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Abstract: Independent Component Analysis (ICA) is a powerful tool for solving blind 
source separation problem in biomedical engineering. The traditional ICA algorithm ignores 
the Lie group structure of constrained matrix manifold. In this paper, a gradient descent 
algorithm on Lie group manifold is proposed based on the geometric framework of 
optimization algorithm on Riemann manifold. Firstly, the orthogonal constraint separation 
matrices are regarded as a Lie group manifold, and the gradient of ICA objective function on 
the Lie group manifold is given by using Riemann metric; Secondly, the geodesic equation of 
the current iteration point along the gradient descent direction is calculated; Finally, a new 
iteration point is obtained by moving a certain step along the geodesic line, meanwhile, the 
step length can be adjusted adaptively. Simulation results show that the gradient algorithm on 
Lie group manifold is feasible for blind Source Separation, and its performance (convergence 
speed, stability and error) is better than other algorithms. 
Keywords: ICA; Lie group manifold; gradient descent; blind source separation 

1. Introduction 

Functional studies in molecular biology show that the majority of genes have 
pleiotropic function. Almost every gene can respond to a variety of distinct external 
signals. Linear factorisation methods have an intrinsic way to associate a gene 
(sensor) to several sources of signal (biological functions) which makes it a suitable 
tool for analysis of complex biological data. Moreover, since the linear factorization 
methods are based on some kind of averaging of the data (calculating data moments), 
they are intrinsically more stable to the presence of high levels of noise in the data 
and partial removal of samples, if compared to the agglomerative clustering 
methods. Blind source separation refers to the process of recovering each source 
signal from only partial prior knowledge of the observed signal and the source 
signal, when both the source signal and the transmission signal channels are 
unknown. Independent component analysis (ICA) is an effective method for blind 
signal separation, which is a new signal processing technology in modern times [1–
4]. It satisfies the principle of statistical independence, optimizes the objective 
function through various algorithms, and obtains the estimation components for 
source signals, which are independent and non-Gauss distribution. At present, ICA 
algorithms are mainly divided into batch algorithms and adaptive algorithms. Batch 
algorithms, such as FastICA algorithm [5] and Joint diagonalization algorithm [5], 
have good numerical stability, but are not suitable for real-time update of observation 
data. Adaptive algorithms, such as EASI algorithm [6] and Natural gradient ICA 
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algorithm [7], have less computational complexity and online learning ability, but the 
convergence and stability are greatly affected by the learning step. It is worth noting 
that under the basic assumption of ICA, the separation matrix is constrained by 
orthogonality, which is equivalent to the white signal. The traditional ICA learning 
algorithms do not make use of the fact that the constraint set is a Riemannian 
manifold, which causes the separation matrix to have a large amount of computation 
and instability in the iterative process. ICA is an optimization problem with manifold 
constraints. If this constraint is treated as an equality constraint, the numerical 
calculation effect may not be very good. Therefore, the nonlinear constrained 
optimization problem of ICA is transformed into an optimization problem on a 
Riemannian manifold, which will be very reasonable and efficient. 

In recent years, optimization algorithms on manifolds [8–12] have become an 
important research direction in the field of nonlinear programming, and have been 
successfully applied in many fields such as pattern recognition, image processing, 
blind source separation, and biomedical signal processing. Optimization algorithms 
on manifolds treat constraint sets as manifolds, thus transforming traditional 
constrained optimization problems into unconstrained optimization problems.The 
Riemannian manifold optimization framework on manifolds can effectively deal 
with nonlinear optimization problems with constraints. It can unify constrained and 
unconstrained models on Euclidean space. Edelman [13] proposed the Newton 
format and conjugate gradient format on stiefel manifold; Zhang [14] studied the 
gradient algorithm on stiefel manifold and its application in feature extraction; Song 
[15] studied the optimization method on Riemann manifold to solve sparsity PCA; Li 
[16] studied the interference alignment scheme based on the conjugate gradient 
algorithm on grassmanian manifold, however, the gradient algorithm on manifold for 
ICA is rarely reported. Based on the geodesic flow tool on Riemannian manifold, 
this paper proposes a gradient algorithm on Lie group manifold, which has adaptive 
adjustment of step size and guaranteed orthogonal constraints. We established a line 
search method on the Lie group manifold and provided a detailed explanation of the 
determination and calculation method of the descent direction of non-smooth 
functions on the Lie group manifold in the algorithm steps. This paper also verified 
the convergence and feasibility of the algorithm through numerical experiments. 

2. Materials and methods 

This paper deals with the phenomenon that the traditional natural gradient 
algorithm in signal blind source separation is poor stability and poor separation 
performance. This paper proposes an improved gradient descent algorithm on Lie 
group manifold based on the geometric framework of manifold optimization 
algorithms. Firstly, the orthogonal constraint separation matrices are regarded as a 
Lie group manifold, and the gradient of ICA objective function on the Lie group 
manifold is given by using Riemann metric; Secondly, the geodesic equation of the 
current iteration point along the gradient descent direction is calculated; Finally, a 
new iteration point is obtained by moving a certain step along the geodesic line, 
meanwhile, the step length can be adjusted adaptively.  
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3. Results and discussion 

Research has shown that the gradient algorithm on Lie group manifold is 
feasible for blind Source Separation, and its performance (convergence speed, 
stability and error) is better than other algorithms. This algorithm not only effectively 
estimates the mixing matrix, but also has good separation performance for signals 
with appropriately reduced sparsity requirements. 

3.1. Optimization model of ICA 
The model for blind source separation of signals is shown in Figure 1. 

Assuming the number of source signals is 푛, the linear instantaneous mixing model 
in the determined state is denoted as  푠(푡) = [푠�(푡) 푠�(푡) ⋯ 푠�(푡)]� . After 
passing through a linear time invariant channel, the source signal풔(푡) is received by 
m-receiving terminals and becomes an observed mixed signal 푥(푡) =
[푥�(푡) 푥�(푡) ⋯ 푥�(푡)]� , which are the linear mixture of source signals 푠(푡). 
Due to the model being in a deterministic state, so푛 = 푚. The relationship between 
the 푥(푡) and the 푠(푡) can be expressed as: 

푥(푡) = 퐴�×�푠(푡) (1)

here 퐴 is a mixture matrix, each component of 푠(푡) is a random variable with zero-
mean. 

 
Figure 1. Model for blind source separation of signals. 

The purpose of ICA is to find the separation matrix푊under the condition of 
unknow mixture matrix 퐴 and unkonw source signals  푠(푡) , so as to make each 
element  푦�(푡)  of the estimation  y(푡)  for source signals  푠(푡)  mutually statistically 
independent. 

푦(푡) = 푊�×�푥(푡) = 푊퐴푠(푡) (2)

The solution process of ICA is actually an optimization process, which can be 
realized by data preprocessing, constructing objective function and establishing 
optimization algorithm. 
1) Data preprocessing:  

① Centralize observation variables, that is: 
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푥̄ = 푥 − 퐸(푥) (3)

② Whitening, looking for linear transformation 푧 = 푉�×�푥̄, where푉satisfies: 

푉 = 퐷��/�푅�, 퐸(푥̄푥̄�) = 푅퐷푅� (4)

Whitening can remove the second-order correlation among the components of 
mixed signal and simplify the mixed matrix퐴into a new orthogonal matrix퐴�, that is 

퐸(푧푧�) = 퐼, 퐴� = 푉퐴, 퐴��퐴� = 퐼. 

2) Objective function: the probability density of output signal 푦(푡) is푝�(푦, 푊), the 
probability density of Gauss signal is 푝�(푦�����), and the negentropy is: 

퐽(푦�, 푦�, . . . , 푦�) = � 푝�(푦, 푊) 푙푛 푝� (푦, 푊)푑푦 − � 푝�(푦�����)lny����� 푙푛 푑 푦 = 퐻(푦�����) − 퐻(푦, 푊) (5)

3) Optimization mode: because the source signal퐬(푡) has unit variance, we hope 
that the estimated signal퐲(푡) should also have unit variance, that is퐸(퐲퐲�) = 퐈. 
At the same time, because the observed signal 퐳 is whitened, we get the 
important property of the separation matrix 푊 which is that the separation 
matrix푊should be orthogonal, that is: 

퐸(푦푦�) = 퐸(푊푧푧�푊�) = 푊퐸(푧푧�)푊� = 푊퐼푊� = 푊푊� = 퐼 ⇒ 푊�푊 = 퐼 (6)

Therefore, the optimization model of ICA problem is a non-convex 
optimization problem on the orthogonal constraint matrix manifold, that is: 

min
�∈��×�

   퐽(푊) 

푠. 푡.         푊�푊 = 퐼 
(7)

3.2. Gradient algorithm on Lie group manifold 
The feasible region in Equation (7) is 푂(푛, 푅) = {푊 ∈ 퐺퐿(푛, 푅)|푊�푊 = 퐼}, 

which is a Lie group manifold, Its local coordinate system in Euclidean space 

is푞�, 푞�, . . . 푞�, the Riemann metric is 푔 = 푔��
�

���
⊗ �

���
, the tangent vector space of 

its point푊is푇�푂, so the inner product is: 

⟨푀, 푁⟩� = 푔�(푀, 푁) = 푡푟(푀�푁), 푀, 푁 ∈ 푇�푂 (8)

Therefore, the Riemannian gradient of objective function on Lie group manifold 
is: 

푔푟푎푑�
� 퐽 =

1
2

(푔푟푎푑�퐽 − 푊(푔푟푎푑�퐽)�푊) 

푔푟푎푑�퐽 = 훻퐽푊�푊 
(9)

here 훻퐽 is the normal gradient of 퐽 on Euclidean space. 
Then the geodesic equation at the point푊along the direction 퐻 = −푔푟푎푑�

� 퐽 on 
Lie group manifold is: 
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훾(푡) = 푊푋(푡) + 푄푌(푡); 

�
푋(푡)
푌(푡)� = 푒푥푝 푡 �퐿 −푈�

푈 0
� �퐼

0� 
(10)

here 퐿 = 푊�퐻 is skew-symmetric matrix, 푄, 푈 are QR decomposition matrices of 
(퐼 − 푊푊�)퐻. 

To sum up, the steps of gradient descent method on Lie group manifold are as 
follows: 
(1) Given initial point 푊� , termination constant 휀 > 0 and initial step size 푡� , 

firstly푘 = 0; 

(2) Calculating푔푟푎푑�
� 퐽 , if �푔푟푎푑�

� 퐽(푊�)�� = 품�(푔푟푎푑�
� 퐽(푊�), 푔푟푎푑�

� 퐽(푊�)) 
= 푡푟((푔푟푎푑�

� 퐽(푊�))�(푔푟푎푑�
� 퐽(푊�))) ≤ 휀 , stop iteration and output 푊� , 

otherwise enter (3); 
(3) The iteration format at 푊� along 퐻 = −푡�푔푟푎푑�

� 퐽 is: 

푊��� = 푊�푋(푡�) + 푄푌(푡�) (11)

(4) Adaptive adjustment step size, if  퐽(푊�) > 퐽(푊���) , so  푘 = 푘 + 1, 푡��� =
훼푡� , 훼 > 1, back to step (2), otherwise 퐽(푊�) < 퐽(푊���),so 푘 = 푘 + 1, 푡� =
훼푡� , 훼 < 1, back to step (3). 
The movement of iteration point in gradient descent method on Lie group 

manifold can be seen in Figure 2. 

 
Figure 2. The movement of iteration point in gradient descent method on Lie group 
manifold. 

Under certain conditions, it can be proved that the above gradient algorithm is 
convergent.  

The proof process is long, which can be referred to reference [17]. 
The brief paragraph for the algorithm steps is in Figure 3. 
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Figure 3. The diagram outlining the algorithm. 

3.3. Simulation results 
There are four source signals that are sine wave, square wave, sawtooth wave 

and stochastic wave, see Figure 4. All elements of the mixed matrix 퐴 meet the 
uniform distribution of (−1,1), see Figure 5 for the observed signal. 

  
(a) Sine (b) Square 

  
(c) Sawtooth (d) Stochastic 

Figure 4. Source signal waveform. 

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

y（
t
）

t

0 50 100 150 200
-4

-2

0

2

4

y
(
t
)

t

0 50 100 150 200

-4

0

4

y(
t)

t
0 20 40 60 80 100 120 140 160 180 200

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y（
t）

t



Molecular & Cellular Biomechanics 2024, 21(3), 631.  

7 

  
(a) Sine (b) Square 

  
(c) Sawtooth (d) Stochastic 

Figure 5. Observation signal waveform. 

It can be seen from Figure 5 that the mixed observation signal has been 
centralized. 

The objective function 퐽(푦, 푊) of ICA based on negentropy can be expressed as 
follows: 

퐽(푊) = −
1
2

푡푟(푊�퐺푊), 퐺 = 퐸(푥푥�) (12)

The corresponding gradients on Euclidean space and Lie group manifold are: 

휕퐽
휕푊

= 퐺푊 

푔푟푎푛푑�
� 퐽 = 퐺푊 − 푊푊�퐺푊 

(13)

Initial separation matrix is eye 푊� = 퐼�×�, initial step size is푡� = 0.0015, the 
final optimal solution is obtained by using the iterative scheme Equation (11) on Lie 
group manifold: 

푊����
∗ = �

−0.1745 0.2621 −0.7307 −0.6057
−0.5951 −0.7904 −0.1452 0.0046
0.7329 −0.4642 −0.4718 0.1572
0.2798 0.3017 −0.4715 0.7800

� (14)

The optimal solution Equation (14) also satisfies the first-order optimality 
condition of manifold optimization, that is 푔푟푎푛푑�

� 퐽(푊∗) ≈ 0. 
Then the optimal separation signal is shown in Figure 5. It can be seen from 

Figure 6 that the gradient algorithm on Lie group manifold can separate the mixed 
signals effectively and accurately, but the order and symbol of signals have changed. 
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(a) Sine (b) Square 

  
(c) Sawtooth (d) Stochastic 

Figure 6. Separation signal. 

The common evaluation metric for blind source separation algorithms is 
“crosstalk error” [18]. The performance of algorithm is measured by 푃퐼: 

푃퐼 = �(�
�푐���

푚푎푥
�

|푐��|

�

���

�

���

− 1) + �(�
�푐���

푚푎푥
�

�푐���

�

���

�

���

− 1) (15)

here [푐��] = [푊 ⋅ 퐴]��, the푃퐼is the smaller, the statistical performance of separation 
algorithm is the better. Comparing the natural gradient ICA algorithm with fixed step 
size [19] and the simulation degradation algorithm [20], the iteration trend of푃퐼is 
shown in Figure 7. 

 
Figure 7. Comparison of PI of three algorithms. 
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It can be seen from Figure 7 that the algorithm based on Lie group manifold 
gradient has faster convergence speed in the early stage of iteration. At the same 
time, after the iteration is relatively stable, the natural gradient algorithm with fixed 
step length has discontinuous fluctuation jump, the convergence error of simulation 
degradation algorithm is slightly larger than that of the gradient algorithm on Lie 
group manifold, so the algorithm in this paper is more stable and the steady-state 
error is smaller. 

5. Conclusion 

The traditional ICA algorithms do not make full use of the Lie group structure 
of orthogonal constraint separation matrices, and the stability and convergence of 
algorithm are greatly affected by the learning step. Therefore, this paper introduces 
the Lie group manifold gradient and adaptive adjustment step. A gradient algorithm 
framework on the orthogonal group is obtained based on the Riemann manifold 
optimization algorithm with geodesic. The simulation of blind source separation 
shows that the gradient algorithm based on Lie group manifold with geodesic to 
construct iterative scheme, which has faster convergence speed than the natural 
gradient algorithm with fixed step size and the simulated annealing bionic algorithm, 
and the stability of algorithm and the accuracy of separation are greatly improved. 
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