experiment (a) accuracy; (b) recall; (c) specificity; (d) ROC curve area first. 

4.2. Comparison of simulation experiments 

To further verify the effectiveness of the sports training IRA model, a simulation 

experiment is set up, which compared the indicators with real-time, robustness, 

adaptability and user satisfaction. The experiment is conducted by scoring, with a 

score of 1–5. The higher the score, the better the result of the model. The research 

divides each index into three dimensions, and the experimental results are shown in 

Figure 3: 
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(a) (b) 

  
(c) (d) 

Figure 3. Simulation experiment results (a) real-time performance; (b) robustness; (c) adaptability; (d) user 

satisfaction. 

The results in Figure 3 show that the response time score of the proposed 

optimized model is 4.1, which is excellent in real-time comparison. The processing 

speed score is 4.9, which is the best. The score of computing resource usage is 4.6, 

which is excellent. XGBoost performs well in processing speed, but it is slightly 

insufficient in response time, so it may be necessary to further optimize the model to 

improve response efficiency. LightGBM is outstanding in response time, but it is 

slightly lower than the optimization model in processing speed and computing 

resource usage, showing its potential in efficient task processing. The optimized model 

performs well in all dimensions, especially in processing speed, which shows its 

superiority in application scenarios with high real-time requirements. In the 

comparison of robustness, the noise tolerance score of XGBoost model is 3.7, and the 

performance is moderate. The score of fault recovery ability is 2.5, which is weak and 

needs to be improved. The consistency score is 4.5, which shows excellent 
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performance and high stability of the results. The noise tolerance score of LightGBM 

model is 4.3, which shows excellent performance and handles the noise influence well. 

The recovery ability score is 3.3, and the performance is acceptable. The consistency 

score is 3.7, and the performance is relatively stable. The noise tolerance score of the 

proposed optimized model is 4.2, which shows excellent performance. The score of 

fault recovery ability is 4.3, which shows the best performance and has good fault 

handling ability. The consistency score is 4.5, which is equivalent to XGBoost 

consistency performance, indicating that the results are highly stable. In the 

comparison of adaptability, the score of diversified data processing ability of the 

proposed optimized model is 4.5, which shows excellent performance and strong 

ability to process different types of data. The score of dynamic adjustment ability is 

4.8, which shows the best performance and can adapt to changes quickly. The 

expansibility score is 4.2, which shows excellent performance and good expansibility. 

XGBoost performs well in diversified data processing and expansibility, but it is 

slightly insufficient in dynamic adjustment ability, and may need to be optimized in 

adapting to the rapidly changing environment. LightGBM performs well in dynamic 

adjustment and shows some adaptability, but it is like XGBoost in diversified data 

processing and scalability. The proposed optimized model performs well in all 

dimensions, especially in dynamic adjustment ability, which shows that it has high 

adaptability and can flexibly cope with various data and environmental changes. In the 

comparison of user satisfaction, the accuracy score of the risk assessment of the 

proposed optimized model is 4.9, which is excellent. The score of ease of use is 5.0, 

which shows excellent performance, indicating that the user experience is very good. 

The practical score of risk early warning is 4.8, which is excellent. The optimized 

model performs best in the comparative experiment of user satisfaction, especially in 

terms of ease of use and accuracy of risk assessment, which is obviously superior to 

other models, and is suitable for scenarios that require high user experience and 

accurate risk assessment. LightGBM performs well in the accuracy of risk assessment, 

but needs to further improve the user experience in other aspects. XGBoost is 

relatively average in all aspects, but there is room for improvement in user experience 

and early warning practicability. 

5. Discussion 

From the perspective of computing efficiency, the optimized model performs well 

in processing speed and computing resource usage, especially in real-time and 

processing speed. This shows that the model has obvious advantages in processing 

data efficiently. However, it should be noted that the improvement of computing 

efficiency is usually accompanied by the consumption of computing resources. For 

example, although the optimized model is superior in processing speed, it may rely 

heavily on hardware resources. Thus, in the environment with limited resources, it 

may be necessary to simplify the model to balance the relationship between computing 

efficiency and resource use. Secondly, according to the performance of each model, 

this paper analyzes the advantages of different models in applicable scenarios. The 

optimized model has the best performance in terms of risk assessment accuracy, 

adaptability and user satisfaction. Moreover, the model is especially suitable for scenes 
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that require high accuracy and user experience, such as personalized training plans of 

professional athletes and real-time risk monitoring of high-intensity training. In 

addition, because of its good dynamic adjustment ability, the optimized model can 

provide effective support in the case of rapid changes in the training environment, so 

it also has advantages in complex and changeable scenes. 

XGBoost shows good adaptability when the amount of data increases, especially 

in recall and specificity. This means that XGBoost model is more applicable in scenes 

that need high recall rate, such as in the early warning stage, to ensure that potential 

risks will not be ignored. In addition, although the computational efficiency of 

XGBoost is not as good as that of the optimization model, it can still provide stable 

performance in the case of limited resources, which makes it suitable for training 

environments with few resources. LightGBM model performs well in response time 

and specificity, but it is not as good as other models in precision and recall. Therefore, 

LightGBM may be more suitable for scenarios with low real-time requirements, such 

as data batch processing or post-event risk assessment and analysis. In these scenarios, 

the LightGBM model can provide stable performance, and can maintain low 

computational overhead in the case of limited resources. 

Integrating this model into the existing training management system needs to 

consider data collection, data processing, and results display. Firstly, the real-time 

collection of physiological data, sports performance data and environmental data can 

be realized through seamless docking with existing physiological monitoring 

equipment, training data acquisition system and environmental data sensor. Then, the 

data is imported into the model for preprocessing steps such as cleaning, 

standardization and feature extraction to ensure the standardization and consistency of 

model input. For the convenience of coaches and managers, the output of the model 

should be integrated into the user interface of the training management system to 

provide concise risk assessment results and related suggestions to help coaches 

monitor the athletes’ status in real time. In addition, an alarm mechanism is set up. 

When the risk assessment value reaches a certain threshold, the system will give an 

alarm to the coach, prompting the possible injury risk. In the highly dynamic sports 

training environment, real-time processing is very important to ensure the safety of 

athletes. The real-time processing requirements of this model include fast data 

preprocessing, calculation and feedback to provide real-time risk assessment results 

during training. Specifically, the system should complete data cleaning, feature 

extraction and model calculation within a few seconds to ensure that the output results 

of the model can be updated in real time during the training process for coaches’ timely 

reference. At the same time, the model needs to have the ability to dynamically adjust 

to changes in the data in real time to improve the accuracy and robustness of the 

prediction. This real-time processing ability can not only help the coach to adjust the 

training intensity and content at any time during the training, but also provide 

retrospective analysis after the training, thus providing a basis for future training 

strategies. In order to make the prediction of the model operable, the coach needs to 

be able to understand the risk assessment results output by the model and the meaning 

behind it. The risk assessment results output by the model can be quantified as a score 

or rating, indicating the level of damage risk. According to this score, the coach can 

divide the risk into different levels, such as low, medium and high, and take 
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corresponding preventive measures according to different risk levels. For example, 

when the risk is at a low level, athlete can continue the current training intensity. When 

the risk reaches the middle or high level, the coach can choose to reduce the training 

load appropriately, increase the recovery time, or adjust the training content. In 

addition, the prevention suggestions and training adjustment programs provided by the 

model can help coaches to take more scientific intervention measures and reduce the 

possibility of injury. By regularly checking the risk assessment report generated by the 

model, the coach can also make a personalized training plan for each athlete, and 

continuously optimize the strategy according to the training feedback to ensure that 

the athletes train in a safe state. 

Compared with the research of Zhou et al., this paper mainly evaluates the injury 

risk of sports training based on statistical regression model, focusing on analyzing the 

relationship between simple physiological data and injury risk. This method has 

certain accuracy when dealing with a small amount of data, but the adaptability and 

prediction accuracy of its model are limited in complex environment and large amount 

of data [32]. In contrast, this paper uses complex network analysis algorithm, 

combined with multi-dimensional data (physiological data, sports performance data, 

environmental data) for risk assessment, which significantly improves the model’s 

ability to deal with diverse data and adapt to complex environment. Additionally, the 

time dependence of data is dealt with by time series analysis method, and the 

optimized model is superior in real-time performance and dynamic adjustment ability, 

which makes it have better prediction effect in high dynamic training scene. Secondly, 

compared with the research of Zhan et al., they used the traditional machine learning 

algorithm to predict the risk of sports training injuries. Although there was some 

performance in precision, there were limitations in computational efficiency and 

robustness, especially in the case of increasing data and noise, the accuracy of the 

model had declined [33]. The optimized model is excellent in precision and robustness, 

especially in dealing with different data volumes and noise tolerance. In addition, by 

combining complex network analysis and ensemble learning methods, the optimized 

model not only improves the identification accuracy of damage risk, but also is 

significantly better than their proposed model in terms of user satisfaction and 

practicality. This makes the proposed model have greater application value in scenes 

that need high user experience and complex data processing. 

To sum up, this paper has significantly improved the data processing ability, real-

time performance and user experience compared with the traditional research, 

indicating that the optimization model has stronger application potential and 

adaptability in the changeable environment. 

6. Conclusion 

In this paper, by constructing and optimizing the complex network analysis 

algorithm model, the injury risk in sports training is evaluated, and multi-dimensional 

model performance comparison experiments are carried out, including accuracy, real-

time, robustness, adaptability and user satisfaction. The optimized model performs 

well in many indicators, especially in the accuracy of risk assessment and user 

satisfaction, which is significantly better than the traditional model. This shows that 
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the model has higher prediction accuracy and good user experience. The optimized 

model shows superior performance in processing speed and fault recovery ability, and 

is suitable for real-time systems that need high efficiency and stability. This advantage 

enables it to quickly adapt to the changing training environment and maintain efficient 

damage risk assessment ability. The optimization model performs well in diversified 

data processing ability, dynamic adjustment ability and expansibility, and can flexibly 

cope with different types of data and changing training conditions, so it has high 

application potential. By comprehensively evaluating the accuracy of risk assessment, 

ease of use and practicability of risk early warning, the optimization model gets the 

highest score on user satisfaction, which reflects its high recognition and use value in 

practical application. 

This paper also has some shortcomings. Although the model adopts complex 

network analysis method, some potential important factors may be ignored in feature 

selection, which affects the comprehensiveness and accuracy of the model. Moreover, 

although the optimized model has obvious advantages in performance, its 

computational complexity is high, and its requirements for computing resources are 

great, which may limit its application in resource-limited environments. Future 

research will further improve the accuracy and robustness of the model by introducing 

richer features and multimodal data (such as physiological signals and video data), and 

explore the application of automatic feature extraction technology (such as deep 

learning) in risk assessment. Meanwhile, it studies how to simplify the model structure 

and algorithm flow, reduce the computational complexity and resource consumption, 

and improve the efficiency and operability of the model in practical application. 
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